

Available online at http://scik.org J. Math. Comput. Sci. 11 (2021), No. 3, 2551-2567 https://doi.org/10.28919/jmcs/5601 ISSN: 1927-5307

PAIR DIFFERENCE CORDIAL LABELING OF GRAPHS

R. PONRAJ^{1,*}, A. GAYATHRI^{2,†}, S. SOMASUNDARAM²

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India ²Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012,

Tamilnadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let G = (V, E) be a (p,q) graph.

Define

$$\rho = \begin{cases} \frac{p}{2}, & \text{if } p \text{ is even} \\ \\ \frac{p-1}{2}, & \text{if } p \text{ is odd} \end{cases}$$

and $L = \{\pm 1, \pm 2, \pm 3, \dots, \pm \rho\}$ called the set of labels.

Consider a mapping $f: V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that $|\Delta_{f_1} - \Delta_{f_1^c}| \le 1$, where Δ_{f_1} and $\Delta_{f_1^c}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate the pair difference cordial labeling behavior of path, cycle, star, comb.

Keywords: path; cycle; complete graph; star; bistar; comb.

2010 AMS Subject Classification: 05C78.

^{*}Corresponding author

E-mail address: ponrajmaths@gmail.com

[†]Research Scholar, Reg. No: 20124012092023

Received February 24, 2021

1. INTRODUCTION

In this paper we consider only finite, undirected and simple graphs. The notion of difference cordial labeling of a graph was introduced and studied some properties of difference cordial labeling in [4]. The difference cordial labeling behavior of several graphs like path, cycle, star etc have been investigated in [4]. In this paper we introduce the pair difference cordial labeling and investigate pair difference cordial labeling behavior of path, cycle, star, comb and bistar graph.

2. PRELIMINARIES

Definition 2.1. The ladder L_n is the product graph P_nXK_2 with 2n vertices and 3n-2 edges.

Definition 2.2. The graph obtained by joining two disjoint cycles $u_1u_2, \dots u_mu_1$ and $v_1v_2, \dots v_nv_1$ with an edge u_1v_1 is called dumbbell graph and it is denoted by Db(m, n).

3. PAIR DIFFERENCE CORDIAL LABELING

Definition 3.1. Let G = (V, E) be a (p,q) graph.

Define

$$\rho = \begin{cases} \frac{p}{2}, & \text{if } p \text{ is even} \\ \\ \frac{p-1}{2}, & \text{if } p \text{ is odd} \end{cases}$$

and $L = \{\pm 1, \pm 2, \pm 3, \dots, \pm \rho\}$ called the set of labels.

Consider a mapping $f: V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that $|\Delta_{f_1} - \Delta_{f_1^c}| \le 1$, where Δ_{f_1} and $\Delta_{f_1^c}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1.A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph.

Theorem 3.1. If G is a (p,q) pair difference cordial graph then

$$q \leq \begin{cases} 2p - 3 & \text{if } p \text{ is even} \\ \\ 2p - 1 & \text{if } p \text{ is odd} \end{cases}$$

Proof. Case 1. p is even.

The maximum number of edges with the label 1 among the vertex labels $1, 2, 3, \dots, \frac{p}{2}$ respectively is $\frac{p}{2} - 1$. Also the maximum number of edges with the label 1 among the vertex labels $-1, -2, -3, \dots, -\frac{p}{2}$ respectively is $\frac{p}{2} - 1$. Therefore $\Delta_{f_1} \leq (\frac{p}{2} - 1) + (\frac{p}{2} - 1) = p - 2$. That is $\Delta_{f_1} \leq p - 2$, This implies $\Delta_{f_1^c} \geq q - p + 2 \longrightarrow (1)$. **Type 1.** $\Delta_{f_1^c} = \Delta_{f_1} + 1$.

By (1),
$$q - p + 2 \le \Delta_{f_1^c}$$
,
 $\le \Delta_{f_1} + 1$
 $\le p - 1$. This implies $q \le 2p - 3$. \longrightarrow (2)

Type 2. $\Delta_{f_1^c} = \Delta_{f_1} - 1$.

By (1),
$$q - (p - 2) \le \Delta_{f_1^c}$$
,
 $\le \Delta_{f_1} - 1$,
 $\le p - 3$. This implies $q \le 2p - 5$. \longrightarrow (3)

Type 3. $\Delta_{f_1^c} = \Delta_{f_1}$.

By (1),
$$q - (p-2) \le \Delta_{f_1^c}$$
,
 $\le \Delta_{f_1}$,
 $\le p-2$.
This implies $q \le 2p-4 \longrightarrow (4)$.By (2),(3),(4), $q \le 2p-3$.

Case 2. p is odd.

In this case, one vertex label is repeated. This vertex label contributes maximum two edges with label 1. Therefore, $\Delta_{f_1} \le (\frac{p-1}{2}-1) + (\frac{p-1}{2}-1) + 2 = p+1$. As in case (1), we get $q \le 2p-1$.

Theorem 3.2. The path P_n is pair difference cordial for all values of *n* except $n \neq 3$.

Proof. Let P_n be the path $u_1u_2\cdots u_n$.

Case. 1 *n* is odd.

There are two cases arises.

Subcase. 1 $n = 4t + 1, t \in N \cup \{0\}$.

Assign the labels 1, 2 to the vertices u_1, u_2 respectively and assign the labels -1, -2 respectively to the vertices u_3, u_4 .Next assign the labels 3, 4 respectively to the vertices u_5, u_6 and assign the labels -3, -4 to the vertices u_7, u_8 respectively.Proceeding like this untill we reach the vertex u_{n-1} .Finally assign the label -2 to the vertex u_n .Note that the vertices u_{n-4}, u_{n-3} get the labels $\frac{n-3}{2}, \frac{n-1}{2}$ respectively and the vertices u_{n-2}, u_{n-1} receive the labels $-\frac{n-3}{2}, -\frac{n-1}{2}$ respectively. This vertex labeling gives the pair difference cordial labeling of path P_n ,since $\Delta_{f_1} = \Delta_{f_1^c} = \frac{n-1}{2}$.

Subcase. 2 $n = 4t + 3, t \in N$.

Assign the labels 1,2 respectively to the vertices u_1, u_2 and assign the label -1, -2 to the vertices u_3, u_4 respectively.Next assign the labels 3,4 respectively to the vertices u_5, u_6 and assign the labels -3, -4 to the vertices u_7, u_8 respectively.Proceeding like this untill we reached u_{n-3} .Assign the label $-\frac{n-3}{2}$ to the vertex u_n .Finally assign the labels $\frac{n-1}{2}, -\frac{n-1}{2}$ respectively to the vertices u_{n-2}, u_{n-1} .Note that the vertices u_{n-6}, u_{n-5} received the labels $\frac{n-5}{2}, \frac{n-3}{2}$ respectively and the vertices u_{n-4}, u_{n-3} get the labels $-\frac{n-5}{2}, -\frac{n-3}{2}$ respectively.

This vertex labeling gives the pair difference cordial labeling of path P_n , since $\Delta_{f_1} = \Delta_{f_1^c} = \frac{n-1}{2}$.

Subcase. 3 n = 3.

Suppose *f* is a pair difference cordial of *P*₃, then $\Delta_{f_1} = 0$ and $\Delta_{f_1^c} = 2$. This contradicts *P*₃ is not pair difference cordial.

There are two cases arises.

Subcase. 1 $n = 4t, t \in N$.

Assign the labels 1,2 to the vertices u_1, u_2 respectively and assign the labels -1, -2 to the vertices u_3, u_4 respectively.Next assign the labels 3,4 to the vertices u_5, u_6 respectively and assign the labels -3, -4 respectively to the vertices u_7, u_8 .Proceeding like this untill we reach the vertex u_n .Note that the vertices u_{n-3}, u_{n-2} respectively receive the labels $\frac{n-2}{2}, \frac{n}{2}$ and the vertices u_{n-1}, u_n get the labels $-\frac{n-2}{2}, -\frac{n}{2}$ respectively.

This vertex labeling gives a pair difference cordial labeling of the path P_n , since $\Delta_{f_1} = \frac{n}{2}$, $\Delta_{f_1^c} = \frac{n-2}{2}$.

Subcase. 2 $n = 4t + 2, t \in N \cup \{0\}$.

Assign the labels 1,2 respectively to the vertices u_1, u_2 .Now assign the labels -1, -2 to the vertices u_3, u_4 respectively.Next assign the label 3,4 respectively to the vertices u_5, u_6 and assign the label -3, -4 to the vertices u_7, u_8 respectively.Proceeding like this until we reach the vertex u_{n-2} .Finally assign the labels $\frac{n}{2}, -\frac{n}{2}$ to the vertices u_{n-1}, u_n respectively.Note that the vertices u_{n-5}, u_{n-4} get the label $\frac{n-4}{2}, \frac{n-2}{2}$ respectively and the vertices u_{n-3}, u_{n-2} receive the labels $-\frac{n-4}{2}, -\frac{n-2}{2}$ respectively.

This vertex labeling gives the pair difference cordial labeling of path P_n , since $\Delta_{f_1} = \frac{n-2}{2}$, $\Delta_{f_1^c} = \frac{n}{2}$.

Remark. P₃ is difference cordial but not pair difference cordial [4].

Corollary 3.2.1. The cycle C_n is pair difference cordial if and only if n > 3.

Proof. Let C_n be the cycle $u_1u_2\cdots u_nu_1$. The function f in the theorem 3.3 is also a pair difference cordial labeling of the cycle C_n .

Theorem 3.3. The star $K_{1,n}$ is pair difference cordial if and only if $3 \le n \le 6$.

Proof. Let $V(K_{1,n}) = \{u, u_i : 1 \le i \le n\}, E(K_{1,n}) = \{uu_i : 1 \le i \le n\}$. The graph $K_{1,n}$ has n + 1 vertices and n edges.

Case 1. $3 \le n \le 6$.

Table 1 shows that the star $K_{1,n}$, $3 \le n \le 6$ is pair difference cordial.

n	и	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	<i>u</i> ₄	<i>u</i> 5	<i>u</i> ₆
3	2	-1	1	-2			
4	2	-1	1	-2	2		
5	2	-1	1	-2	3	-3	
6	2	1	-1	1	-2	3	-3
TABLE 1							

Case 2. $n \ge 6$.

Suppose *f* is a pair difference cordial labeling of $K_{1,n}$. Assume f(u) = l, To get the edge label 1, the only possibly is that the pendant vertices receive the label l - 1 or l + 1.

Subcase 1. n is odd.

In this case, $\Delta_{f_1} \leq 2$. This implies $\Delta_{f_1} - \Delta_{f_1^c} \geq n - 4 > 1$, a contradiction.

Subcase 2. n is even.

In this case, we may use one vertex label as twice. This implies $\Delta_{f_1} \leq 3$. Therefore $\Delta_{f_1} - \Delta_{f_1^c} \geq n-6 > 1$, a contradiction.

Remark. The star $K_{1,6}$ is pair difference cordial but not difference cordial[4].

Corollary 3.3.1. The complete graph K_p is pair difference cordial if and only if $p \le 2$.

Proof. Case 1. $p \leq 2$.

By theorem 3.3, K_1, K_2 is pair difference cordial.

Case 2. $3 \le p \le 5$.

The Table 2 shows that K_3, K_4, K_5 is not pair diffrence cordial.

Nature of <i>n</i>	$\Delta_{f_1^c}$	Δ_{f_1}	
3	3	0	
4	2	4	
5	3	7	
TABLE 2			

Case 2. $p \ge 6$.

Suppose K_p is pair difference cordial.By theorem 3.2, $\binom{p}{2} \le 2p + 1$.This implies $\frac{p(p-1)}{2} \le 2p + 1$, a contradiction to $p \ge 6$.

Theorem 3.4. The comb $Pn \odot K_1$ is a pair difference cordial for all values of n.

Proof. Let
$$V(P_n \odot K_1) = \{u_i, v_i : 1 \le i \le n\}$$
 and $E(P_n \odot K_1) = \{u_i v_i : 1 \le i \le n\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\}$.
Define a map $f : V(P_n \odot K_1) \to \{\pm 1, \pm 2, \cdots, \pm n\}$ by
 $f(u_i) = i, 1 \le i \le n$, and $f(v_i) = -i, 1 \le i \le n$. Then $\Delta_{f_1} = n - 1, \Delta_{f_1^c} = n$.

Theorem 3.5. $K_2 + mK_1$ is pair difference cordial if and only if m = 2.

Proof. Let $V(K_2+mK_1) = \{u, v, u_i : 1 \le i \le m\}$ and $E(K_2+mK_1) = \{uu_i, vu_i : 1 \le i \le m\} \cup \{uv\}$. **Case 1**.m = 2. Define f(u) = -1, f(v) = 1 and $f(u_1) = 2, f(u_2) = -2$, Then $\Delta_{f_1^c} = 3, \Delta_{f_1} = 2$. **Case 2**. $m \ge 3$. Suppose f is a pair difference cordial. Assume $f(u) = l_1$ and $f(v) = l_2$. To get the edge label 1,

Suppose *f* is a pair difference cordial. Assume $f(u) = l_1$ and $f(v) = l_2$. To get the edge label 1, the only possibly is that the vertices with degree two receive the label $l_1 - 1$ or $l_1 + 1$ and $l_2 - 1$ or $l_2 + 1$.

Subcase 1.*m* is even.

In this case $\Delta_{f_1} \leq 2, \Delta_{f_1^c} \geq 2m - 1$. This implies $\Delta_{f_1^c} - \Delta_{f_1} \geq 2m - 3 > 1$, a contradiction.

Subcase 2.*m* is odd.

In this case we may use one vertex label as twice. This implies $\Delta_{f_1} \leq 3, \Delta_{f_1^c} \geq 2m - 2$. Teherefore $\Delta_{f_1^c} - \Delta_{f_1} \geq 2m - 5 > 1$, a contradiction.

Theorem 3.6. Th bistar $B_{1,n}$ is pair difference cordial if and only if $2 \le n \le 6$.

Proof. Let $V(B_{1,n}) = \{u, v, u_1, v_i : 1 \le i \le n\}$ and $E(B_{1,n}) = \{uu_1, vv_i, uv : 1 \le i \le n\}$. **Case 1.** $2 \le n \le 6$. Define $f(u) = 2, f(u_1) = 1, f(v) = -2$ and Table 3 shows that the bistar $B_{1,n}, 2 \le n \le 6$ is pair difference cordial.

n	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	<i>u</i> ₄	<i>u</i> 5	<i>u</i> ₆
2	-1	2				
3	-1	3	-3			
4	-1	-3	1	3		
5	-1	-3	-4	3	4	
6	-1	-3	-4	3	4	-1
TABLE 3						

Case 2. $n \ge 7$.

Suppose $f(u) = l_1, f(v) = l_2$, then the maximum value of Δ_{f_1} is attained when $f(u_1) = l_1 - 1, f(v_i) = l_2 - 1, f(v_j) = l_2 + 1$ for some *i* and *j*. Therefore $\Delta_{f_1} \le 1 + 2 = 3$. That is $\Delta_{f_1} \le 3$. This implies $\Delta_{f_1^c} \ge n + 2 - 3$. Therefore $\Delta_{f_1^c} \ge n - 1$. Hence $\Delta_{f_1^c} - \Delta_{f_1} \ge n - 1 - 3 > 1$, a contradiction.

Theorem 3.7. The bistar $B_{m,n}$, $(m \ge 2, n \ge 2)$ is pair difference cordial if and only if $m + n \le 9$.

Proof. Let $V(B_{m,n}) = \{u, v, u_i, v_j : 1 \le i \le m \ 1 \le j \le n\}$ and $E(B_{3,n}) = \{uu_i, vv_j, uv : 1 \le i \le n, 1 \le j \le n\}$.

There are two cases arises.

Case 1. $m + n \le 9$.

There are two subcase arises.

Subcase 1. n = m = 2.

Define $f(u) = 1, f(v) = -1, f(u_1) = 2, f(u_2) = -3, f(v_1) = -2, f(v_2) = 3$. Here $\Delta_{f_1} = 2$ and $\Delta_{f_1^c} = 3$.

Subcase 2. *n* > 2, *m* > 2.

Define $f :\longrightarrow \{\pm 1, \pm 2, \dots, \pm \frac{m+n}{2}\}$ by $f(u) = 2, f(v) = -2, f(u_1) = 1, f(u_2) = 3, f(v_1) = -1, f(v_2) = -3$. Next assign the remaining labels to the remaining vertices in any order. **Case 2.** $m+n \ge 10$.

There are two subcase arises.

Subcase 1. m + n is even.

Suppose $f(u) = l_1, f(v) = l_2$, then the maximum value of Δ_{f_1} is attained when $f(u_i) = l_1 - 1, f(u_j) = l_1 + 1$ for some *i* and *j*, $f(v_i) = l_2 - 1, f(v_j) = l_2 + 1$ for some *i* and *j*. Therefore $\Delta_{f_1} \leq 2 + 2 = 4$. This implies that $\Delta_{f_1^c} \geq m + n + 1 - 4$. Therefore $\Delta_{f_1^c} \geq m + n - 3$. Hence $\Delta_{f_1^c} - \Delta_{f_1} \geq m + n - 7$, a contradiction.

Subcase 2.
$$m + n$$
 is odd.

When m + n is odd, either m or n is odd. Hence one vertex label is repeated. Therefore $\Delta_{f_1} \leq 3 + 2$. That is $\Delta_{f_1} \leq 5$. This implies $\Delta_{f_1^c} \geq m + n - 4$. Hence $\Delta_{f_1^c} - \Delta_{f_1} \geq m + n - 9 > 1$, a contradiction.

Therefore $B_{m,n}$, $m + n \ge 10$ is not pair difference cordial.

Theorem 3.8. The laddar graph $P_2 \times P_n$ is pair difference cordial for all values of *n*.

Proof. Let $V(P_2 \times P_n) = \{u_i, v_i : 1 \le i \le n\}$ and $E(P_2 \times P_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}.$ **Case 1.** n = 2.

Let $P_2 \times P_2 \cong C_4$, is pair difference cordial by theorem 3.3.

Case 2.
$$n \ge 3$$
.

First we assign the labels $-1, -2, -3, \dots, -n$ to the vertices $u_1, u_2, u_3, \dots, u_n$ respectively.Now consider the vertices $v_i, (1 \le i \le n)$.There are four cases arises.

Subcase 1. $n \equiv 0 \pmod{4}$.

Assign the labels 1,2 to the vertices v_1, v_2 respectively.Next assign the labels 3,5 respectively to the vertices v_3, v_4 and assign the labels 4,6 to the vertices v_5, v_6 respectively.Now assign the labels 7,9 to the vertices v_7, v_8 respectively and assign the labels 8,10 to the vertices v_9, v_{10} respectively.Proceeding like this until we reach v_n .Note that in this process the vertex v_n get the label n-1.

Subcase 2. $n \equiv 1 \pmod{4}$.

As in Subcase 1, assign the labels to the vertices v_i , $(1 \le i \le n)$. Here the vertex v_n receive the label n-1.

Subcase 3. $n \equiv 2 \pmod{4}$.

Assign the labels to the vertices v_i , $(1 \le i \le n)$ as in Subcase 1.In this case the vertex v_n get the label n.

Subcase 4. $n \equiv 3 \pmod{4}$.

Similar to Subcase 1 assign the labels to the vertices v_i , $(1 \le i \le n)$. Note that the vertex v_n receive the label n.

The Table 4 given below establish that this vertex labeling f is a pair difference cordial of $P_n \times P_2$.

Nature of <i>n</i>	$\Delta_{f_1^c}$	Δ_{f_1}	
n is odd	$\frac{3n-3}{2}$	$\frac{3n-1}{2}$	
<i>n</i> is even	$\frac{3n-2}{2}$	$\frac{3n-2}{2}$	
TABLE 4			

Theorem 3.9. The dumbbell graph Db(n,n) is pair difference cordial for all values *n*.

Proof. The vertex set and the edge set of Db(n,n) is given in definition 2.2.

There are four cases arises.

2560

Case 1. $n \equiv 0 \pmod{4}$.

Assign the labels 1,2 respectively to the vertices u_1, u_2 then assign the labels 4,3 to the vertices u_3, u_4 . Secondly assign the labels 5,6 to the vertices u_5, u_6 then assign the labels 8,7 to the vertices u_7, u_8 . Proceeding like this until we reach the vertex u_n . Note that in this the vertex u_{n-1} get the label n - 1. Next assign the label to the vertices $v_i, 1 \le i \le n$. Assign the labels -1, -2 to the vertices v_1, v_2 then assign the labels -4, -3 to the vertices v_3, v_4 . Secondly assign the labels -5, -6 to the vertices v_5, v_6 then assign the labels -8, -7 to the vertices v_7, v_8 . Proceeding like this until we reach the vertex v_n receive the label -n + 1.

Case 2.
$$n \equiv 1 \pmod{4}$$
.

Assign the labels 1,2,3 to the vertices u_1, u_2, u_3 then assign the labels 5,4 to the vertices u_4, u_5 . Secondly assign the labels 6,7 to the vertices u_6, u_7 then assign the labels 9,8 to the vertices u_8, u_9 . Proceeding like this until we reach the vertex u_n . Note that in this the vertex u_n receive the label n - 1. As in case 1 assign the label to the vertices $v_i, 1 \le i \le n$. Note that in this the vertex v_{n-1}, v_n get the label -n+2, -n.

Case 3.
$$n \equiv 2 \pmod{4}$$
.

As in case 1 assign the label to the vertices $u_i, 1 \le i \le n$. Note that in this the vertex u_{n-1}, u_n receive the label n - 1, n. Assign the label as in case 1 to the vertices $v_i, 1 \le i \le n$. Note that in this way the vertex v_{n-1}, v_n get the label -n + 1, -n.

Case 4.
$$n \equiv 3 \pmod{4}$$
.

As in case 1 assign the label to the vertices u_i , $1 \le i \le n$. Note that in this process the vertex u_{n-1} , u_n receive the label n-1, n. Assign the label as in case 1 to the vertices v_i , $1 \le i \le n$. Note that here the vertices v_{n-1} , v_n get the label -n, -n+1.

The Table 5 given below establish that this vertex labeling f is a pair difference cordial of Db(n,n).

Theorem 3.10. The dumbbell graph Db(n+1,n) is pair difference cordial for all values *n*.

Proof. The vertex set and the edge set of Db(n+1,n) is given in definition 2.2.

Case 1. $n \equiv 0 \pmod{4}$.

Subcase 1. *n* > 4.

Nature of <i>n</i>	Δ_{f_1}	$\Delta_{f_1^c}$	
$n \equiv 0 \pmod{4}$	n+1	п	
$n \equiv 1 \pmod{4}$	п	n+1	
$n \equiv 2 \pmod{4}$	п	n+1	
$n \equiv 3 \pmod{4}$	n+1	п	
TABLE 5			

Assign the labels 1,2 respectively to the vertices u_1, u_2 then assign the labels 4,3 to the vertices u_3, u_4 . Secondly assign the labels 5,6 to the vertices u_5, u_6 then assign the labels 8,7 to the vertices u_7, u_8 . Proceeding like this until we reach the vertex u_n . Next assign the label 2 to the vertex u_{n+1} . Now we consider the vertices $v_i, 1 \le i \le n$. Assign the labels -1, -2 to the vertices v_1, v_2 then assign the labels -4, -3 to the vertices v_3, v_4 . Secondly assign the labels -5, -6 to the vertices v_5, v_6 then assign the labels -8, -7 to the vertices v_7, v_8 . Proceeding like this until we reach the vertex v_n receive the label -n + 1.

Subcase 2. *n* = 4.

As in case 1, assign the labels to the vertices u_i , $1 \le i \le 4$ and v_i , $1 \le i \le 4$. Finally assign the label 1 to the vertex u_5 .

Case 2. $n \equiv 1 \pmod{4}$.

Subcase 1. *n* > 5.

As in case 1, assign the labels to the vertices u_i , $1 \le i \le n + 1$.Next consider the vertices v_i , $1 \le i \le n$. Assign the labels -1, -2, -3 to the vertices v_1, v_2, v_3 then assign the labels -5, -4 to the vertices v_4, v_5 .Secondly assign the labels -6, -7 to the vertices v_6, v_7 then assign the labels -8, -7 to the vertices v_8, v_9 .Proceeding like this until we reach the vertex v_n .Note that in this the vertex v_n receive the label -n + 1.

Subcase 2. *n* = 5.

As in case 1, assign the labels to the vertices u_i , $1 \le i \le 5$ and v_i , $1 \le i \le 5$. Finally assign the label 1 to the vertex u_5 .

Case 3. $n \equiv 2 \pmod{4}$.

As in case 1, assign the labels to the vertices u_i , $1 \le i \le n+1$ and v_i , $1 \le i \le n$.

2563

Case 4. $n \equiv 2 \pmod{4}$.

Subcase 1. *n* > 3.

As in case 2, assign the labels to the vertices u_i , $1 \le i \le n$ and v_i , $1 \le i \le n$. Finally assign the label 1 to the vertex u_{n+1} .

Subcase 2. *n* = 3.

Assign the labels -1, -2, -3 to the vertices v_1, v_2, v_3 . Now assign the labels 1, 2, 3 to the vertices u_1, u_2, u_3 . Finally assign the label 1 to the vertex u_4 .

Theorem 3.11. The dumbbell graph Db(m, n) is pair difference cordial for all values m > n + 1.

Proof. Take the vertex set and edge set in definition 2.2.

There are four cases arises.

Case 1. $n \equiv 0 \pmod{4}$.

Assign the labels -1, -2 respectively to the vertices v_1, v_2 and assign the labels -4, -3 to the vertices v_3, v_4 respectively. Secondly assign the labels -5, -6 to the vertices v_5, v_6 respectively. Next assign the labels -8, -7 to the vertices v_7, v_8 respectively. Proceeding like this until we reach the vertex v_n . Note that in this the vertex v_n receive the label -n + 1. Next cosider the vertices $u_i, 1 \le i \le m$.

Assign the labels 1,2 to the vertices u_1, u_2 respectively and assign the labels 4,3 respectively to the vertices u_3, u_4 .Now assign the labels 5,6 to the vertices u_5, u_6 respectively and assign the labels 8,7 respectively to the vertices u_7, u_8 .Proceeding like this until we reach the vertex u_n .Finally consider the remaining m - n vertices.There are four cases arises.

Subcase 1.
$$m \equiv 0 \pmod{4}$$
.

Assign the labels n + 1, n + 2 to the vertices u_{n+1}, u_{n+2} respectively and assign the labels -n - 1, -n - 2 respectively to the vertices u_{n+3}, u_{n+4} . Secondly assign the labels n + 3, n + 4 to the vertices u_{n+5}, u_{n+6} respectively. Next assign the labels -n - 3, -n - 4 respectively to the vertices u_{n+7}, u_{n+8} . Proceeding like this until we reach the vertex u_m .

Subcase 2.
$$m \equiv 1 \pmod{4}$$
.

As in subcase 1 assign the labels to the vertices $u_i, 1 \le i \le m-1$ and assign the label m-1 to the vertex u_m .

Subcase 3. $m \equiv 2 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices $u_i, 1 \le i \le m - 1$.Next assign the label $\frac{m+n}{2}$ to the vertex u_m .

Subcase 4. $m \equiv 3 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices u_i , $1 \le i \le m-3$ and lastly assign the labels $-\frac{m+n}{2}, \frac{m+n}{2}, 2$ respectively to the vertices u_{m-2}, u_{m-1}, u_m .

The Table 6 given below establish that this vertex labeling f is a pair difference cordial of Db(m,n).

Nature of <i>n</i>	Δ_{f_1}	$\Delta_{f_1^c}$	
$m \equiv 0 \pmod{4}$	$\frac{m+n}{2}$	$\frac{m+n+2}{2}$	
$m \equiv 1 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$	
$m \equiv 2 \pmod{4}$	$\frac{m+n}{2}$	$\frac{m+n+2}{2}$	
$m \equiv 3 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$	
TABLE 6			

Case 2. $n \equiv 1 \pmod{4}$.

Assign the labels as in case 1 to the vertices v_i , $(1 \le i \le n)$. Here note that the vertex v_n receive the label -n+1.

Next consider the remaining m - n vertices. There are four cases arises.

Subcase 1. $m \equiv 0 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices u_i , $(1 \le i \le m-3)$ and assign the labels $\frac{m+n-1}{2}, \frac{m+n-1}{2}, 2$ to the vertices u_{m-2}, u_{m-1}, u_m respectively.

Subcase 2. $m \equiv 1 \pmod{4}$.

As in case 1, assign the labels to the vertices u_i , $1 \le i \le m$.

Subcase 3. $m \equiv 2 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices u_i , $1 \le i \le m - 1$. Next assign the label 2 to the vertex u_m .

Subcase 4. $m \equiv 3 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices $u_i, 1 \le i \le m - 2$. Finally assign the labels $\frac{m+n}{2}, -\frac{m+n}{2}$ respectively to the vertices u_{m-1}, u_m .

The Table 7 given below establish that this vertex labeling f is a pair difference cordial of Db(m,n).

Nature of <i>n</i>	Δ_{f_1}	$\Delta_{f_1^c}$	
$m \equiv 0 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$	
$m \equiv 1 \pmod{4}$	$\frac{m+n+2}{2}$	$\frac{m+n}{2}$	
$m \equiv 2 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$	
$m \equiv 3 \pmod{4}$	$\frac{m+n}{2}$	$\frac{m+n+2}{2}$	
TABLE 7			

Case 3. $n \equiv 2 \pmod{4}$.

Assign the labels as in case 1 to the vertices v_i , $(1 \le i \le n)$. Here note that the vertex v_n received the label -n.

Finally we consider the remaining m - n vertices. There are four cases arises.

Subcase 1. $m \equiv 0 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices u_i , $(1 \le i \le m-2)$ and assign the labels $-\frac{m+n}{2}$, $\frac{m+n}{2}$ respectively to the vertices u_{m-1} , u_m .

Subcase 2. $m \equiv 1 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices u_i , $(1 \le i \le m-3)$ and assign the labels $\frac{m+n-1}{2}, -\frac{m+n-1}{2}, 2$ to the vertices u_{m-2}, u_{m-1}, u_m respectively.

Subcase 3.
$$m \equiv 2 \pmod{4}$$
.

Assign the label as in subcase 1 to the vertices u_i , $(1 \le i \le m)$.

Subcase 4.
$$m \equiv 3 \pmod{4}$$
.

Assign the label as in subcase 1 to the vertices u_i , $(1 \le i \le m-2)$ and assign the label $-\frac{m+n}{2}, \frac{m+n}{2}$ respectively to the vertices u_{m-1}, u_m .

The Table 8 given below establish that this vertex labeling f is a pair difference cordial of Db(m,n).

Nature of <i>n</i>	Δ_{f_1}	$\Delta_{f_1^c}$	
$m \equiv 0 \pmod{4}$	$\frac{m+n}{2}$	$\frac{m+n+2}{2}$	
$m \equiv 1 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$	
$m \equiv 2 \pmod{4}$	$\frac{m+n+2}{2}$	$\frac{m+n}{2}$	
$m \equiv 3 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$	
TABLE 8			

Case 4. $n \equiv 3 \pmod{4}$.

Assign the labels as in case 1 to the vertices v_i , $1 \le i \le n$ and u_i , $1 \le i \le n$. Here note that the vertex v_n received the label -n.

We now consider the remaining m - n vertices. There are four cases arises.

Subcase 1. $m \equiv 0 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices $u_i, n+1 \le i \le m-1$ and assign the labels 2 to the vertex u_m .

Subcase 2. $m \equiv 1 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices $u_i, n+1 \le i \le m-2$ and assign the labels $\frac{m+n-1}{2}, -\frac{m+n-1}{2}$ to the vertices u_{m-1}, u_m respectively.

Subcase 3. $m \equiv 2 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices $u_i, n+1 \le i \le m-3$. Finally assign the labels $\frac{m+n-1}{2}, -\frac{m+n-1}{2}, \frac{m+n-1}{2}$ respectively to the vertices u_{m-2}, u_{m-1}, u_m . Subcase 4. $m \equiv 3 \pmod{4}$.

Assign the label as in subcase 1 to the vertices u_i , $1 \le i \le m$.

The Table 9 given below establish that this vertex labeling f is a pair difference cordial of Db(m,n).

Nature of <i>n</i>	Δ_{f_1}	$\Delta_{f_1^c}$	
$m \equiv 0 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+2+1}{2}$	
$m \equiv 1 \pmod{4}$	$\frac{m+n+2}{2}$	$\frac{m+n}{2}$	
$m \equiv 2 \pmod{4}$	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$	
$m \equiv 3 \pmod{4}$	$\frac{m+n+2}{2}$	$\frac{m+n}{2}$	
TABLE 9			

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

- I. Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars comb. 23 (1987), 201– 207.
- [2] J.A. Gallian, A Dynamic survey of graph labeling, Electron. J. Comb. 19 (2016), #DS6.
- [3] F. Harary, Graph theory, Addision Wesley, New Delhi, 1969.
- [4] R. Ponraj, S.S. Narayanan, R. Kala, Difference cordial labeling of graphs, Glob. J. Math. Sci. 5(3) (2013), 185–196.
- [5] R. Ponraj, S.S. Narayanan, R. Kala, A note on difference cordial graphs, Palestine J. Math.4 (2015), 189–197.