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Abstract. In this manuscript, iterative laplace transform method is applied to obtain approximate solutions of

the nonlinear time fractional Kawahara and modified Kawahara equations based on Atangana-Baleanu derivative

operator. The noticeable features of the manuscript is to providing the existence and uniqueness conditions of

solution for proposed technique and the graphical presentations of numerical solution of the concerned equations

for various specific cases. The obtained approximate solutions are compared with the exact solutions to verify the

applicability, efficiency and accuracy of the method.
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1. INTRODUCTION

Nonlinear wave phenomena play an essential role in various parts of mathematical physics

and engineering such as dispersion, diffusion, reaction and convection. One such well-known

nonlinear evolution equations is the fifth order Kawahara equation. These equation appeares in
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the study of shallow water waves having magneto-acoustic waves in a plasma, surface tension

and capillary-gravity waves. Furthermore, these equations becomes the area of active research

in recent times [28, 29, 30]. In 1972, Kawahara [32] proposed the kawahara equation first to

describe solitary-wave propagation in media. Furthermore, the modified Kawahara equation

has some useful applications in physics such as,capillary-gravity water waves, plasma waves,

water waves with surface tension, etc. [31, 33, 34, 35, 36].

Fractional calculus allows differentiation and integration of arbitrary order and hence, be-

comes more popular in the past few decades in various fields of science and engineering, such

as fluid mechanics, diffusive transport, electrical networks, electromagnetic theory, different

branches of physics, biological sciences and groundwater problems , [1, 2, 3, 4, 5]. There are

several useful applications of fractional calculus such as dissipation [19], modelling of pro-

cesses such as anomalous diffusion [20, 21], control theory [22], relaxation [23], etc. Many

mathematicians and researchers have tried to model several physical or biological processes

using fractional differential equations. Solving these equations is turn out to be wide area of re-

search and interest for researchers from various fields. Some of the recent analytical and numer-

ical methods for solving linear and nonlinear fractional differential equations are the Adomian

decomposition method ADM[6, 7, 8], Variational iteration method VIM [9, 10], Homotopy-

perturbation method HPM [11], Homotopy analysis method [12], Finite difference method [13],

monotone iterative method [15] and so on. In recent times, an iterative method was proposed by

Daftardar-Gejji and Jafari [17, 18] which is known as new iterative method (NIM). This method

is very useful and simple in fractional calculus for solving linear and nonlinear fractional partial

differential equations.

These FDEs involves several fractional differential operators like Riemann-Liouville oper-

ator [24], Caputo operator [26], Hilfer operator [14], Caputo-Fabrizio operator [25, 16], etc.

However these operators possesses a power law kernel, exponential kernel and has singularity.

Hence these operators posseses some limitations in modelling physical problems. To overcome

this difficulty, in recent times Atangana and Baleanu have proposed a reliable operator having

nonlocal and nonsingular kernel in the form of Mittag-Leffler function known as Atanagana-

Baleanu operator [27].
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Motivated by above, in this paper we have applied iterative Laplace transform with to find

approximate solutions of time fractional Kawahara and modified Kawahara equations having

Atanagana-Baleanu operator. These equations are given below as follows:

(1.1)
ABC∂ κu

∂ tκ
+u

∂u
∂x

+
∂ 3u
∂x3 −

∂ 5u
∂x5 = 0, 0 < κ ≤ 1

with initial condition

(1.2) u(x,0) =
105
169

sech4
(

x
2
√

13

)

(1.3)
ABC∂ κu

∂ tκ
+u2 ∂u

∂x
+m

∂ 3u
∂x3 +n

∂ 5u
∂x5 = 0, 0 < κ ≤ 1

where m, n are nonzero real constants and initial condition is.

(1.4) u(x,0) =
3m√
−10n

sech2(Kx), K =
1
2

√
−m
5n

Equations (1.1) and (1.3) becomes the original Kawahara and modified Kawahara equations for

κ = 1 [32]

The rest of this paper is organized as follows. In Section 2, preliminaries of fractional calculus

is presented. In Section 3 basic idea of iterative Laplace transform method is given. Section 4,

presents existence and uniqueness criteria for obtained solutions of time fractional Kawahara

and modified Kawahara equations. The numerical results and plots for the obtained solutions

are presented in Section 5. Finally, we give our conclusions in Section 6.

2. PRELIMINARIES

Definition 2.1. The left and right sided Caputo fractional derivative for order κ > 0 is defined

as

C
a Dκ

t f (t) =
1

Γ(n−κ)

∫ t

a
(t−ζ )n−κ−1 f (n) (ζ )dζ , (le f t)

C
b Dκ

t f (t) =
(−1)n

Γ(n−κ)

∫ b

t
(t−ζ )n−κ−1 f (n) (ζ )dζ (right)

where n−1 < κ ≤ n,n ∈ N, f ∈Cn−1 [0, t] .
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Definition 2.2. The left and right Atangana-Baleanu fractional derivative for a given function

for order in Caputo sense are defined as

ABC
a Dκ

t f (t) =
B(κ)

1−κ

∫ t

a

d f (ζ )
dζ

Eκ

[
− κ

1−κ
(t−ζ )κ

]
dζ , (le f t)

ABC
b Dκ

t f (t) =−B(κ)

1−κ

∫ b

t

d f (ζ )
dζ

Eκ

[
− κ

1−κ
(t−ζ )κ

]
dζ , (right)

where B(κ) = (1−κ)+ κ

Γ(κ) is a normalization function and Eκ (·) is the Mittag-Leffler func-

tion.

Definition 2.3. Atangana-Baleanu fractional integral order κ is defined as

ABIκ
t ( f (t)) =

1−κ

B(κ)
f (t)+

κ

B(κ)Γ(κ)

∫ t

a
f (ζ )(t−ζ )κ−1 dζ ,

if f (t) is a constant, integral will be resulted with zero.

3. FUNDAMENTAL IDEA OF ITERATIVE LAPLACE TRANSFORM METHOD

In this section, we consider the arbitrary fractional order differential equation with Atangana

Baleanu operator to demonstrate the fundamental solution procedure of the proposed algorithm

by Daftardar-Gejji and Jafari [17]

(3.1) ABC
a Dκ

t u(x, t)+Ru(x, t)+N u(x, t) = f (x, t)

with initial condition

(3.2) u(x,0) = ψ(x, t)

Where f (x, t) denotes source term, R and N are given linear and non-linear operator respec-

tively. Applying Laplace transform on (3.1) we get

L{u(x, t)}− 1
s

u(x,0)+
1

B(κ)

(
1−κ +

κ

sκ

)
(

L{Ru(x, t)}+L{N u(x, t)}−L{ f (x, t)}
)
= 0.(3.3)

Rearranging terms we get

L{u(x, t)}= 1
s

ψ(x, t)− 1
B(κ)

(
1−κ +

κ

sκ

)(
L{Ru(x, t)}+L{N u(x, t)}−L{ f (x, t)}

)
(3.4)

Next, we apply inverse laplace transform on (3.4) then we get



2796 DNYANOBA B. DHAIGUDE, VIDYA N. BHADGAONKAR

u(x, t) = ψ(x, t)+L−1

{
−1

B(κ)

(
1−κ +

κ

sκ

)(
L{Ru(x, t)}+L{N u(x, t)}−L{ f (x, t)}

)}(3.5)

Further, we apply iterative method [17]. We consider series solution as below given by,

(3.6) u(x, t) =
∞

∑
j=0

u j(x, t),

since R is linear,

(3.7) R

(
∞

∑
j=0

u j(x, t)
)
=

∞

∑
j=0

R
(
u j(x, t)

)
.

The nonlinear operator N is decomposed as

N

(
∞

∑
j=0

u j(x, t)
)
= N (u0(x, t))+

∞

∑
j=1

{
N

( j

∑
i=0

ui(x, t)
)
−N

( j−1

∑
i=0

ui(x, t)
)}

(3.8)

=
∞

∑
i=0

Pi(3.9)

where P0 = N (u0(x, t)) and Pi =
{

N
(

∑
i
j=0 u j(x, t)

)
−N

(
∑

i−1
j=0 u j(x, t)

)}
, i≥ 1

In view of (3.6), (3.7) and (3.8), the equation (3.1) is equivalent to

∞

∑
j=0

u j(x, t) = ψ(x, t)+L−1

{
−1

B(κ)

(
1−κ +

κ

sκ

)(
L
{

∞

∑
j=0

R
(
u j(x, t)

)}

+L
{

N (u0(x, t))+
∞

∑
j=1

{
N

( j

∑
i=0

ui(x, t)
)
−N

( j−1

∑
i=0

ui(x, t)
)}}

−L{ f (x, t)}
)}

(3.10)



A NOVEL APPROACH FOR FRACTIONAL KAWAHARA AND MODIFIED KAWAHARA EQUATIONS 2797

further, consider the recurrence relation as given below

u0(x, t) = ψ(x, t)

u1(x, t) = L−1

{
−1

B(κ)

(
1−κ +

κ

sκ

)(
L
{
R
(
u0(x, t)

)}
+L
{
N (u0(x, t))

}}
...(3.11)

un+1(x, t) = L−1

{
−1

B(κ)

(
1−κ +

κ

sκ

)(
L
{

R
(
un(x, t)

)}

+L
{

N

( n

∑
i=0

ui(x, t)
)
−N

(n−1

∑
i=0

ui(x, t)
)}

(3.12)

The n−term approximate solution is given by

(3.13) u = u0 +u1 +u2 + · · ·+un−1.

4. EXISTENCE AND UNIQUENESS

4.1. Existence of solutions for the fractional Kawahara equation. Here, we considered the

fixed-point theorem to demonstrate the existence of the solution for the Kawahara equation.

Let us consider the time fractional Kawahara equation (1.1) using Atangana-Baleanu fractional

derivative operator as below

(4.1) ABCDκu(x, t) = G (x, t, u(x, t)) = u
∂u
∂x

+
∂ 3u
∂x3 −

∂ 5u
∂x5

where ABCDκ represents the fractional operator of type Atangana-Baleanue-Caputo (ABC) hav-

ing fractional order κ; where 0 < κ < 1, subject to initial conditions u0(x, t) = u(x,0).

The equation (4.1) can be converted to the Volterra-type integral equation by using the ABC

fractional integral which is written by referring definition 2.3 as follows:

(4.2) u(x, t)−u(x,0) =
1−κ

B(κ)
G (x, t, u)+

κ

B(κ)Γ(κ)

∫ t

a
G (x, ζ , u)(t−ζ )κ−1 dζ ,

Theorem 4.1. The kernels G (x, t, u) given in Eq. (4.1) satisfy the Lipschitz condition and

contraction if the following condition holds

0≤
(

τ1

2
(ρ1 +ρ2)+ τ2 + τ3

)
< 1.
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Proof: We have G (x, t, u(x, t)) = u
∂u
∂x

+
∂ 3u
∂x3 −

∂ 5u
∂x5 .

Consider u1 and u2 be two functions, then we obtain the following

‖ G (x, t, u1(x, t))−G (x, t, u2(x, t)) ‖

=

∥∥∥∥u1(x, t)
∂u1(x, t)

∂x
−u2(x, t)

∂u2(x, t)
∂x

+
∂ 3u1(x, t)

∂x3 − ∂ 3u2(x, t)
∂x3

+
∂ 5u1(x, t)

∂x5 − ∂ 5u2(x, t)
∂x5

∥∥∥∥
≤ 1

2

∥∥∥∥ ∂

∂x
[u2

1(x, t)−u2
2(x, t)]

∥∥∥∥+∥∥∥∥ ∂ 3

∂x3 [u1(x, t)−u2(x, t)]
∥∥∥∥

+

∥∥∥∥ ∂ 5

∂x5 [u1(x, t)−u2(x, t)]
∥∥∥∥

≤ τ1

2

∥∥∥[u2
1(x, t)−u2

2(x, t)]
∥∥∥+ τ2

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥+ τ3

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥

≤
(

τ1

2
(ρ1 +ρ2)+ τ2 + τ3

)∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥

≤ λ

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥.

where τ1 =
∂

∂x
, τ2 =

∂ 3

∂x3 and τ3 =
∂ 5

∂x5 are the differential operators. Since, u1 and u2 are

bounded functions, we have ‖u1‖ ≤ ρ1 ‖u2‖ ≤ ρ2.

Also λ =
(

τ1

2
(ρ1 +ρ2)+ τ2 + τ3

)
. Therefore, we have

‖ G (x, t, u1(x, t))−G (x, t, u2(x, t)) ‖ ≤ λ

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥(4.3)

This shows that the Lipschitz condition is obtained for G . Moreover, we see that if 0≤
(

τ1

2
(ρ1+

ρ2)+ τ2 + τ3

)
< 1 then it implies the contraction.

The recursive form of equation (4.2) defined as follows

(4.4) un(x, t) =
1−κ

B(κ)
G (x, t, un−1)+

κ

B(κ)Γ(κ)

∫ t

0
G (x, ζ , un−1)(t−ζ )κ−1 dζ .

Next, we get the difference between the successive iterative terms in the form of following

expression
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θn(x, t) = un(x, t)−un−1(x, t)

=
1−κ

B(κ)

(
G (x, t, un−1)−G (x, t, un−2)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
G (x, ζ , un−1)−G (x, ζ , un−2)

)
(t−ζ )κ−1 dζ .(4.5)

Notice that

un(x, t) =
n

∑
i=1

θi(x, t)(4.6)

By using equation (4.4) and then using norm on equation (4.5), we get

‖θn(x, t)‖ ≤
1−κ

B(κ)
λ‖θn−1(x, t)‖+

κ

B(κ)Γ(κ)
λ

∫ t

0
‖θn−1(x,ζ )‖dζ .(4.7)

This completes the proof of the theorem.

Theorem 4.2. The solution for the (4.1) will exist and unique under the condition that we can

find t0 satisfying

1−κ

B(κ)
λ +

κt0
B(κ)Γ(κ)

λ < 1.

Proof: First, we consider bounded function u(x, t) satisfying the Lipschitz condition. From

equations (4.5) and (4.7) we get the following equation

‖θn(x, t)‖ ≤ ‖un(x,0)‖
[

1−κ

B(κ)
λ +

κ

B(κ)Γ(κ)
λ

]n

.(4.8)

Hence, the solution is smooth, moreover existence is proved for the obtained solution. Next, we

show that the equation (4.8) is the solution for the equation (4.1). For this, we consider

u(x, t)−u(x,0) = un(x, t)−δn(x, t)(4.9)
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where δn(x, t) are reminder terms of series solution. Then, we must show that these terms

approach to zero at infinity, that is, ‖δ∞(x, t)‖→ 0.

‖δn(x, t)‖=
∥∥∥∥1−κ

B(κ)

(
G (x, t, u)−G (x, t, un−1)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
G (x, ζ , u)−G (x, ζ , un−1)

)
(t−ζ )κ−1 dζ

∥∥∥∥
≤ 1−κ

B(κ)

∥∥(G (x, t, u)−G (x, t, un−1)
)∥∥

+
κ

B(κ)Γ(κ)

∫ t

0

∥∥(G (x, ζ , u)−G (x, ζ , un−1)
)∥∥(t−ζ )κ−1 dζ

≤ 1−κ

B(κ)
λ‖u−un−1‖+

κ

B(κ)Γ(κ)
λ‖u−un−1‖t.(4.10)

Therefore, Continuing this way recursively at t0 we get:

‖δn(x, t)‖=
(

1−κ

B(κ)
+

κt0
B(κ)Γ(κ)

)n+1

λ
n+1M.(4.11)

where M = ‖u−un−1‖. After taking limit of both sides as n tends to infinity, we get ‖δn(x, t)‖→

0.

Next, it is necessity to demonstrate uniqueness for the solution of the proposed problem.

Suppose, u∗(x, t) be the another solution, then we get

u(x, t)−u∗(x, t) =
1−κ

B(κ)

(
G (x, t, u)−G (x, t, u∗)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
G (x, ζ , u)−G (x, ζ , u∗)

)
(t−ζ )κ−1 dζ(4.12)

On applying norms on both side of above equation we get

‖u(x, t)−u∗(x, t)‖=
∥∥∥∥1−κ

B(κ)

(
G (x, t, u)−G (x, t, u∗)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
G (x, ζ , u)−G (x, ζ , u∗)

)
(t−ζ )κ−1 dζ .

∥∥∥∥
≤ 1−κ

B(κ)
λ
∥∥(u(x, t)−u∗(x, t)

)∥∥
+

κ

B(κ)Γ(κ)
λ t
∥∥(u(x, t)−u∗(x, t)

)∥∥.(4.13)
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After simplification we get

∥∥(u(x, t)−u∗(x, t)
)∥∥(1− 1−κ

B(κ)
λ +

κt
B(κ)Γ(κ)

λ

)
≤ 0.(4.14)

From the above inequility, we get that if(
1− 1−κ

B(κ)
λ +

κt
B(κ)Γ(κ)

λ

)
≥ 0.(4.15)

then
(
u(x, t)−u∗(x, t)

)
= 0.

Therefore, (4.15) is required condition for uniqueness.

4.2. Existence of solutions for the modified time fractional Kawahara equation. Let us

consider the modified time fractional Kawahara equation (1.3) using Atangana-Baleanu frac-

tional derivative operator as below

(4.16) ABCDκu(x, t) = H (x, t, u(x, t)) = u2 ∂u
∂x

+m
∂ 3u
∂x3 +n

∂ 5u
∂x5

where ABCDκ represents the fractional operator of type Atangana-Baleanu-Caputo (ABC) hav-

ing fractional order κ; where 0 < κ < 1, subject to initial condition u0(x, t) = u(x,0). The

equation (4.16) can be converted to the Volterra-type integral equation by using the ABC frac-

tional integral as follows:

(4.17) u(x, t)−u(x,0) =
1−κ

B(κ)
H (x, t, u)+

κ

B(κ)Γ(κ)

∫ t

0
H (x, ζ , u)(t−ζ )κ−1 dζ ,

Theorem 4.3. The kernel H (x, t, u) given in Eq. (4.16) satisfy the Lipschitz condition and

contraction if the following condition holds

0≤
(

τ4

3
(ρ2

3 +ρ3ρ4 +ρ
2
4 )+ τ5 + τ6

)
< 1.

Proof: We have H (x, t, u(x, t)) = u2 ∂u
∂x

+m
∂ 3u
∂x3 +n

∂ 5u
∂x5 .

Consider u1 and u2 be two functions, then we obtain the following

‖H (x, t, u1(x, t))−H (x, t, u2(x, t)) ‖=
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=

∥∥∥∥u2
1(x, t)

∂u1(x, t)
∂x

−u2
2(x, t)

∂u2(x, t)
∂x

+m
∂ 3u1(x, t)

∂x3 −m
∂ 3u2(x, t)

∂x3

+n
∂ 5u1(x, t)

∂x5 −n
∂ 5u2(x, t)

∂x5

∥∥∥∥
≤ 1

3

∥∥∥∥ ∂

∂x
[u3

1(x, t)−u3
2(x, t)]

∥∥∥∥+m
∥∥∥∥ ∂ 3

∂x3 [u1(x, t)−u2(x, t)]
∥∥∥∥

+n
∥∥∥∥ ∂ 5

∂x5 [u1(x, t)−u2(x, t)]
∥∥∥∥

≤ τ4

3

∥∥∥[u3
1(x, t)−u3

2(x, t)]
∥∥∥+mτ5

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥+nτ6

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥

≤
(

τ4

3
(ρ2

3 +ρ3ρ4 +ρ
2
4 )+ τ5 + τ6

)∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥

≤ λ1

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥.

where τ4 =
∂

∂x
, τ5 =

∂ 3

∂x3 and τ6 =
∂ 5

∂x5 are the differential operators. Since, u1 and u2 are

bounded functions, we have ‖u1‖ ≤ ρ3, ‖u2‖ ≤ ρ4.

Also λ1 =
(

τ4

3
(ρ2

3 +ρ3ρ4 +ρ2
4 )+ τ5 + τ6

)
. Therefore, we have

‖H (x, t, u1(x, t))−H (x, t, u2(x, t)) ‖ ≤ λ1

∥∥∥[u1(x, t)−u2(x, t)]
∥∥∥(4.18)

This shows that the Lipschitz condition is obtained for H . Moreover, we see that if 0 ≤(
τ4

3
(ρ2

3 +ρ3ρ4 +ρ2
4 )+ τ5 + τ6

)
< 1, then it implies the contraction.

The recursive form of equation (4.17) defined as follows

(4.19) un(x, t) =
1−κ

B(κ)
H (x, t, un−1)+

κ

B(κ)Γ(κ)

∫ t

0
H (x, ζ , un−1)(t−ζ )κ−1 dζ .

Next, we get the difference between the successive iterative terms in the form of following

expression

ϑn(x, t) = un(x, t)−un−1(x, t)

=
1−κ

B(κ)

(
H (x, t, un−1)−H (x, t, un−2)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
H (x, ζ , un−1)−H (x, ζ , un−2)

)
(t−ζ )κ−1 dζ .(4.20)
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Notice that

un(x, t) =
n

∑
i=1

ϑi(x, t)(4.21)

By using equation (4.19) and then using norm on equation (4.20), we get

‖ϑn(x, t)‖ ≤
1−κ

B(κ)
λ‖ϑn−1(x, t)‖+

κ

B(κ)Γ(κ)
λ

∫ t

0
‖ϑn−1(x,ζ )‖dζ .(4.22)

This completes the proof of the theorem.

Theorem 4.4. The solution for the (4.16) will exist and unique under the condition that we can

find t0 satisfying

1−κ

B(κ)
λ1 +

κt0
B(κ)Γ(κ)

λ1 < 1.

Proof: First, we consider bounded function u(x, t) satisfying the Lipschitz condition. From

equations (4.20) and (4.22) we get the following equation

‖ϑn(x, t)‖ ≤ ‖un(x,0)‖
[

1−κ

B(κ)
λ1 +

κ

B(κ)Γ(κ)
λ1

]n

.(4.23)

Hence, the solution is smooth, moreover existence is proved for the obtained solution. Next, we

show that the equation (4.23) is the solution for the equation (4.16). For this, we consider

u(x, t)−u(x,0) = un(x, t)−ψn(x, t)(4.24)

where ψn(x, t) are reminder terms of series solution. Then, we must show that these terms

approach to zero at infinity, that is, ‖ψ∞(x, t)‖→ 0.

‖ψn(x, t)‖=
∥∥∥∥1−κ

B(κ)

(
H (x, t, u)−H (x, t, un−1)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
H (x, ζ , u)−H (x, ζ , un−1)

)
(t−ζ )κ−1 dζ

∥∥∥∥
≤ 1−κ

B(κ)

∥∥(H (x, t, u)−H (x, t, un−1)
)∥∥

+
κ

B(κ)Γ(κ)

∫ t

0

∥∥(H (x, ζ , u)−H (x, ζ , un−1)
)∥∥(t−ζ )κ−1 dζ

≤ 1−κ

B(κ)
λ1‖u−un−1‖+

κ

B(κ)Γ(κ)
λ1‖u−un−1‖t.(4.25)
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Therefore, continuing this way recursively at t0 we get:

‖ψn(x, t)‖=
(

1−κ

B(κ)
+

κt0
B(κ)Γ(κ)

)n+1

λ
n+1
1 M .(4.26)

where M = ‖u−un−1‖. After taking limit of both sides as n tends to infinity, we get ‖ψn(x, t)‖→

0.

Next, it is necessity to demonstrate uniqueness for the solution of the proposed problem. Sup-

pose, u∗(x, t) be the another solution, then we get

u(x, t)−u∗(x, t) =
1−κ

B(κ)

(
H (x, t, u)−H (x, t, u∗)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
H (x, ζ , u)−H (x, ζ , u∗)

)
(t−ζ )κ−1 dζ .(4.27)

On applying norms on both side of above equation we get

‖u(x, t)−u∗(x, t)‖=
∥∥∥∥1−κ

B(κ)

(
H (x, t, u)−H (x, t, u∗)

)
+

κ

B(κ)Γ(κ)

∫ t

0

(
H (x, ζ , u)−H (x, ζ , u∗)

)
(t−ζ )κ−1 dζ .

∥∥∥∥
≤ 1−κ

B(κ)
λ1
∥∥(u(x, t)−u∗(x, t)

)∥∥
+

κ

B(κ)Γ(κ)
λ1t
∥∥(u(x, t)−u∗(x, t)

)∥∥.(4.28)

After simplification we get∥∥(u(x, t)−u∗(x, t)
)∥∥(1− 1−κ

B(κ)
λ1 +

κt
B(κ)Γ(κ)

λ1

)
≤ 0.(4.29)

From the above inequility, we get that if(
1− 1−κ

B(κ)
λ1 +

κt
B(κ)Γ(κ)

λ1

)
≥ 0.(4.30)

then
(
u(x, t)−u∗(x, t)

)
= 0.

Therefore, (4.30) is required condition for uniqueness.

5. NUMERICAL APPLICATION

In this section, we demonstrate the efficiency of iterative Laplace transform method by ap-

plying it on the time fractional Kawahara and modified Kawahara equations. Computations are

done with the help of Mathematica software.
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5.1. Approximate solution for time fractional Kawahara equation. Consider the time frac-

tional Kawahara equation (1.1) with initial condition (1.2).

The exact solution to (1.1) is given in [33] as

(5.1) u(x, t) =
105
169

sech4
(

1
2
√

13

(
x− 36t

169

))

The initial condition (1.2) is rewritten as

u(x,0) =
1680
169

e
2x√
13(

e
x√
13 +1

)4

Applying laplace transform on both side of (1.1) we get

L{u(x, t)}− 1
s

u(x,0)+
1

B(κ)

(
1−κ +

κ

sκ

)
L
{

u
∂u
∂x

+
∂ 3u
∂x3 −

∂ 5u
∂x5

}
= 0.(5.2)

Rearranging terms we get

L{u(x, t)}= 1
s

(
1680
169

e
2x√
13(

e
x√
13 +1

)4

)
− 1

B(κ)

(
1−κ +

κ

sκ

)
L
{

u
∂u
∂x

+
∂ 3u
∂x3 −

∂ 5u
∂x5

}
(5.3)

Further, the inverse Laplace transform on (5.3), yields

u(x, t) =
1680
169

e
2x√
13(

e
x√
13 +1

)4 −L−1

{
1

B(κ)

(
1−κ +

κ

sκ

)
L
{

u
∂u
∂x

+
∂ 3u
∂x3 −

∂ 5u
∂x5

}}
(5.4)

The series solution obtained by the method is given by,

(5.5) u(x, t) =
∞

∑
n=0

un(x, t),

The nonlinear term u
∂u
∂x

is written as un
∂un

∂x
= ∑

∞
n=0Pn; whereas Pn is further decomposed as

follows

Pn =
n

∑
i=0

ui.
∂

∂x

( n

∑
i=0

ui

)
−

n−1

∑
i=0

ui.
∂

∂x

(n−1

∑
i=0

ui

)



2806 DNYANOBA B. DHAIGUDE, VIDYA N. BHADGAONKAR

by using u0(x, t) =
1680
169

e

2x√
13e

x√
13 +1

4 , we get the recursive formula as follows

un(x, t) = u0(x, t)−L−1

{
1

B(κ)

(
1−κ +

κ

sκ

)
L
{

un
∂un

∂x
+

∂ 3un

∂x3 −
∂ 5un

∂x5

}}
(5.6)

The n−term approximate solution is given by

(5.7) u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+ · · ·+un−1(x, t).

Therefore, using (5.6) the first three terms of approximate solution of (1.1) are obtained as

follows

u0 =
1680
169

e
2x√
13(

e
x√
13 +1

)4

u1 =
7560tanh

(
x

2
√

13

)
sech4

(
x

2
√

13

)
(−κΓ(κ)+Γ(κ)+ tκ)

28561
√

13(κ +κ(−Γ(κ))+Γ(κ))

u2 =
174182400κ2e

9x
2
√

13 Γ(κ)2tκ cosh
(

x
2
√

13

)
−174182400κe

9x
2
√

13 Γ(κ)2tκ cosh
(

x
2
√

13

)
62748517

(
e

x√
13 +1

)9
(κ +κ(−Γ(κ))+Γ(κ))2Γ(κ +1)

+
34836480κe

9x
2
√

13 Γ(κ)2tκ cosh
(

5x
2
√

13

)
−34836480κ2e

9x
2
√

13 Γ(κ)2tκ cosh
(

5x
2
√

13

)
62748517

(
e

x√
13 +1

)9
(κ +κ(−Γ(κ))+Γ(κ))2Γ(κ +1)

−
87091200κe

9x
2
√

13 Γ(κ)3 cosh
(

x
2
√

13

)
62748517

(
e

x√
13 +1

)9
(κ +κ(−Γ(κ))+Γ(κ))2Γ(κ +1)

+ · · ·

Continuing in the same way, remaining terms of the iteration formula (5.6) can be calculated.
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FIGURE 1. Approx. soln of Eq. (1.1), for κ = 1, 0.8, 0.6

t x κ = 0.5 κ = 0.7 κ = 0.9 Absolute error

|uexact − uapprx| for

κ = 1

0.02 -5 0.225399 0.237974 0.248996 0.00043072

0 0.620115 0.620928 0.621263 1.76859×10−13

5 0.284071 0.270963 0.259721 0.00043072

0.06 -5 0.222523 0.235295 0.247044 0.00129216

0 0.619872 0.620802 0.621234 1.43069×10−11

5 0.287106 0.273724 0.261693 0.00129216

0.1 -5 0.220546 0.233153 0.245231 0.00215361

0 0.619694 0.620692 0.621201 1.10391×10−10

5 0.289199 0.275939 0.263527 0.00215361
TABLE 1. The numerical results for various values of κ and comparison of ab-

solute error between the exact solution with three term approximations obtained

by ILTM of (1.1) for κ = 1
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5.2. Approximate solution for modified time fractional Kawahara equation

Next we consider the modified time fractional Kawahara equation (1.3) with initial condition

(1.4).

The exact solution for the classical modified Kawahara equation is given by [33]

(5.8) u(x, t) =
3p√
−10q

sech2[K(x− ct)], c =
25q−4p2

25q
.

Applying laplace transform on both side of (1.3) we get,

L{u(x, t)}− 1
s

u(x,0)+
1

B(κ)

(
1−κ +

κ

sκ

)
L
{

u2 ∂u
∂x

+m
∂ 3u
∂x3 +n

∂ 5u
∂x5

}
= 0.(5.9)

Rearranging terms we get,

L{u(x, t)}= 1
s

(
3m√
−10n

sech2(Kx)
)
− 1

B(κ)

(
1−κ +

κ

sκ

)
L
{

u2 ∂u
∂x

+m
∂ 3u
∂x3 −n

∂ 5u
∂x5

}(5.10)

Further, the inverse Laplace transform on (5.10), yields

u(x, t) =
3m√
−10n

sech2(Kx)−L−1

{
1

B(κ)

(
1−κ +

κ

sκ

)
L
{

u2 ∂u
∂x

+m
∂ 3u
∂x3 +n

∂ 5u
∂x5

}}
(5.11)

The series solution obtained by the method is given by,

(5.12) u(x, t) =
∞

∑
n=0

un(x, t),

The nonlinear term u2 ∂u
∂x

is written as u2
n

∂un

∂x
= ∑

∞
n=0 Jn; whereas Jn is further decomposed as

follows

Jn =
n

∑
i=0

u2
i .

∂

∂x

( n

∑
i=0

ui

)
−

n−1

∑
i=0

u2
i .

∂

∂x

(n−1

∑
i=0

ui

)
by using u0(x, t) =

3m√
−10n

sech2(Kx), we get the recursive formula as follows

un(x, t) = u0(x, t)+L−1

{
−1

B(κ)

(
1−κ +

κ

sκ

)
L
{

u2
n

∂un

∂x
+m

∂ 3un

∂x3 +n
∂ 5un

∂x5

}}
(5.13)

The n−term approximate solution is given by

(5.14) u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+ · · ·+un−1(x, t).
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u0 =
6
√

2
5me

x
√
−m

n√
5

√
−n

(
e

x
√
−m

n√
5 +1

)2

u1 =−
24
√

2m3Γ(κ)
√
−m

n e
x
√
−m

n√
5

(
e

x
√
−m

n√
5 −1

)
(κtκ − (κ−1)Γ(κ +1))

125(−n)3/2((κ−1)Γ(κ)−κ)Γ(κ +1)

(
e

x
√
−m

n√
5 +1

)3

u2 =
1

−κ + κ

Γ(κ) +1

(
3.654931423025195̀*∧-28e0.183848x−1.0964794269075588̀*∧-27e0.212132x

(e0.0141421x +1)22
(
−κ + κ

Γ(κ) +1
)3

+
1.0964794269075587̀*∧-27e0.240416x−3.654931423025195̀*∧-28e0.268701x

(e0.0141421x +1)22
(
−κ + κ

Γ(κ) +1
)3

− 7.30986284605039̀*∧-28e0.169706x +4.385917707630235̀*∧-27e0.19799x

(e0.0141421x +1)21
(
−κ + κ

Γ(κ) +1
)3

− 6.578876561445353̀*∧-27e0.226274x

(e0.0141421x +1)21
(
−κ + κ

Γ(κ) +1
)3 + · · · .

t x κ = 0.5 κ = 0.7 κ = 0.9 Absolute error

|uexact − uapprx| for

κ = 1

0.1 0 0.00094868329 0.00094868329 0.00094868329 4.74342×10−10

5 0.00094749843 0.00094749843 0.00094749843 4.68832×10−8

10 0.00094394464 0.00094394464 0.00094394464 9.37736×10−8

15 0.00093809014 0.00093809014 0.00093809014 1.39735×10−7

20 0.00092999597 0.00092999597 0.00092999597 1.84324×10−7

TABLE 2. The numerical results for various values of κ and comparison of ab-

solute error between the exact solution with three term approximations obtained

by ILTM of (1.3) for κ = 1
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FIGURE 2. Approx. soln of Eq. (1.3), for κ = 1,0.8,0.6

In tables 1 and 2 the computational results are obtained to get approximate solution of equa-

tions (1.1) and (1.3) respectively with m = 0.001 and q = −1. in Eq.(1.3). This technique

provides accurate numerical solutions even if lower order approximations are used. The accu-

racy for the time fractional Kawahara and modified kawahara equation is demonstrated for the

absolute errors of Eq. (1.1) and (1.3) respectively with their exact solutions.

Also fig. 1 shows surfaces for approximate solution of Eq. (1.1) and exact solution of clas-

sical Kawahara equation and fig. 2 shows surfaces for approximate solution of Eq. (1.3) and

exact solution of classical modified Kawahara equation. Also, from these surfaces it can be

observed that approximate solution and exact solution are of both the equations are very near to

each other.

6. CONCLUSIONS

In this study, we have obtained the approximate solutions of time fractional Kawahara and

modified Kawahara equations based on Atangana-Baleanue fractional derivative operator by

using Laplace transform with iterative method. It is seen that the solutions obtained converges

very rapidly to the exact solutions in only second order approximations i.e. approximate so-

lutions are very near to the exact solutions. We can conclude from the numerical results that
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the present technique is straightforward, efficient and provides very high accuracy. This is very

simple, reliable and powerful technique for finding approximate solutions of many fractional

physical models arising in science and engineering.
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