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Abstract: The vehicle routing problem with time windows (VRPTW) which has both capacity and time constraints 

is an extension of vehicle routing problem (VRP). The problem is solved by optimizing routes for the vehicles so as 

to meet all given constraints as well as to minimize travelling distance and number of vehicles. This paper proposes 

to analyze a multi objective evolutionary algorithm (MOEA) that incorporates Various heuristics for local 

exploitation in the evolutionary search and the concept of pareto’s optimality to solve multi objective optimization 

in VRPTW. In this paper we model VRPTW as a modified version specialized for a multi objective context, using 

Evolutionary Algorithm to get a set of pareto optimal solutions considering three objectives, the number of vehicles, 

the total travel distance and the total delivery time at the same time. This new approach is validated with very good 

results and the comparison is performed on a standard benchmark problems showing that the algorithm outperforms 

highly competitive results compared with previously published studies.  

Keywords: vehicle routing problem with time windows; multi-objective optimization; evolutionary optimization 

algorithms; pareto optimal set. 
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1. INTRODUCTION 

The Vehicle Routing Problem with Time Windows (VRPTW) was first introduced by Solomon 

in 1987 [19]. It involves the routing of a set of vehicles with limited capacity from a central 

depot to a set of geographically dispersed customers with known demands and predefined time 

windows. In other words, for every customer, goods must be distributed in certain time window 

with known demands along with least cost and distance. The vehicles can not arrive earlier or 

later than the time [18]. In case if the vehicle arrives earlier then the earliest arrival time and 

waiting time will occur. Each customer should also consider the service period for loading or 

unloading the goods for each route. VRP Using time windows aims to reduce three objectives 

namely the number of vehicles, the total travelling time and the total delivery time. With the time 

windows, the total routing and scheduling cost consist not only the total travel distance and time 

costs, but also include the cost of waiting time due to a vehicle arrives too early at a customer 

location. 

The VRPTW is known to be complex comparing with the travelling salesman problem (TSP) as 

it admits servicing customers with time windows using multiple vehicles [5]. The optimal 

solutions can be found for VRPTW using exact methods, the computational time required to 

solve VRPTW is prohibited for large problem [7]. Therefore heuristic methods are often applied 

for solving optimal solution in a reasonable amount of time. 

 

Mathematical Model for Vehicle Routing Problem with Time Windows 

 In VRPTW, the objective which comes into consideration along with minimization of the 

total travel time is to minimize the number of vehicles servicing the customers [7]. So it is a bio-

objective optimization problem which we can extend to a Multi-Objective problem by 

connecting other real –life parameters. In this circumstance, there is an associated time window 

with each customer to service. 

 Here, the vehicles have to wait, if they arrive too early for the service and if they arrive 

after the closure of the time windows, the service cannot be rendered. 
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 There are three constraints to consider for solving VRPTW as follows. 

i. First for most all the customers request that service must be visited. 

ii.Each Vehicle should begin and end at the same depot. 

iii.Each vehicle should arrive within the particular arrival time. It should not come too early and 

should not be late. 

 

The Mathematical model for VRPTW is presented as below [19] 

Inputs: 

bj
k: The time at which the vehicle k starts its service at node j, 

bj
k=max {ej, bj

k + tij} 

cij: Travel distance between node i and node j 

di: The demand of the customer at node i,i ∈N 

ei: The earliest start time of the vehicle for node i 

li : The latest start time of the vehicle for node i 

N: The total number of service nodes 

Q: The capacity of Vehicle  

V: The fleet of vehicles 

tij: the travel time of edge (i,j)which also includes the service time at node i 

 

Decision variable: 

Xijk  =      1, if vehicle k goes from node i to j 

              0 otherwise 

Model: Equations 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑖∈𝑁𝑘∈𝑣           (1) 

such that 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑁𝑘∈𝑣 = 1 , ∀𝑗 ∈ 𝑁 ∖ {0}        (2) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑁𝑘∈𝑣 = 1 , ∀𝑖 ∈ 𝑁{0}        (3) 
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∑ 𝑑𝑖 ∑ 𝑥𝑖𝑗
𝑘 ≤ 𝑄𝑗∈𝑁 , ∀𝑘 ∈ 𝑉𝑖∈𝑁         (4)      

∑ 𝑥𝑖ℎ
𝑘 −𝑖∈𝑁 ∑ 𝑥ℎ𝑗

𝑘 = 0 , ∀ℎ ∈ 𝑁 ∖ {0} , ∀𝑘 ∈ 𝑉𝑗∈𝑁       (5) 

∑ 𝑥0𝑗
𝑘 = 1𝑗∈𝑁∖{0} , ∀𝑘 ∈ 𝑉         (6) 

∑ 𝑥𝑖0
𝑘 = 1𝑖∈𝑁∖{0} , ∀𝑘 ∈ 𝑉         (7) 

𝑥𝑖𝑗
𝑘 (𝑏𝑖

𝑘 + 𝑡𝑖𝑗) ≤ 𝑏𝑗
𝑘, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉       (8) 

𝑒𝑖 ≤ 𝑏𝑖
𝑘 ≤ 𝑙𝑖, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉         (9) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉         (10) 

Equation (1) shows the minimization of the total distance of travel. Equations (1) & (3) describe 

that each node being serviced only once by one vehicle. Equation (4) models that the total 

demand for a particular route of a vehicle should not exceed its capacity. It is stated in equation 

(5) that the vehicle which has entered the node must leave the same. Equations (6) & (7) express 

that each vehicle must return to depot after servicing the customers. In equation (8) it is denoted 

that vehicle k cannot arrive at j before bi
k + tijif it is to travel from node i to node j .Equation (9) 

which states that start of every vehicle must be within the time windows and equation (10) is a 

integrality constraint. 

 The rest of this paper is organized as follows. The literature review on multi-objective 

approach is explained in the Second Section  and the new multi- objective approach is introduced 

for the optimization of three objective functions namely Number of vehicles, total travelling time 

and total delivery time. In Section 3, the proposed EA for solving the VRPTW as a Multi-

Objective problem is explained. Section 4 presents the Multi-Objective performs metrics which 

is relevant to this study. Then the improved MOEA for VRPTW has been introduced in Section 

5. Section 6 presents the experimental design and set-up in addition with NSGA-II. The 

comparison of proposed MOEA with previous published studies is described in Section 7. 

Finally Section 8 provides some conclusions and ideas for further research in this field. 
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2. MULTI OBJECTIVE OPTIMIZATION PROBLEM 

 Multi-objective optimization which is known to be a multi-criteria optimization is the 

process of simultaneously optimizing two or more conflicting objectives related to certain 

constraints. As multi-objective optimization problems (MOOP), the solution to the bi-objective 

GVRPTW is a non – dominated solution received from an optimal pareto- front [6]. In multi-

objective optimization problem, if it is well formed then there is no way to have a single solution 

that minimizes each objective simultaneously to its fullest. In each case, the solution is eagerly 

expected to the extent that if it is optimized further, then the next other objective(s) will deplore 

as a result [12]. After finding a solution, the solution is compared to other such solutions to know 

how much better this solution as quantification and this is the  goal when setting up and solving a 

multi objective optimization problem [13]. There are two goals in a multi-objective optimization. 

i. To find a set of solution as close as possible to the desired pareto-optimal front, in terms 

of both proximity and diversity. 

ii. To find a set of solutions as diverse as possible. 

 In general, Mops include many incommensurable and contrariety objectives [19,7,12]. 

Without loss of generality Mop can be formulated as follows. 

e(y)=(e1,(y),e2(y),  …, ee(y))> 0,where  

y=(y1,  ….,ym)∈Rmis in the decision position and 

z=(z1, …., zn) ∈Rn is in the objective position. 

 The set of decision vectors that satisfies the constraints and indicates feasible set Y. 

 The vector function f:y→Rn denotes the feasible region. 

 Z={f(y)/y ∈Y}. The conflicting objectives give a set of alternative solutions. These 

solutions are optimal in the way that no solution is able to dominate those solutions in an overall 

aspect. Because no objective can be amended or reformed without degrading at least one of the 

others. Such solutions are called as the non dominated solutions or the pareto optimal solutions. 

This brings the research on the solutions to MOPS more effective in the field of intelligent 

optimization.  
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3. EVOLUTIONARY ALGORITHMS 

 Evolutionary Algorithms (EA) which is known to be stochastic search algorithms 

inspired by Darwin’s theory of evolution are the optimization algorithms that search for optimal 

solutions by evolving a multiset of candidate solutions based on mechanisms of natural solution 

and genetics. The exact methods can be used to obtain optimal solutions for small instances of 

the VRPTW. But for larger instances [9] ,the computation time requirements increase 

considerably . For this reason heuristic methods are usually employed for optimal solutions in 

small instances of VRPTW.  In particular, EA automatically generates the entire population of 

solutions that fulfill the whole range of trade –offs. 

3.1. Evolutionary Optimization Algorithms (EOA)  

 Evolutionary optimization algorithms (EOA) use a population based approach in its 

search procedure which means  more than one solution participate in  an iteration and produce a 

new population of solutions in each iteration. EOA are very popular due to their following 

reasons. 

(i) Any derivative information is not required in EOA . 

(ii) They are relatively simple to implement. 

(iii) EOA are so flexible and also have a wide-spread applicability. 

 Braysy and Gendreau [3,4] provide an excellent survey of them utilizing a number of 

heuristics and give a comparison of the obtained results. Braysy et al .[2] have focused on 

evolutionary approaches. There are many studies those have considered the bi-objective 

optimization of the VRPTW, use an EA to minimize the two objectives namely the number of 

vehicles and the travel distance. Tan et al. [20] have used the dominance rank scheme for 

assigning fitness to individuals and have designed a problem specific crossover operator and 

multi-mode mutation operator. Further they have also considered three local search heuristics. 

The work proposed here is a number of a route and travel distance, but also the delivery time. 

Here we try to analyze the results for comparison with those from previous algorithms. Finally 
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we introduce improved comparisons with the popular NSGA-II algorithm [8] by using multi-

objective performance metrics. 

3.2. Problem Definitions for VRPTW Objectives 

 To define three objective functions for VRPTW, any number of relevant objective 

functions fi to optimize can be specified. We concentrate in this paper on the key objectives, 

namely the number of routs or vehicles(f1), the total travel distance (f2), by summing the route 

distances and the total travel time (f3) by summing the arrival time back at the depot have 

computed as follows,  

f1 (R) = |R| = k,  f2 (R) =∑ 𝐷𝜅𝑘
𝑘=1 ,  f3 (R) = ∑ 𝑇𝜅𝜅

𝜅=1     (11) 

Here R = {r1, ... , rk},  

Dk=∑ 𝑑𝔲(𝑖, 𝑘)𝑁𝜅
𝑖=0  𝑢(𝑖 + 1, 𝑘) and 

Tk=∑ (𝓉𝓊(𝑖, 𝑘)𝑢(𝑖 + 1, 𝑘) + 𝑤(𝑢(𝑖 + 1, 𝑘)) + 𝑆𝓊(𝑖 + 1, 𝑘))Νk
𝑖=0  

 Subject to the demands associated with customers serviced in each route rk not exceeding 

the vehicle capacity   that is, Gk=∑ ℊ𝔦𝑖𝜖𝑉𝐾
∗ ≤ 𝒬; for all k = 1, 2, . . ., k       (12) 

Where Vk
* = {u(1,k), . . ., u(Nk, k)}  and  no arrival times after the customers constraints that is, 

 𝔟𝔲(𝑖,𝑘) ≤ a(u(i, k)) ≤ eu(i,k),for all k =  1, 2, . . . , k, 1 ≤ 𝔦 ≤ 𝒩𝐾     (13) 

Here a(u(i, k)) = ℓ(𝑢(𝑖 − 1, 𝑘)) + 𝑡𝑢(𝑖−1,𝑘)𝑢(𝑖,𝑘) 

As the minimization of three objectives is not usually possible, a set of non-dominated 

solutions is needed to obtain each solution is better that the others on at least one objective. 

 

4. MULTI-OBJECTIVE PERFORMANCE METRICS  

 Multi-Objective problems have to compare whole set of solutions, whereas, the single 

objective problems have to compare the best solutions from the various approaches studied. So 

that, the definition and application of Multi-Objective performance metrics is crucial. 

 We have two existing metrics. These are particularly applicable to the problem. The 

coverage metric ℳ𝒸[19] is used to compare the number of solutions in set ℬ that are covered by 
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solutions in 𝒜(ie dominated to equal to) to the cardinality of  ℬ. Formally this ratio maps the 

ordered pair (𝒜, ℬ) to the interval [0,1] as the general coverage metric[15]. 

ℳ𝒸 (𝒜, ℬ)=
|{𝑏∈ℬ∶ ∃𝑎∈𝐴,𝑎≤𝑏}|

|ℬ|
 

 The value ℳ𝒸 (𝒜, ℬ) =1 indicates that all solutions in ℬ are covered by solutions in 𝒜 

and ℳ𝒸 (𝒜, ℬ) = 0 means that no one solution in ℬ is covered by those in𝒜. Since ℳ𝒸 (𝒜, ℬ) is 

not necessarily equal to 1- ℳ𝒸 (ℬ, 𝒜) and bothℳ𝒸 (𝒜, ℬ) and  ℳ𝒸 (ℬ, 𝒜) do not necessarily to 

be computed. 

 

Fig.1. Representation of ℳ𝒸 and ℳ𝒟 

 

 This idea makes the algorithm with the best performance to provide solutions with the 

largest coverage of the solutions from others. Figure 1 presents a simple Example with ℳ𝒸 (𝒜, ℬ) 

=3/5 which is better than  ℳ𝒸 (ℬ, 𝒜)=2/6 and also it is noted that the average distance from 

points in set 𝒜 to the reference set smaller than that of the points in ℬ. Thus the algorithm giving 

solutions 𝒜 is deemed better than that producing solution ℬ. 

 

5. AN IMPROVED MULTI-OBJECTIVE EA FOR VRPTW 

 The proposed multi-objective Evolutionary algorithm (MOEA) consists of selection, 

Cross-over and mutation and uses a simple list-based encoding as in most EAs. Here the 

implementation of a similarity measure to preserve population diversity is the main novel 

characteristic approach. This Characteristic is based on the Jaccard’s similarity coefficient in 

which the measurement shows how similar two sets are as the ratio between the numbers of 
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elements. This metric is adapted to VRPTW for the BiEA[10] in which each solution is treated 

as set of arcs and used it for calculating the average similarity between solutions in the 

population. 

 

Fig. 2: The recombination process 

Here MOEA differs from the BiEA in improved mutation stage and also mainly in dealing with 

more than two objectives.  

5.1 Fitness Assignment 

 The assignment of fitness to solutions is done by using a dominance depth criteria [8] by 

which individuals are gathered into non-dominated fronts and the relative depth of the front 

confines the fitness. 

5.2 Recombination 

  Next a tournament selection is used to choose the first parent according to fitness in 

recombination stage as usual. But at the same time, the second parent is chosen on the basis of 

lowest similarity measure. After that, the designing of recombination is structured to preserve 

routes from both parents. The two example parents in recombination is shown in fig 2. Both 

routes on the left are selected from the first parent to be copied into the offspring . Then the route 

only on the right can be copied from the second parent. 

5.3 Mutation 

 Mutation is applied with a probability 𝜇 after on offspring has been generated. This 

includes three basic functions. 
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i. Select Route () which selects a route stochastically according to the largest ratio between the 

distance and the number of customers ie., the selection is as the routes with a larger travel 

distance and fewer customers. 

ii. Select customer () which stochastically selects one customer from a particular route 

according to the longest average length of its inbound and outbound arcs. 

iii. Insert customers () which tries to insert a set of customers into a specific route where the 

lowest travel distance is obtained. If there is no specified route, it tests all existing routes. 

In addition, the three functions above given are used by the mutation operators. The three 

operators are: 

➢ Reallocation-It takes a number of customers from a given route and allocates them to 

other existing routes. The process of this reallocation is illustrated in Fig.3 

➢ Exchange–which swaps a sequence of customers between two routes, if it is possible, as 

illustrated in Fig.4 

➢ Reposition-This uses select customer and insert customers respectively in order to select 

one customer from a specific route and reinserts it into the same route. This is illustrated 

in Fig.5. 
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The Process of Mutation Is as Follows 

 At first, two routes are chosen using select Route().If two routes are same, the 

reallocation operation is performed or else, the exchange operator is executed immediately. Then 

select Route () takes plane to select another route and then the reposition operator is carried out. 

Finally, as the completion of the process, the parent and offspring populations are combined 

together, fitness levels are assigned and then the individuals with highest fitness animate the next 

new generation. The similarity is computed for the solutions in the front after the population size 

is attained in the last selected front. So that the least similar are chosen as desired. Likewise, the 
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whole process for parent selection and offspring generation is repeated for a fixed number of 

generations.  

 

6. EXPERIMENTAL STUDY FOR COMPARISONS 

 This study describes the VRPTW benchmark instances used for testing the proposed 

MOEA algorithm and also tests how this improved MOEA performance is well determined 

comparing with previous approaches. Finally evaluates the performance of MOEA as a direct 

fully multi-objective comparison with NISGA-II[8]. 

6.1 Solomon’s Benchmark Instances 

 The standard benchmark set of Solomon is used to carry out controlled experiments [19]. 

This includes 56 instances of size N=100 and are categorized as: C1 and C2 where customers are 

situated in geographical clusters, R1and R2 where customers are distributed randomly and RC1 

and RC2 in which the customers have a mixed of random locations and customers. Also, the 

instances in sets C1,R1and RC1have time constraint acts  as a short scheduling horizon which 

together with the vehicle capacity constraint  and permits customers few in number to be 

serviced by the same vehicle. Whereas, the instances in sets C2,R2and RC2have constraints with 

large vehicle capacities and allows many customers to be serviced by the same vehicle [19]. 

 A recent analysis by Tan et al.[20] found that categories C1and C2 both have positively 

correlating objectives. That is the travel cost of a solution will increase with the number of 

vehicles. But the majority to the instances in four categories R1,R2,RC1 and RC2 were found to 

have conflicting objectives. 

6.2 Experimental Set-Up 

 This algorithm was implemented in Java and tested on a computer cluster. The 

evolutionary parameters of our algorithm were set to the following suitable values that have 

proved to work well in preliminary testing.  

Population size (pop size) =100 

Number of generation (num Gen) =500 
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Tournament size (T size) =2 

Crossover rate (𝛾) =1.0 

Mutation rate (𝜇) =0.1 

Each version of the algorithm was run 30 items with different random number of 30 items with 

different random number of seeds in order to provide reliable statistics for each bench mark 

instance. 

6.3 Non-Dominated Sorting GA (NSGA –II) 

 The Elitist Non-dominated sorting (NSGA-II) is one of the effectively used Evolutionary 

multi-objective optimization (EMO) which tries to find multiple pareto-optimal solutions in 

MOP and also NSGA –II has the following the significant. 

➢ It uses an elitist principle 

➢ It has a descriptive diversity preserving mechanism 

➢ It emphasizes or gives importance to non- dominated solutions. 

 For any generation t, the offspring population named as Qt is created at first by using the 

parent population (say Pt) and the usual generator operators. Then the two populations are 

merged together so as to form a new population (say, Rt) which of size 2n.The new 

population Rt is assorted into various non-domination classes. Now, the new generated 

population is filled by points of different non-dominated fronts, one at a time. The process 

of filling begins with the first non-domination front and continues with the second non-

domination front, and so on. As the overall population size of Rt is 2N, All fronts cannot be 

accommodated in N slots available for the new population. Fronts those who all could not 

be accommodated are deleted from the class. Once the last allowed front has to be 

considered, more points may exist in the front than the remaining slots in the new generated 

population. This schematic is illustrated in Fig. 6. 
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7. RESULTS ANALYSIS  

7.1. Comparisons with Previous Studies 

 Many previous studies have already considered the VRPTW as a multi - objective 

problem. But they have failed to present their results in a multi - objective manner. Since they 

have only shown averages from their best results, this study compares the averages of our best 

results with those previous studies. There after performs the proper multi - objective comparisons 

with NSGA - II. The following table gives the average number of routes as well as travel 

distances from those from many previous studies and from MOEA. For each problem instance, 

the entire solutions in the resulting non-dominated set are taken from all repetitions and the 

average is computed for each objective. After that they are averaged over each category. Noting 

that, in each algorithm, and category, the average number of routes (upper figure) and the 

average travel distance (lower figure) are shown in the table. The total average number of routes 

and travel distance for all 56 instances are presented in the last column (Accumulated).  At last, 

the percentage difference between the results obtained from MOEA are shown in the bottom of 

the table. Since the categories C1 and C2 do not have conflicting objectives, MOEA has 

achieved similar results to the previous studies. The lowest number of routes, as well as the 
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accumulations for other categories was received by BiEA [2]. But for MOEA, the solutions was 

found with lower travel distance for categories R2, RC1, RC2 and also accumulated. In the table 

it is shown that the solutions for Tan et al. [20] the category R1 has the lowest travel distance, 

where results for MOEA are 0.33% which is higher. Similarly, the shortest distances for 

categories R2 and RC2 were obtained and by ombuki et al. [16], where the results for MOEA are 

2.61%, 3.46% and 0.16% which are higher, but at the same time have smaller numbers of routes. 

In addition to that, the travel distances from MOEA for category RC1are clearly the shortest. The 

above shown result proves that the performance of MOEA is comparable to the algorithms which 

are previously published. 

7.2. Multi-Objective Performance Comparisons with NSGA –II 

 As simple averages are often misleading, the performance of our MOEA is evaluated in a 

multi-objective approach, and the results are analyzed by using multi-objective coverage and 

convergence performance metrics for comparison of non-dominated solution from MOEA with 

those from NSGA –II [12]. The implementation of NSGA –II used the same solution 

representation with the same crossover and mutation operators as MOEA . The difference by 

comparison lies in the way that MOEA selects one parent according to the similarity, whereas 

NSGA-II uses fitness as the only criteria to select both parents. MOEA considers similarity for 

the identification of those solutions are taken to the next generation, while NSGA –II utilizes the 

crowding distance which does not involve any routing information.   

  For computation, the hyper volume metric MH needs an appropriate reference points Z to 

be set. The reference point for every instance was set at Z=(N, Dmax). Because, each instance has 

an obvious maximal solution, with largest number of routes that is equal to the number of 

customers N, and longest travel distance Dmax which is equal to twice the sum of the distance for 

all customers from the depot. 

 There is a set of 30 MH values for each problem instance from the 30 runs performed, 

with each value calculated by using the non- dominated sets obtained by MOEA and NSGA-II 

starting from the same initial populations. In table 2, It is shown that the hyper volume metric 

averages for each category and the numbers of instances with specific improvements over the 
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other approaches. To see the difference among the categories, there is a small difference between 

two algorithms for categories C1& C2.The MOEA shows special improvement over NSGA-II in 

most problem instance for categories R1& RC1. On the other hand, the MOEA has significant 

improvement in some problem instances for categories R2&RC2.It is clear that there are no 

problem instances at all for which NSGA-II has significant performance better than the MOEA. 

 

Table 1: Travel distance and number of routes, averaged over categories, for the best solutions 

found in previous studies and by MOEA. 

 

Algorithm     C1     C2      R1      R2       RC1       RC2            

NSGA-II      0.77   0.87    0.66     0.79       0.69        0.81 

                      (0)      (0)       (0)       (0)          (0)         (0)                 

MOEA          0.81    0.74    0.71     0.76       0.75        0.81 

                      (1)       (0)      (10)      (3)          (8)         (2) 

Table 2: Hyper volume metric values, averaged over instance categories, for solutions obtained 

with NSGA-II and MOEA. The number of instances for which the result is significantly better 

than the other approach are shown in brackets. 
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Algorithm     C1      C2       R1      R2      RC1      RC2            

NSGA-II          0.81      0.87      0.14      0.37     0.13       0.35  

                          (0)         (2)        (0)         (4)       (0)        (0) 

                         25.06    4.88     51.56     49.81   72.21    67.17   

                           (0)         (0)        (0)         (0)       (0)        (0) 

MOEA             0.93     0.88        0.78      0.41      0.80      0.45 

                         (4)         (2)        (12)         (5)       (8)        (7) 

                        12.20     5.07      27.89   50.67     33.91    65.86 

                          (3)         (0)        (12)         (0)       (8)        (1) 

Table 3: Coverage (upper figure) and convergence (lower figure), averaged over instance 

categories, for solutions obtained with NSGA-II and MOEA. The numbers of instances which 

are significantly better than the other approach are shown in brackets. 

 

Next, The coverage values MC (MOEA, NSGA-II) and  (NSGA-II, MOEA )were 

computed for all pairs of runs (i,j=1, 2, . . ., 30)  which means 900 MC values each. The following 

table gives the averages of MC(x,y) values over all the instances within each problem category 

and there was a significant improvement for the numbers of instances over the other approach.  

 The improvement in each instance is explained in the figure. Six plots show the mean 

population diversity and also variance on the vertical axis for each instance category and a 

function for first 500 generations in horizontal axis. Observing this it is very clear that the 

MOEA definitely preserves a higher diversity for the categories R1, R2, RC1 and RC2 which are 

the improvements over NSGA-II. Whereas the non-multi –objective categories C1 and C2were 

not. Further the different behavior for R1and RC1 to that of R2 and RC2 is also stable with that 

distinction in the hyper volume results and the increased numbers of solutions in MOEA pareto 

approximations compared to NSGA-II. Overall then, It can be concluded that the MOEA 

diversities present a significantly gentle drop in all categories except 2. This leads that MOEA 

performs a wider exploration in the search space and significantly better than NSGA-II. 
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Fig.7.Average population diversity for each instance category as a function of generation, for 

MOEA and NSGA-II. 

 

7.3. Comparisons with Tri-Objective Performance 

 In tri-objective performance, the application of our MOEA is illustrated to other 

objectives and for optimizing more than two objectives at the same time. Here the number of 

routes (R), travel distance (D) and delivery time (T) were first to be minimized in pairs, giving 

three objective settings RD, RT and DT and then all three of them were minimized together 

(RDT). Using the coverage performance metric MC for each setting and instance, the outcome set 

of non-dominated solution after each of the 30 repetitions was recorded. The compared results 

provide the following observations. For categories C1 and C2, we have mixed results with all 

settings having a high coverage of each other. The contrarily coverage for RD, DT and RDT by 

RD is low (14%),and the coverage for RD, DT and RDT by RT is closed to zero. The settings 
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DT and RDT are most interesting cases due to their coverage of RD and RT is much higher. 

Between them, the coverage of DT by RDT is significantly larger than the coverage of RDT by 

DT. These results are evidently indicated that setting MOEA minimizes all three objectives does 

definitely leads to better non-dominated solutions. The above said comparison results are 

presented in the Table 4. 

 

Obj.      Covers   C1       C2       R1      R2      RC1    RC2 

                          RT       0.87     0.64     0.04     0.01    0.05      0.02 

                              (6)       (3)        (6)       (1)       (4)         (2) 

 RD           DT       0.82      0.72     0.08     0.11    0.14      0.08 

                              (1)         (0)       (1)        (4)       (0)         (0)  

                RDT     0.82      0.72     0.08      0.11    0.13     0.08 

                              (1)         (1)       (1)        (3)       (0)         (1)           

 

                RD        0.68       0.55     0.01       0       0.01      0.01  

                               (0)          (1)       (2)      (0)       (2)        (0) 

  RT         DT         0.68       0.63     0.03     0.04    0.06      0.02 

                               (0)          (0)       (0)       (0)      (0)         (0) 

                RDT       0.68       0.62     0.04     0.03     0.07     0.03 

                                (0)           (0)       (0)       (0)       (0)       (0) 

                 RD       0.91        0.9      0.31      0.14     0.36     0.21 

                               (2)          (3)      (11)       (5)        (8)      (6) 

  DT          RT       0.97        0.92     0.49      0.42     0.46     0.48 

                              (5)           (4)      (12)       (11)      (8)       (8) 

                 RDT      0.91       0.88     0.43       0.4      0.42     0.42 

                               (2)          (2)       (4)         (4)       (2)       (3) 

 

                 RD       0.89      0.91      0.32      0.16      0.38     0.23 

                                (3)         (3)        (11)       (6)        (8)      (7) 

RDT         RT       0.97      0.93       0.52      0.44     0.49      0.44 

                               (6)          (3)      (12)       (11)       (8)       (8) 

                 DT       0.89      0.89       0.44      0.43     0.46     0.41 

                                (2)          (2)       (4)         (4)       (2)       (3)                 
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CONCLUSION 

  The paper has proposed and analyzed the performance of an improved multi-objective 

Evolutionary Algorithm (MOEA) to solve vehicle Routing Problem with Time Windows 

(VRPTW). MOEA can minimize simultaneously for any number of objectives and also has been 

tested on the number of routes, travel distance and delivery time. In this paper a crucial 

difference of the MOEA proposed to most EAS is that in addition using fitness to select good 

parents, it also uses the similarity measure to maintain population diversity. The first from the 

two parents is selected on the basis of fitness and the second on the basis of similarity. This is the 

key improvement in the introduction for a similarity measure between solutions which is 

primarily used to choose the second parent for the recombination process.  

 An improved MOEA has been tested using a popular bench mark set of 56 VRPTW 

problem instances, nearly half of which have conflicting objectives. The experimental results 

have made to explore the effect that similarity measure had on population diversity and solution 

quality. Comparing three methods to select second parent including fitness, it is demonstrated 

that the similarity measure has a high importance which had in maintaining diversity and arriving 

for better solutions. This is the best approach and this would work best on problems with 

conflicting objectives. Later, it was confirmed that not offering much improvement on others. 

The proposed MOEA was evaluated by using two multi-objective performance metrics namely 

hyper volume and coverage. This shows the significantly better results of MOEA than the 

popular NSGA-II for both bi-objective and tri-objective performances. 

 Therefore, it is concluded that the proposed MOEA performance comparison against the 

well known evolutionary multi-objective optimizer NSGA-II has shown that the solutions 

obtained by MOEA are much better for almost all instance categories. There is also a scope to 

explore the extension of the MOEA for optimizing even more objectives such as route balance 

and this scope will pursue the comparison of our results with other multi-criterion optimization 

methods and also further multi-objective performance metrics. 
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