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Abstract. The blast furnace is a very complex industrial equipment producing hot metal from iron oxides. Its

measuring, modeling and exploring functionalities is very crucial; this is due to the difficult measurement and

control problems related to the unit.

To maintain high efficiency, the current work proposes new adaptive algorithms for data-driven methods. These

methods are classified into supervised and unsupervised algorithms, well known in optimization problems as re-

gression, classification and clustering. To extract their limitations, a comparative study between the proposed tech-

niques is presented, where the obtained results are validated on real data from the steel processes ArcelorMittal-

Annaba, proving the feasibility and effectiveness of the proposed models and numerical procedures.
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1. INTRODUCTION

Blast furnace is an extremely complicated nonlinear system consisting of several specific el-

ements such as the loading equipment; the cooling circuit, the whole production of hot wind,

and the big cylindrical shaft four.
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Their principal operation is as follows: the solid raw material like iron ore and coke is charged

in a mixture successive layers from the upper of the furnace. Under the action of their par-

ticular weight, they gradually descend to the bottom of the heating up until it melts; however,

the hot combustion gases rise through the column of combustion materials. The molten metal

consisting of cast iron and slag flows into the crucible. At the end of combustion, the materials

split into two elements; molten slag on the one side and molten hot metal on the other, which

accumulate according to their own specific masses. The slag is drained through the slag tap

hole which is higher than the cast iron tap hole.

The heat and mass transfer process complexity combined with a wide variety of chemical reac-

tions and high pressure, make blast furnace modeling an extremely difficult problem. Despite

the best researchers’s efforts to solve this type of problems, challenges do remain.

Prediction and control of product quality by virtual sensing technology is a key tool in real

time, and has been extensively used in many manufacturing processes (see Zhang (2017) [13]

and Zhou et al. (2017) [15]). Usually, it is split in two main groups, that are the data-driven

techniques and the first-principle models. In this case, it is very hard to construct the first prin-

ciple due to the large size of the reactor and the complex internal operating environments, while

the data-driven model do not need previous knowledge of the full operation of the process and

are based directly on the process data, Ge et al. (2017) [2]. Therefore it has been effectively

applied to a various industrial processes, as typical examples the time series models by Saxen

(2013), multivariate statistical approach (PLS, PCR).

For an overview on the Data-driven time discrete models for dynamic prediction of the hot

metal silicon content, the reader is referrred to Gao et al (2011) [1] and Saxen et al. (2013) [8],

where they proposed a model to predict the change of thermal state of blast furnace hearth with

support vector machine; while Ling J. et al (2011) [5] developed an adaptive model using the

sliding windows smooth support vector regression (SVR) for nonlinear blast furnace system.

Numerous dynamic systems are characterized by a non-linear dynamic behavior, such as the

blast furnace, where nonlinear models are then necessary. Indeed, it has been shown that SVR

and Neural Network (NN) can approach continuous nonlinearities, and have been applied to

the modeling of complex nonlinear systems whose complexity is often due to the high number
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of weights in the network; in addition to the model identification principle using conventional

Recursive Least Square (RLS) and its adaptive version. More details about these methods can

be found in different documents, see for example [1], [2] and [9] and references therein.

In this study, we propose a new approach to measurement quality control of blast furnace us-

ing robust nonlinear modeling and identification techniques known as data driven methods; with

an attempt to reduce modeling and identification errors concerning the structure and parameters

of the model that is included in the uncertainty budget.

2. BIG DATA AND DATA DRIVEN METHODS

Big Data is the huge amount of pseudo infinite information being collected from different

databases. These raw data are usually of a different special nature characterising the multi-scale

actions of the system under consideration. Although the quantity of information stored is im-

portant, there are other many things that have the same importance, like the accuracy, variety

(format, nature, and type) , and value (perspectives and impact) of these data, as well as the ab-

sence of noise, knowing that outliers, missing and incorrect values with the data sparsity could

introduce noise.

Big Data analysis faces many challenges along with the previous important issues such as data

quality and verification, high dimensions, spread and representation data resources, data visu-

alization and testing and the capability to develop algorithms. In order to derive patterns from

large-scale data and understand the value of big data analysis, we need to apply and adapt certain

methods such as the Machine Learning paradigms and algorithms; and deep learning. Machine

learning is an important field and a research frontier in artificial intelligence, which have signif-

icant part in big data analysis long with computational power. its task is to analyse the largest

amount of data at all levels, whether simple or complex and ensure that more accurate results

and decisions are obtained faster. This can be categorized into two model forms:

The first is called supervised learning, where for this type of input data, it is usually required

to train reliable data representations that can be expanded to new data in the same big data appli-

cations area. It can be classified into two main groups, logistic regression and regression. Neural

Network (NN) and support vector machines (SVM) are considered as classification methods to

get the best prediction or explore different linear or nonlinear models, just enough to change
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the structure parameters, such as the kernel for the SVM, the activation function and number of

layers in the NN. Different algorithms based on robust ones from gradient descent to Levenberg

Marquardt, are used to minimize the modelling errors for these model types.

The second is named unsupervised learning, in which there is no modelling error to super-

vise and no direct learning algorithm to track a model output. The Partial least square (PLS),

Principal components analysis (PCA), dimensionality reduction and clustering, belong to unsu-

pervised learning. Generally, we use these methods to extract features from the noisy data, as a

pre-processing step, then the pre-processed data is applied as inputs for the supervised learning

step.

Note that this section is not to cover the Big Data in particular, but to provide a brief overview

of its key concepts and challenges as detailed in next sections.

2.1. PLS technique. The key step in a process modeling is to define the most important input

variables and forecast the process response from the collected data. Nevertheless, the high size

and co-linearity of these data make it complex to build a robust process model. the need to

explain the process quality of these data has led to the development of a multivariate analysis

for complex processes. In order to reach this goal we tried to use different strategies among

them the PLS technique. As a supervised dimension reduction methodology, it was invented

in 1983 by Herman Wold [10] and was taken to pick up an optimal subset of input variables

called ”latent variables”, where its purpose is to construct new predictor variables as linear

combinations of the original ones summarized in a matrix X and a vector y of response variables

(class labels). It focuses on maximising the covariance between the extracted factors from both

input and output process sets.

Let X ∈ Rm and Y ∈ Rn be m and n-dimensional spaces of m and n variables, respectively.

From N observed samples for each x ∈ X and y ∈Y , we get two variable blocks X ∈RN×m and

Y ∈ RN×n, and write the general formulation as :

(2.1) X =
k

∑
i=1

ti.p′i + εX = T.P′+ εX ,

(2.2) Y =
k

∑
i=1

ui.q′i + εY =U.Q′+ εY ,
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where T and U ∈ RN×S are factor matrices for the score and latent variables, respectively;

P ∈ Rm×S and Q ∈ Rn×S are loading matrices and εX ∈ RN×m and εY ∈ RN×n are error terms.

In the PLS regression, the optimization criterion is

(2.3) argmax{cov(Xk−1wk,Yk−1qk)},

under the contraints w
′
k.wk = q′k.qk = 1 and cov(X[k−1]wk,X[k′−1]wk′) = 0,k 6= k′.

From (2.1), it is readly shown that the first PLS component t(1) = Xw(1) is obtained by maxi-

mizing the Tucker criterion of the inter-battery factor analysis:

(2.4) cov2(Y,Xw(1)) = r2(Y ;Xw(1))Var(Xw(1))Var(Y ),

under the contraints ‖w‖= 1. (∗)

We thus try to simultaneously maximize the variance t(1) and the correlation between t(1) and

Y . We are therefore looking for a normalized vector w(1) maximizing:

(2.5) 〈t(1),Y 〉= 〈Xw(1),Y 〉= ‖Xw(1)‖.‖Y‖.cor(Xw(1),Y ).

To obtain the expression of w(1), we solve the optimization problem under constraint (∗) by

using the Lagrange multipliers method:

(2.6) L(w(1),λ ) = cov(Y,Xw(1))−λ (w′(1)w(1)−1) = w
′(1)X

′
Y −λ (w′(1)w(1)−1),

with λ ∈ R+. If we set the first derivatives of L with respect to λ and w(1) to zero, we write

(2.7)
∂L
∂λ

=−(w′(1)w(1)−1) = 0 or w′(1)w(1) = 1,

(2.8)
∂L

∂w(1)
= X ′Y −2λw(1) = 0 or X ′Y = 2λw(1).

By multiplying (2.8) by w′(1) and using (2.7), we get: w
′(1)X

′
Y = 2λ . Let θ ∈ R, by symetry

we obtain:

(2.9) θ = 2λ = 〈t(1),Y 〉= w
′(1)X

′
Y = Y

′
Xw(1).

From (2.8) and (2.9), we have:

(2.10) (X ′Y )Y ′Xw(1) = (θw(1))θ = θ
2w(1).
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Consequently, w(1) is the associated eigenvector to the eigenvalue θ 2 of the matrix X
′
YY

′
X ; and

the maximization of 〈Xw(1),Y 〉 amounts to considering θ 2 as being the maximum eigenvalue

of X ′YY ′X .

We can therefore deduce an expression for w(1) and the associated eigenvalue.

We write: X ′YY ′Xw(1) = λ1w(1) or λ1 = 〈Xw(1),Y 〉2 = (w′(1)X ′Y )′(w′(1)X ′Y ) = Y ′XX ′Y .

Because Y ′XX ′Y ∈ R, we obtain X ′YY ′Xw(1) = (X ′Y )Y ′X(w(1)) = λ1w(1) = Y ′XX ′Y w(1) =

w(1)Y ′XX ′Y = (w(1))Y ′X(X ′Y )⇒ w(1) = X ′Y .

From the constraint (∗) we have
∥∥∥w(1)

∥∥∥= 1 so that w(1) = X ′Y
‖X ′Y‖ .

In order to know if the first component t(1) = Xw(1) can sufficiently explain the set of explana-

tory and the endogenous variables, we perform two regressions X on t(1) and Y on t(1) to get

(2.11) X = X[0] = t(1)p′(1)+X1,

(2.12) Y = Y[0] = c(1)t(1)+Y1,

with p(1) =
X ′[0]t

(1)

t ′(1)t(1)
and c(1) =

Y ′[0]t
(1)

t ′(1)t(1)
.

Other weight vectors are iteratively computed by the PLS method, such that when w(1) and c(1)

are available, the score vectors can be computed by t(1) = Xw(1), u(1) =Y c(1) and loadings, i.e.

the first columns of P and Q can be computed by p(1) =
X
′
[0]t

(1)

t ′(1)t(1)
and q(1) =

Y ′[0]t
(1)

u′(1)u(1)
respectively.

The data matrices X and Y are then deflated by subtracting their rank-one approximations

(2.13) X ← X− t(1)p′(1) and Y ← Y −u(1)q′(1)

The new X and Y are used to compute w(2) and c(2) based on

(2.14) X ′YY ′Xw(1) = λ1w(1) and Y ′XX ′Y c(1) = λ1c(1)

This process is repeated until the residuals are small enough or a predefined number of weight

vectors {w(1), ...,w(k)} and {c(1), ...,c(k)} are obtained (see [1, 11]).

2.2. SVR technique. The support vector regression was introduced by Vapnik in the early

1994 (see [4]); since it became popular and widely applied in many fields. It is firmly grounded

in the framework of statistical learning theory which has led to a large development, the SVR is

strongly recommended for solving various classification and prediction problems; it is also the
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key to construct the Lagrange function from an objective function by converting the minimiza-

tion problem into a dual one [9]. Suppose the training set sample is given by

(2.15) E = {(x1,y1), ...(xi,yi), ...(xL,yL)},

where ∀i = 1, ...,L, xi ∈ Rn is the input of the training sample, and yi ∈ R is the target value.

Our goal is to determine a function that can approximate future values accurately. The model is

then given by:

(2.16) y = w.ϕ(x)+b,

where weights w ∈ Rn (i.e. the coefficients vector ), b ∈ R is a constant, and ϕ a map function

supposed to be a nonlinear transformation from Rn to a higher dimensional feature space.

The aim is to find the weight w and the bias b, such that x can be calculated by minimizing the

regression risk defined as:

(2.17) rreg( f ) =C
m

∑
j=1

Γ( f (x j)− y j)+
1
2
‖w‖2 ,

where Γ(.) is the cost function and C is a constant.

The solution for minimizing this cost function is equal to a convex optimization problem with

a soft margin loss function, which is represented as follows:

(2.18) min
1
2
‖w‖2 +C.

m

∑
j
(ξ j +ξ

∗
j ),

subject to

(2.19)


〈w,φ(xi)〉+b− yi ≤ ζ +ξ ∗j ,

yi−〈w,φ(xi)〉−b≤ ζ +ξ j,

ξ j,ξ
∗
j ≥ 0,

where ζ is the insensitive parameter; ξ j,ξ
∗
j are slack variables which are introduced to relax the

optimization constraints and the vector w can be written in the form:

(2.20) w =
m

∑
j=1

(α j−α j∗).φ(x j).
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By substituting equation (2.20) in (2.16), the generic equation can be rewritten as

(2.21) y = f (x) =
m

∑
j=1

(α j−α
∗
j ).〈φ(x j).φ(x)〉+b =

m

∑
j=1

(α j−α
∗
j ).K(x j,x)+b.

Here k(x j,x) is the kernel function. Kernel functions allow dot product to be computed in

large dimensional feature space using small dimensional space data input without knowing the

transformation φ . The most widely used cost function is the ζ insensitive loss function that has

the form

(2.22) Γ( f (x)− y) =

 | f (x)− y|−ζ f or | f (x)− y| ≥ ζ ,

0 otherwise.

By solving the quadratic optimization problem (2.18), the regression cost in equation (2.17) and

the ζ insensitive function in (2.22) can be minimized. We write

(2.23)
1
2

m

∑
j,l=1

(α j−α
∗
j )(αl−α

∗
l )K(x j,xk)−

m

∑
j=1

α
∗
j (y j−ζ )−α j(y j +ζ ),

Subject to

(2.24)
m

∑
j,l=1

(α∗j −α j) = 0 , α j,α
∗
j ∈ [0,C[,

where α∗j and α j are the Lagrange multipliers, representing solutions to the quadratic problem

that act as forces pushing predictions towards target values y j.

2.3. Neural Network technique. The neural networks were invented by Mc Culloch and Pitts

in 1950, and made popular by Hopfield [3]. As a nonlinear mapping between the input and the

output sets, the NN emulates human systems (Brain), which is characterized by adaptation and

self-organization. Moreover they have the ability to learn from the experience and generaliza-

tion from the previous sample to solve new problems. They are composed of a number of very

simple processing elements known as neurons (see Diagram 1). A neuron typically consists of

four components: (1) input data (2) a group of weights, (3) a weighted summer (nodes) and

(4) a nonlinear activation function φ such as sigmoid; note that each neuron has an activation

function. The inputs xi are connected to the nodes in the input layer and the outputs yp are

taken from the output one. Between the input and output layers, there exists one or more hidden

layers. All the nodes in one layer are connected to all the nodes in the next one. The connection
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strength between the output of a node i with a node j is given by a weight Wi j. The weights are

regression coefficients to be estimated from a sample data. The bias term is comparable with

the intercept of conventional regression model, i.e. it allows us to add flexibility when learning.

The model can be written as follows

(2.25) u =
N

∑
i

wixi +b,

(2.26) y = φ(u),

where xi represents the input value, y the model output, W = ∑
N
i wixi is the weight connecting

input i with a hidden neuron j, and φ is nonlinear called activation function. Different activation

functions can be used, among which we can cite, sigmoid, hyperbolic tangent and Gaussian.

In order to find the optimal architecture of a neural network, many different approaches exist.

These methods are usually quite complex in nature and are difficult to implement. Moreover

there are no hard or fast rules about the choice of the number of nodes and hidden layers to be

used in an application. Usually some trials and errors are required to determine the best com-

bination to minimize the error. Hence the connection weights are auto-adjusted using efficient

nonlinear optimization algorithms, namely the basic back propagation (BBP) training algorithm

[11]. The weights W are changed by an amount ∂W according to the following formula

(2.27) ∆W =−η
∂E
∂W

,

where the parameter η is the learning rate and E is a cost function quatifying the difference

between the initial known values of the approximated function over the discrete set of data and

their corresponding NN approximation, written in the form

(2.28) E =
1
N

N

∑
n=1

(ei)
2 =

1
N

N

∑
n=1

(y− ŷ)2,

where N is the number of error terms.

The most widely used Levenberg-Marquardt (LM) in an optimization algorithm, can be con-

sidered as a trust-region modification to Gauss Newton (GN) method or a more robust one as a

bridge between the GN and the gradient descent algorithm. It has been readily shown in many

cases, that it converges even if the error surface is much more complex than in the quadratic
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situation. The LM is similar to the BBP in the sense that it requires only the gradient vec-

tor calculation, wether the LM computes in addition the Jacobian. The LM algorithm can be

represented as:

(2.29) Wk+1 =Wk− (JT
k Jk +µI)−1JT

k ε,

where I is the identity matrix, ε the total error for all patterns and µ a learning parameter,

that has to be adjusted several times at each iteration so that the result with the greatest error

reduction is selected. When the µ value is very large the LM algorithm becomes steepest decent

or BBP, whereas when it is equal to zero it is the Newton Method.

Diagram 1: Principle of the model identification using the NN method

2.4. Adaptive techniques. The PLS, SVR and NN methods presented previously, can be used

in an adaptive form, that is needed particularly when we consider the system to be modelled in

time. In this situation the adaptive form is realised by the use of sliding window algorithms (see

Diagram 2).

If we consider a system defined by measured input and output data X(t) ∈ Rn and y(t) ∈ R,

to take into account the variability of 〈X(t),y(t)〉, a sliding window with width N is introduced

and the input output data become 〈X(t−N : t),y(t−N : t)〉 for a large time t = 1 : M, M is the

maximum length of the window.

The actual modeling error is e[t−N : t] = yp[t−N : t]− y[t−N : t]

The online recursive predicted model output that takes into account the past prediction errors is
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given by y[t−N +1 : t +1] = f (e[t−N : t],x[t−N +1 : t +1]), where f is a function obtained

by a SVR learning input-output based algorithm.

Diagram 2: Principle of the model identification using the LPS, SVR and NN adaptive

forms

3. APPLICATION TO QUALITY CONTROL OF HOT METAL IN A BLAST FURNACE

3.1. Schematic of blast furnace with its zones and experimental results. In this section we

present the schematic, the process and the structure of a blast furnace as shown in the Diagrams

3 and 4. The model of experimental inputs and outputs are shown in Table 1 and Figure 1. Table

1 defines the Process Parameters input and output data. The model structure given in Figure 1

shows the influence of input space on the output.

The model inputs are the natural gas flow rate, the heat wind flow rate and the oxygen purety as

shown in Figure 1 (Fig.1a-Fig.1c), while the output model is the temperature of hot metal (see

Figure 1, Fig1d.)
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Diagram 3: A schematic of the blast furnace

Diagram 4: Model structure
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Table 1 :Nomenclature of inputs and outputs data

Variable Designation Unit Variable Designation

Run Parameters Results Analysis

X1 Circular pressure bar X12 Fe agglo

X2 Pression centre bar X13 Fe pellets

X3 Hot wind temperature °C X14 Fe min. cal.

X4 Temperature of the pig iron °C X15 Fe charge

X5 G N X16 Fe pig iron

X6 Steam T/h X17 Fe pig iron+Losses

X7 Flame temperature °C X18 H2o coke

X8 Wind velocity m/s X19 H2o pellets

Injections inputs X20 CaO agglo

X9 Naturel gaz X21 SiO2 agglo

X10 Hot wind flow rate Knm3/h X22 CaO pel

X11 O2 X23 Sio2 pel

X24 CaO min. cal

X25 SiO2 min. cal

X26 CaO Slag.

X27 SiO2 Slag.

Output

y Temperature of the pig iron
Our goal is to find an input/output mathematical model y = f (X1, .,Xn).

3.2. Numerical Experimentation. In this section we present the numerical algorithms used

and the obtained results by the techniques that have been discussed in the previous sections.

3.2.1. Numerical Algorithms.

Algorithm 1. PLS Algorithm

input : Two matrices X and Y , arbitrary w with ‖w‖= 1

output: Weight vectors w and residuals, loading vector S and score vectors (t,u).
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FIGURE 1. The model of experimental inputs and outputs

Step 1. Given a starting vector u1, usually one of the columns in Y .

Step 2. Calculate the X-weights w, by w1 =
XT u1
‖XT u1‖

Step 3. Calculate X-scores T , by t1 = Xw1

Step 4. Calculate the Y -weights L, by L1 =
uT

1 t1
‖uT

1 t1‖

Step 5. Update the Y -scores U, by u1 = Y L1

Step 6. Update S based on t by: S1 =
XT t1
tT
1 t1

, S← S
‖S‖ , t← t

‖S‖ , w← w
‖S‖ .

Step 7. Find the regression coefficient for the inner relation: b1 =
uT

1 t1
‖tT

1 t1‖

Step 8. The residuals, εx and εy, are calculated by: εx = X− t1ST
1 , εy = X− t1LT

1

Step 9 . Continue with next component until there is no more significant information.

Algorithm 2. SVR Algorithm

Initialize the network weights W 0
i j =[-0.5 to -0.5] and define the computing loop as:

For K = 1 : Lk

Step1: Compute φ

Step2: Compute the model output ŷ from (2.21)

Step3: Compute the modeling error as: e(k) = y(k)− ŷ(k)
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If e(k)≈ 0 , [w,b]k = [w,b]k−1, then stop : [w,b]k = [w,b][∗]

Else, Adjust the SVR weights using the recursive Quadratic Programming Algorithm

Algorithm 3. NN Algorithm The model structure can be defined as f → NN and its identifica-

tion is simplified by the following steps:

Initialize the network weights W 0
i j =[-0.5 to -0.5] and define the computing loop as:

For K = 1 : Lk

Step 1: Acquisition of inputs/outputs.

Step 2: Compute u using equation (2.25).

Step 3: Compute the model output ŷ(K) from (2.26).

Step 4: Compute the modeling error ε(K) = y(K)− ŷ(K)

a) If ε(K)≈ 0, W K
i j =W K−1

i j → stop: W K
i j =W [∗]

i j

b) Else, Adjust the NN weights using the recursive Algorithm:

W K
i j =W K−1

i j +G(K)ε(K) by Levenberg-Marquardt algorithm i.e equation (2.29)

End k.

3.2.2. Results and Comments. The pig iron temperature prediction results as a function of the

oxygen flow rate, the oxygen purity and the hot wind flow rate for the blast furnace process are

given in Figure 3, from top to bottom as follows:

The temperature prediction is carried out by the PLS model and its corresponding adaptive

version. The latter approach gives better results of the predicted error which is lower than the

conventional PLS. This is quite obvious because the adaptive model performs an immediate

correction by obtaining a new projection at each iteration.

As the SVR approach is based on the Vapnik algorithm, its adaptive version is an execution

of this conventional algorithm at every time using a sliding window mode. Similar to the PLS

algorithm, the SVR adaptive version behaves better. However, compare to the PLS, the SVR

approach gives better results in both cases (conventional and adaptive), and this is connected

to the nature of the Vapnik algorithm which is based on the complex quadratic programming,

while the PLS is just a projection technique.
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For the NN technique, the activation function was LOGSIG and the size of the hidden layer

used in artificial neural was 5, i.e. a single hidden layer of the neural network. The adaptive arti-

ficial neural network model does not work very well leading to very noisy values, the numerical

implementation is still under consideration.

Based on the obtained results (see Figure 2 & 3 and Table 2), the SVR model gives the highest

prediction accuracy compare to the proposed approaches PLS and NN and it can be qualified to

be the best tool. The NN model may not be recommended, particularly in the case of noisy data

as it induces a very high uncertainty.

The adaptive versions are implemented in the same way by using sliding windows as shown

in Diagram 2.

Note that in table 2., PLSadap, SVRadap and NNadap are the adaptive versions of the PLS,

SVR and NN, respectively.

Table 2:Indicators of the different methods
Methods STD Learning STD Prediction Observations

PLS 27.5812 47.4724 double learning

PLSadap 19.6558 21.9312 almost equivalent to learning

SVR 1.8029 14.6761 more important than learning

SVRadap 0.4082 6.4565 Not big difference

NN 26.2949 46.3315 double learning

NNadap 25.0469 34.7740 Not big difference

4. CONCLUSION

In this paper, we explored three techniques and their adaptive versions, where we present

the temperature predictions and their corresponding error estimates.The pig-iron temperature

prediction as a function of the oxygen flow rate, the oxygen purity and the hot wind flow rate

for the blast furnace process are solution of 2.16; where the results are shown in Table 2 and

Figures 2 & 3. As reported in the previous section, the adaptive approaches give better results

of the predicted error than the conventional ones in both the PLS and the SVR techniques;

however, the SVR is more competetive than the PLS. The results of predicting the temperature

of the cast iron by using the SVR approach are obtained by the use of a modified version based
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on the Vapnik algorithm [12]. An adaptive version of this latter is detailed in Algorithm 2

together with Diagram 2, and similar to the PLS case it also gives better results; however high

uncertainty is noticed. Indicators for the proposed approaches are given in Table 2 and Figure

2. Therefore, we conclude that the adaptive based model approaches are more precise and can

be recommended, more particularly they lead to a reduced uncertainties range in prediction

compare to the partial least square model because all the input changes are considered; whereas

the NN model may not be recommended, particularly in the case of noisy data. Furthermore

the models can be combined with sensitivity analysis by the use of the Monte Carlo simulation

technique.

FIGURE 2. Computed and Predicted Results for stable data
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FIGURE 3. Prediction of the pig iron temperature and Errors
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