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Abstract. In the proposed work, we present a new collocation technique based on cubic splines to solve initial-

boundary value parabolic partial differential equation. To attain fourth order accuracy, the proposed method re-

quires only three spatial grid points as compare to the requirement of five grid points in the literature, using the

collocation methods based on splines. We have used two stage Gauss Legendre method in time direction. An

analysis has been done to prove the unconditional stability of the technique. To show the better accuracy of our

method, numerical experiments are done by taking some examples from the literature. The results obtained, show

the efficiency and the order of accuracy of the technique.
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1. INTRODUCTION

In this paper, we are concerned with finding a stable and high accurate method for the ap-

proximate solution of a second order linear parabolic partial differential equation:

(1) ut = Pu+ f ,
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in a domain [a,b]× [0,T ], with the initial condition

(2) u(x,0) = ϕ(x), x ∈ [a,b],

and Dirichlet boundary conditions,

(3) u(a, t) = χ1(t) and u(b, t) = χ2(t), ∀ t ∈ [0,T ],

where Pu(x, t) = κuxx(x, t)+εux(x, t)+ηu(x, t) is a linear second order operator and κ,ε and

η are constants and κ > 0.

Collocation method is one of the popular methods used for finding the numerical solution of

ordinary differential equations (ODEs) and partial differential equations (PDEs). In the colloca-

tion method, the approximate solution for differential equation lies in an approximation space of

piecewise polynomials, with respect to the partition of the domain of the problem. Orthogonal

piecewise polynomial collocation and spline collocation methods are few of them. The choice

of spline functions as the piecewise polynomials results in a solution that is smooth at the nodes

of the partition up to a certain degree. In literature, there are two typical ways for introducing

collocation methods based on splines for the discretizing parabolic differential equations in spa-

tial direction. One of these is standard second order formulation which requires the solution of

a tridiagonal system of equations at each time step. Second way is to use a fourth order accurate

deferred-correction or extrapolated spline collocation methods, which requires the solution of

either a pentadiagonal system or two tridiagonal systems of equations at each time step. Archer

[1] proposed cubic spline collocation method for quasi linear parabolic equations, which gives

rise to fourth order pentadiagonal matrix structure. Mittal and Jain [6] used a combination of

cubic spline collocation (CSC) and Crank-Nicolson (CN) to solve a convection diffusion equa-

tion which resulted in second order accurate solution. Various methods based on splines have

been discussed to solve (1) such as cubic trigonometric B-splines [9], combination of spline

and finite element [10], cubic spline [11], quartic and quintic B-spline [12] and exponential

B-splines [13]. High order finite difference method for non linear parabolic partial differen-

tial equations are discussed in [14]. Non-polynomial cubic spline methods for the solution of

parabolic equations are presented in [15].
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In [2, 7], a combination of quadratic spline collocation (QSC) and finite difference method

(FDM) is used to solve general linear parabolic PDEs. This algorithm gives fourth order accu-

rate solution in space variable and second order accurate solution in time variable. In [4], Liu

and Wang used QSC-TG method based on QSC and two-stage Gauss method for solving linear

parabolic PDEs. The solutions obtained by this algorithm are fourth order accurate in each time

and space variable. Even though QSC-TG method gives forth order accuracy in both time and

space direction, it uses a pentadiagonal system which results in a higher computational time and

effort.

In this work, we propose a CSC-GL4 algorithm for linear parabolic PDEs which is based

on CSC method and fourth order two stage Gauss Legendre method. This algorithm gives

fourth order accuracy in both the space and time variables with minimal computational efforts.

Stability analysis is done in an analytical manner in comparison to Christara et. al. [2] and

[4], which proved stability in numerical manner. Since the proposed CSC-GL4 method uses

triadiagonal system to find the solution of parabolic equation with high order accuracy in both

time and space direction. So, it is better than QSC method in terms of computational time and

efforts.

The paper is organized in the following manner. In Section 2, fourth order the cubic spline

collocation method is proposed which gives rise to a tridiagonal structure. In Section 3, two

stage Gauss-Legendre Method (GL4 Method) of order four is presented. In Section 4, stability

of the CSC-GL4 algorithm is shown. In Section 5, numerical experiments has been done to

illustrate the effectiveness of the algorithm.

2. FOURTH ORDER CUBIC B-SPLINE COLLOCATION METHOD

Let us consider Ω = {a = x0 < x1 < x2 < .. . < xJ−1 < xJ = b} to be an equally spaced

partition of interval [a,b] with mesh spacing h and nodes x j = a+ jh, j = 0,1, . . . ,J. A cubic

spline function S over partition Ω of interval [a,b] is a function such that S∈C2[a,b] and S[x j−1,x j]

is a cubic polynomial for 1≤ j ≤ J.

In this paper, we use the collocation form of cubic B-spline to approximate the exact solution

u(x, t) of the differential equation. Any cubic spline function U(x, t) defined on the partition Ω
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can be written as a linear combination

(4) U(x, t) =
J−1

∑
j=−1

s j(t)Ψ3, j(x),

where s j(t) are time dependent parameters and {Ψ3,−1,Ψ3,0,Ψ3,1, . . . ,Ψ3, j,Ψ3,J+1} are cubic

polynomial that forms a basis for the space of all cubic spline over the partition Ω. The cubic

spline basis functions Ψ3, j(x) at the nodes are defined as (Boor[3]):

Ψ3, j(x) =
1
h3



(x− x j)
3 x j−2 ≤ x≤ x j−1

h3 +3h2(x− x j+1)+3h(x− x j+1)
2−3(x− x j+1)

3 x j−1 ≤ x≤ x j

h3 +3h2(x j+1− x)+3h(x j+1− x)2−3(x j+1− x)3 x j ≤ x≤ x j+1

(x j+2− x)3 x j+1 ≤ x≤ x j+2

0 elsewhere

(5)

The values of Ψ3, j(x) and its derivatives at different grid points obtained from (5) are given in

the table 1.

The approximate value of the solution U and its two derivatives DxU and D2
xU at the node x j

in terms of parameters s j ≡ s j(t) are as follows:

U j = s j−1 +4s j + s j+1,(6)

DxU j =
3
h
(s j+1− s j−1),(7)

D2
xU j =

6
h2 (s j−1−2s j + s j+1),(8)

for j = 0,1, . . . ,J.

Fourth order accurate approximate solution of the parabolic partial differential equation (1),

is obtained by following cubic spline collocation method

(9) P1U j +P2Ut j = f j−
εh2

12κ
fx j −

h2

12
fxx j for j = 0,1, . . . ,J,

where

P1U j =−κ

(
1+

ε2h2

12κ2 −
ηh2

12κ

)
D2

xU j− ε

(
1+

ηh2

12κ

)
DxU j−ηU j,(10)

P2U j =U j−
h2

12
D2

xU j +
εh2

12κ
DxU j,(11)
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with U = u on the boundary of the domain.

TABLE 1. Values of the spline basis function and derivatives at knots.

x Ψ3, j(x) Ψ
′
3, j(x) Ψ

′′
3, j+1(x)

x j 0 0 0

x j+1 1 3/h 6/h2

x j+2 4 0 −12/h2

x j+3 1 −3/h 6/h2

x j+4 0 0 0

To obtain the approximate solution U(x, t) at a particular grid point x j, we need to evaluate the

parameters s j(t). This can be done by using the given boundary conditions and the collocation

form (9) of the differential equation. The method (9), using equations (10)-(11) can be written

as an equation with six unknown time dependent parameters s j−1,s j,s j+1, ṡ j−1, ṡ j and ṡ j+1

where ṡ j represents the derivative of s j at the knot x j with respect to time. To get rid two extra

parameters we make use of boundary conditions. Using equations (3) and (6), we get

(12)
s−1 +4s0 + s1 = χ1(t),

sJ−1 +4sJ + sJ+1 = χ2(t).

These equations allows us to eliminate s−1,sJ+1, ṡ−1 and ṡJ+1 from the system of equations

(9). So, we get a system of J+1 equations in J+1 unknowns.

Next, we will show that the numerical solution obtained by the method (9) is of order four.

For this, let us consider a cubic spline interpolant V of u defined by

V j = u j, j = 0,1,2, . . . ,J,(13)

D2
xV j = uxx j−

h2

12
u4

x j
+O(h4), j = 0,J.(14)

Theorem 1. Let V be a cubic spline interpolation of the exact solution u ∈ C6[a,b] which

satisfies (13)-(14). Let U be as defined by equations (9)-(11). Then for 0≤ j ≤ N,

(i) V j = u j +O(h4),
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(ii) DxV j = ux j +O(h4),

(iii) D2
xV j = uxx j +O(h2),

(iv) D2
xV j = uxx j− h2

12ux4 j +O(h4),

(v) P1(V j−U j)+P2(Vt j −Ut j) = O(h4).

Proof. The proofs (i)-(iv) follows from [5].

From the equation (9), we obtain

(15) P1U j +P2Ut j = f j−
h2

12
fxx j +

εh2

12κ
fx j ,

for j = 0,1, . . . ,J. From the differential equation (1) and the equation (15), we get

P1U j +P2Ut j =ut j −
h2

12
uxxt j +

εh2

12κ
uxt j − ε

(
1+

ηh2

12
ux j

)
−κ

(
uxx j−

h2

12
ux4 j

)
−η

(
u j−

h2

12
uxx j

)
− ε2h2

12κ
uxx j,(16)

Using equations (6)-(8) and (10)-(11), we have

P1V j +P2Vt j =−η(1− h2

12
D2

x)V j−
(

κ +
ε2h2

12κ

)
D2

xV j

− ε

(
1+

ηh2

12κ

)
DxV j +

(
1− h2

12
D2

x +
εh2

12κ
Dx

)
Vt j ,(17)

The equations (16), (17) using (i)-(iv) provides us

(18) P1(V j−U j)+P2(Vt j −Ut j) = O(h4),

for all j = 0,1, . . . ,J. �

From Theorem 1, it can be observed that the CSC method (9) for the partial differential

equation (1) is fourth order accurate.

3. TWO STAGE GAUSS-LEGENDRE METHOD(GL4 METHOD)

The two-stage Gauss-Legendre method of order four (GL4) is a particular class of implicit

Runge Kutta methods. The Butcher tableau for the GL4 method is given by table 2.
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TABLE 2. Butcher tableau of GL4 Method.

0.5
(

1− 1√
3

)
1
4 0.5

(
0.5− 1√

3

)
0.5
(

1+ 1√
3

)
0.5
(

0.5+ 1√
3

)
1
4

1
2

1
2

Let ∆t be the step size in time direction so that tn = n∆t for n = 0,1, . . .. In this method,

solution of the initial value problem

(19) ċ = g(t,c),c(0) = c0,

is obtained by the formula

(20) cn+1 = cn +
∆t
2
(w1 +w2),

where, the weights w1 and w2 are calculated by

(21)
w1 = g

(
tn +0.5

(
1− 1√

3

)
,cn + ∆t

4 w1 +0.5
(

0.5− 1√
3

)
∆tw2

)
,

w2 = g
(

tn +0.5
(

1+ 1√
3

)
,cn +0.5

(
0.5+ 1√

3

)
∆tw1 +

∆t
4 w2

)
.

After the initial vector C0 has been found from the initial conditions, the approximate solution

of the differential equation (1) at any time t can be obtained using the recurrence relation (20).

The CSC method together with the GL4 method produces an error of order O(h4 +∆t4).

4. STABILITY OF CSC-GL4 METHOD

In this section, we will discuss the stability of the CSC-GL4 method (Cubic spline collocation

in space direction and two stage Gauss Legendre method in time direction). The cubic spline

collocation method given by equations (9) for the differential equation (1), in matrix form can

be written as

D2Ct = D1C+F,(22)
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where D1 and D2 are square matrices defined as follows

D1 = κ

(
1+

ε2h2

12κ2 −
ηh2

12κ

)
B2 + ε

(
1+

ηh2

12κ

)
B1 +ηB0,(23)

D2 = B0−
h2

12
B2 +

εh2

12κ
B1.(24)

Here, B0,B1 and B2 are tri-diagonal square matrices of order J + 1, given by B0 =

tridiag[141],B1 = tridiag[−3
h 0 3

h ] and B2 = tridiag[ 6
h2
−12
h2

6
h2 ]. F is a column vector of order

J + 1 corresponding to the given forcing function f and the boundary values. C is a column

vector given by

C =
(

s0(t) s1(t) · · · sJ(t)
)t
.

In homogeneous case, the two-stage cubic spline Gauss-Legendre method can be written as

(25) Cn+1 = Cn +∆t
w1 +w2

2
.

Using equations(21), the weights w1 and w2 are obtained from the equations

(26)
D2w1 = D1

(
Cn + ∆t

4 w1 +0.5
(

0.5− 1√
3

)
∆tw2

)
,

D2w2 = D1

(
Cn +0.5

(
0.5+ 1√

3

)
∆tw1 +

∆t
4 w2

)
.

The system of equations (26) can be written as

(27)

D2− ∆t
4 D1 −∆tυ1D1

−∆tυ2D1 D2− ∆t
4 D1

w1

w2

=

D1Cn

D1Cn

 ,

where υ1 = 0.5
(

0.5− 1√
3

)
and υ2 = 0.5

(
0.5+ 1√

3

)
.

From the equations (25) and (27), we get

(28) Cn+1 = Cn +
∆t
2

(
I I

)D2− ∆t
4 D1 −∆tυ1D1

−∆tυ2D1 D2− ∆t
4 D1

−1D1Cn 0

0 D1Cn

 .

Here, I is an identity matrix of order J+1. We can further write the equation (28) as

(29) Cn+1 =
1
2

(
I I

)D2− ∆t
4 D1 −∆tυ1D1

−∆tυ2D1 D2− ∆t
4 D1

−1D2 +
3∆t
4 D1 −∆tυ1D1

−∆tυ2D1 D2 +
3∆t
4 D1

Cn

Cn

 .
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Since the matrix D2 is diagonally dominant, it is invertible. So, from the equation (29) we

obtain

(30)

Cn+1 =
1
2

(
I I

) I− ∆t
4 D−1

2 D1 −∆tυ1D−1
2 D1

−∆tυ2D−1
2 D1 I− ∆t

4 D−1
2 D1

−1I+ 3∆t
4 D−1

2 D1 −∆tυ1D−1
2 D1

−∆tυ2D−1
2 D1 I+ 3∆t

4 D−1
2 D1

Cn

Cn

 .

To prove that the CSC-GL4 method is stable, it is sufficient to prove that the eigen values of

the matrix X are less than the eigen values of the matrix Y, where the matrices X and Y are

given by

(31) X =

1+ 3∆t
4 D−1

2 D1 −∆tυ1D−1
2 D1

−∆tυ2D−1
2 D1 1+ 3∆t

4 D−1
2 D1

 ,

and

(32) Y =

1− ∆t
4 D−1

2 D1 −∆tυ1D−1
2 D1

−∆tυ2D−1
2 D1 1− ∆t

4 D−1
2 D1

 .

When the mesh size increases, i.e. h→ 0 the matrix D−1
2 D1 → κB−1

0 B2. It can be easily

seen that the eigen values of the matrix B−1
0 B2 are negative. Let λ be an eigen value of the

matrix D−1
2 D1 . Then the eigen values of the matrix X corresponding to the same eigen vector

are given by the characteristic equation

(33) Λ
2−
(

2+
3∆t
2

λ

)
Λ+

(
1+

3∆t
4

λ

)2

−υ1υ2∆t2
λ

2 = 0,

and the eigen values of the matrix Y are given by the equation

(34) Λ
2−
(

2− ∆t
2

λ

)
Λ+

(
1− ∆t

4
λ

)2

−υ1υ2∆t2
λ

2 = 0.

Since Min(eig(Y)) = 1− ∆t
4 λ −∆tλ

√
υ1υ2 and the Max(eig(X)) = 1+ 3∆t

4 λ +∆tλ
√

υ1υ2.

It can be easily seen that Max(eig(X))< Min(eig(Y )). Thus the proposed CSC-GL4 method is

unconditionally stable.

5. NUMERICAL EXAMPLES

In this section, we implement the proposed CSC-GL4 method to compute the approximate

solution of some test problems. To show the accuracy of the method, we have calculated the
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maximum absolute error between the exact and approximate solution by the formula, L∞ =

max
j
|u j−U j|. Order of convergence of the proposed method is calculated using the following

formula:

Order =
log(L∞(J1)/L∞(J2))

log(J2/J1)
,

where L∞(J1) and L∞(J2) are the errors for number of grid points J1 and J2 respectively.

Example 1. Consider the test problem from Liu and Wang[4],

ut = κuxx +(2κπ
2−1)e−t/2 sinπx, (x, t) ∈ [0,1]× [0,5],

with initial condition

u(x,0) = 2sinπx, x ∈ [0,1],

and Dirichlet boundary conditions

u(0, t) = u(1, t) = 0,∀ t ∈ [0,5].

Here κ > 0 is a constant. The exact solution of this problem is

u(x, t) = 2e−t/2 sinπx.

We have calculated the approximate solution for different values of κ . At first, we choose

κ = 1 and time step ∆t = 1/1024. The errors for various values of space step sizes and the order

of the method obtained is shown in table 3. It can be seen from the tabulated values that the

errors obtained are fourth order accurate in space direction. We have also shown fourth order

accuracy in time direction for different values of time step by choosing h = 1/1024 in table 4.

A comparisons of the errors with the results obtained in [4] are also done in the tables 3 and 4.

In table 5, errors are calculated for κ = 0.5 at time T = 5 . Fourth order accuracy can be seen

for h = k.

Example 2: Let us consider the differential equation considered in [2]

ut = κuxx +(κπ
2−1)e−t sinπx, (x, t) ∈ [0,1]× [0,T ],
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TABLE 3. Comparisons of the errors for Example 1 for ∆t = 1/1024 and differ-

ent values of h.

h CSC-GL4 Liu and Wang[4]

Error Order Error Order

1/8 9.6565e-06 - 8.6200e-05 -

1/16 6.1834e-07 4.32 2.2500e-06 5.26

1/32 3.8877e-08 4.17 1.1400e-07 4.30

1/64 2.4334e-09 4.09 6.9100e-09 4.05

1/128 1.5214e-10 4.05 4.3000e-10 3.96

TABLE 4. Comparisons of the errors of Example 1 for h = 1/1024 and different

values of ∆t.

∆t CSC-GL4 Liu and Wang[4]

Error Order Error Order

1/4 1.7029e-06 - 1.84e-05 -

1/8 1.1113e-07 4.64 1.16e-06 4.70

1/16 7.1319e-09 4.32 7.26e-08 4.36

1/32 - - 4.58e-09 4.17

TABLE 5. errors and order of accuracy of Example 1 for κ = 0.5 and h = k.

h 1/8 1/16 1/32 1/64 1/128

CSC-GL4 8.6851e-06 5.5791e-07 3.5104e-08 2.1976e-09 1.3741e-10

Order - 4.32 4.20 4.09 4.04
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with the exact solution

u(x, t) = e−t sinπx.

The initial and boundary conditions are obtained from the exact solution. For κ = 1, we

compute the solution for different grid sizes and taking h = k at time T = 1. Fourth order

accuracy and errors are displayed in table 6. Comparisons with methods presented by Christara

et. al.[2] are listed in the table. In [2], the authors discussed one step (1QSC-CN) and two

step (2QSC-CN) quadratic spline collocation methods. We can also observe from the table that

the time step chosen for our method is larger in compared to the QSC-CN, which reduces the

computational time to obtain the solution at a required time level.

TABLE 6. Error comparisons with the QSC-CN methods [2] of Example 2.

h CSC-GL4 (∆t = h) QSC-CN[2]
(
∆t = 5.06

5.5 h2
)

1QSC-CN[2]
(
∆t = 5.06

5.5 h2
)

2QSC-CN[2]
(
∆t = 5.06

5.5 h2
)

Error Order Error Order Error Order Error Order

1/16 4.3777e-06 - 1.2e-05 - 2.2e-05 - 2.2e-05 -

1/32 2.7959e-07 4.15 7.3e-07 4.22 1.5e-06 3.82 1.5e-06 3.85

1/64 1.7638e-08 4.67 4.5e-08 4.11 9.6e-08 3.97 9.7e-08 3.98

1/128 1.1071e-09 4.04 2.8e-09 4.05 6.1e-09 3.99 6.1e-09 3.99

Example 3. Consider the problem

ut = κuxx + εux +ηu, (x, t) ∈ [0,1]× [0,1],

subject to the initial condition

u(x,0) = (x− x2), x ∈ [0,1],

The exact solution of the problem is given by

u(x, t) = et(x− x2).

We compute the solution for various values of κ,ε and η . First, we choose κ = 0.1,ε = 100

and η = 1. For our second computation, we choose κ = 0.1,ε = η = 0. Errors for different

values of step size, h = k are computed and fourth order of accuracy of the method is displayed
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in table 7. Graphical representation of numerical solution obtained for κ = 0.1,ε = 100, η = 1,

J = 16 is shown in figure 1.

Example 4. Consider the convection diffusion equation

ut + εux = κuxx, (x, t) ∈ [0,1]× [0,T ].

The initial condition and Dirichlet boundary conditions are considered in accordance with

the exact solution

u(x, t) = exp(αx+β t).

For our first computation, we choose α = 1.1771,β = −0.09,κ = 0.01,ε = 0.1,h = k =

0.01. We have evaluated the errors at various time levels, namely T = 1,T = 3 and T = 5 and

displayed in the table 8. The errors obtained from proposed method are compared with those of

Mittal and Jain [6] and Ismail at el.[8]. From the comparisons done in the table, we can see that

our method works better compared to Mittal and Jain [6] in every possible way but sometimes

it is less accurate than Ismail at el.[8]. However, our method is unconditionally stable compared

to conditionally stable method of Ismail at el.[8]. To show the fourth order accuracy of the

method we have calculated the errors for various and listed in table 9. Graphical representation

of numerical solution obtained is shown in figure 3.

For our second computation, we choose α = 0.02855,β = −0.0999,κ = 0.022,ε = 3.5.

Errors have been computed at various time levels for h = k = 0.01 and comparisons with the

results listed in Mittal and Jain[6] and Ismail at el.[8] have been done in table 10. We can see

that our method works better.
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TABLE 7. Error computation and order of accuracy of Example 3 at time T = 1

and various mesh size h.

h κ = 0.1,ε = 100,η = 1 κ = 0.1,ε = η = 0

Error Order Error Order

1/8 1.6771e-04 - 3.2238e-07 -

1/16 1.0182e-05 4.41 2.0366e-08 4.34

1/32 7.0246e-07 4.03 1.2873e-09 4.16

1/64 5.0242e-08 3.89 8.1027e-11 4.08

1/128 3.0903e-09 4.07 5.0841e-12 4.04

1/256 1.8116e-10 4.12 3.1845e-13 4.02

FIGURE 1. Numerical solution for κ = 0.1,ε = 100,η = 1.
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TABLE 8. Error comparison of Example 4 at various time levels for α =

1.1771,β =−0.09,κ = 0.01,ε = 0.1,h = k = 0.01.

x Proposed Method (CSC-GL4) Mittal and Jain [6] Ismail et al. [8]

T = 1 T = 2 T = 5 T = 1 T = 2 T = 5 T = 1 T = 2 T = 5

0.1 2.1958e-11 2.9077e-11 3.2798e-11 1.73e-07 2.29e-07 2.58e-07 2.22e-16 2.22e-16 3.33e-16

0.5 6.6558e-11 1.1591e-10 1.7224e-10 5.24e-07 9.13e-07 1.36e-06 8.88e-16 1.33e-15 2.44e-15

0.9 6.8137e-11 1.0267e-10 1.4288e-10 5.37e-07 8.09e-07 1.12e-06 0.00e+00 4.44e-16 8.88e-16

TABLE 9. Error comparison of Example 4 at various value of step size h with

α = 1.1771,β =−0.09,κ = 0.01,ε = 0.1.

h Error Order

1/8 2.0750e-06 -

1/16 1.2902e-07 4.37

1/32 8.0872e-09 4.18

1/64 5.0528e-10 4.09

1/128 3.1581e-11 4.05

1/256 1.9735e-12 4.03

TABLE 10. Error comparison of Example 4 for α = 0.02855,β =−0.0999,κ =

0.022,ε =−3.5,h = ∆t = 0.01.

x Proposed Method (CSC-GL4) Mittal and Jain [6] Ismail et al.[8]

T = 1 T = 2 T = 5 T = 1 T = 2 T = 5 T = 1 T = 2 T = 5

0.1 5.5511e-16 3.6637e-15 7.2164e-15 2.16e-12 1.95e-12 1.45e-12 2.56e-10 2.38e-10 5.65e-10

0.5 5.5511e-16 3.5527e-15 6.5503e-15 1.09e-11 9.88e-12 7.32e-12 8.39e-10 1.38e-409 1.91e-09

0.9 4.4409e-16 2.5535e-15 4.7740e-15 1.99e-11 1.80e-11 1.33e-11 1.33e-09 2.83e-09 3.97e-09
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FIGURE 2. Error comparison of Example 4 for h = k = 1/16 and h = k = 1/32.

FIGURE 3. Numerical solution of Example 4.

6. CONCLUSION

In this work, we proposed a new CSC-GL4 method to solve initial-boundary value parabolic

partial differential equation. A compact collocation method based on cubic splines is used in

space direction. Discretization in time direction is handled by using two stage Gauss Legendre

method. To attain high order accuracy the proposed method requires only three spatial grid

points at each time step as compare to the requirement of five grid points at each time step in

the literature, using the collocation methods based on splines. The proposed method is of order
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O(∆x4 +∆t4). The CSC-GL4 method is unconditionally stable. The numerical experiments

performed, exhibits the efficiency and accuracy of the method. Comparison analysis with the

literature shows the better accuracy with less computational efforts.
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