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1. INTRODUCTION

Lattice ordered algebraic structures were discussed by Blyth [9] and Steinberg [8]. Based

on group action dealt by Gallian [3] and Michel, Zhilinskii [5], representation theory was de-

veloped by Curtis, Reiner[2] and Steinberg [1]. This concept was studied in lattice structure

which leads to the definition of lattice ordered G-modules by Ursala, Isaac [6] and Riesz lG-

module by Sowmya, Magie and Ursala [4]. Disjoint elements in Riesz spaces were studied by

Luxemburg, Zaanen [10] and Gloden [7]. Solid space (Ideal) of a Riesz space which acts as a

black hole was also introduced in [7, 10]. In this paper, the concepts of disjoint elements and

semi solids are introduced in a Riesz lG− module.
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2. PRELIMINARIES

In this section, some basic definitions and results are reviewed.

Through out this paper, e denotes the identity element in the group G with binary operation

∗ and 0 denotes the identity element in the vector space E over the set of reals R.

Definition 2.1. [8] A partial order on a non empty set L is a binary relation on L that is

reflexive, anti-symmetric, and transitive. A partially ordered set or poset is a set in which a

partial order is defined.

Definition 2.2. [8] A Lattice L is a poset in which the infimum a∧ b and supremum

a∨b exist for any two elements a and b in L.

Definition 2.3. [9] Let (G,∗) be a group and ≤ be a partial order on it.Then G is a lattice

ordered group or an l-group if (G, ≤) is a lattice and the binary operation in G is order

preserving.That is, g ≤ h =⇒ x∗ g∗ y ≤ x∗ h∗ y for all x,y,g,h ∈ G.

Definition 2.4. [9] An l-subgroup of G is a subgroup of G which is a sublattice of G.

Definition 2.5. [9] Let G be a lattice-ordered group. The set G+ = {g ∈ G : g ≥ e} is

the positive cone of G, whose elements are termed as positive elements of G and the set

G− = {g ∈ G : g ≤ e} is the negative cone of G which contains all negative elements of G.

Definition 2.6. [9] Let G be a lattice-ordered group. Then for every g ∈ G the positive part

of g is g+ = g ∨ e ∈ G+, and the negative part is g− = g ∧ e ∈ G−. The absolute value

of g is | g |= g∨g−1 = g+ ∗ (g−)−1 and | g | ∈ G+.

Definition 2.7. [7] A real vector space V which is a poset is called an ordered vector space

if for x, y, z ∈V and 0 ≤ α ∈ R,

x ≤ y =⇒ x + z≤ y+ z and α x ≤ α y.

Definition 2.8. [7] An ordered vector space which is a lattice is a vector lattice or Riesz

space.

Definition 2.9. [7] Let E be a Riesz space. Two elements x and y in E are said to be disjoint

(denoted as x⊥ y ) if | x |∧ |y|= 0.
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Theorem 2.10. [7] Let E be a Riesz space. For x,y ∈ E,

(i): If x⊥ y, then rx⊥ y for every real number r.

(ii): If x1,x2 ⊥ y, then x1 + x2 ⊥ y.

(iii): If x0 = sup{xi : i ∈ I} and if xi ⊥ y for all i, then x0 ⊥ y.

(iv): If x⊥ y, then |x+ y|= | x |+ |y|.

Definition 2.11. [7] Let E be a Riesz space. An ideal A is a linear subspace of E such that

for x ∈ A and |y| ≤ | x | =⇒ y ∈ A.

Definition 2.12. [4] Let G be an l-group. A Riesz space E is called a Riesz lG− module

if the group action G on E denoted by g◦ x ∈ E for all g ∈ G and x ∈ E and has the

following properties

(i): e◦ x = x

(ii): (g∗h)◦ x = g◦ (h◦ x)

(iii): g◦ (rx+ sy) = r(g◦ x)+ s(g◦ y)

(iv): | g | ◦ (x∧ y) = (| g | ◦ x)∧ (| g | ◦ y)

| g | ◦ (x∨ y) = (| g | ◦ x)∨ (| g | ◦ y)

(g∧h)◦ | x |= (g◦ | x |)∧ (h◦ | x |)

(g∨h)◦ | x |= (g◦ | x |)∨ (h◦ | x |) for all g,h ∈ G, x,y ∈ E, r,s ∈ R.

Remark 2.13. [4] g ◦0 = 0 for all g ∈ G.

Example 2.14. [4] R2 is a Riesz lG− module under the action of R+, the set of positive

real numbers, where the group action is defined by r ◦ (x,y) = (rx,ry), for r ∈ R+ and

(x,y) ∈ R2.

Definition 2.15. [4] Let E be a Riesz lG− module. A vector sublattice (Riesz sub-

space) F of E is a Riesz lG− submodule or RlG−submodule of E if F itself is a

Riesz lG− module under the same action of G as that on E.

3. MAIN RESULTS

Theorem 3.1. Let E be a Riesz lG− module. Then G+ maps E+ into E+.
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Proof. Let x, y ∈ E and ĝ ∈ G+.

By condition (iv) in the definition of a Riesz lG− module, x ≤ y shows that ĝ◦ x ≤ ĝ◦ y.

Now, 0 ≤ x =⇒ 0 = ĝ◦ 0 ≤ ĝ ◦ x. Hence, ĝ ◦ x ∈ E+. �

Theorem 3.2. G+ sends a Riesz subspace (vector sublattice) to a Riesz subspace (vector

sublattice).

Proof. Let E be a Riesz lG− module and K be a Riesz subspace (vector sublattice) of E.

Then for ĝ ∈G+, we show that K
′
= {ĝ◦ x : x ∈K} is a Riesz subspace (vector sublattice) of

E. First, note that K
′

is non empty, for, 0 = ĝ ◦ 0∈K
′
. Let x, y∈K, ĝ∈G+ and r ∈R. Then

x+y, rx, x∧y, x∨y ∈ K. Now ĝ ◦ x+ ĝ ◦ y = ĝ ◦ (x+y) ∈ K
′
. Also, r(ĝ◦x) = ĝ◦ (rx) ∈ K

′
.

ĝ ◦ x ∧ ĝ ◦ y = ĝ ◦ (x ∧ y) ∈ K
′

and ĝ ◦ x ∨ ĝ ◦ y = ĝ ◦ (x ∨ y) ∈ K
′
. Thus K

′
is a Riesz

subspace (vector sublattice) of E. �

Definition 3.3. A Riesz lG− module E is said to be distributive RlG− module, if g◦ (x∧

y) = g◦ x∧g◦ y and g◦ (x∨ y) = g◦ x∨g◦ y holds for all g ∈ G.

Example 3.4. The real plane R2 is a distributive RlG− module under the action (as in

Example 2.14 ) of the group R+.

Theorem 3.5. Let E be a distributive RlG− module and K be a Riesz subspace of E. For

g ∈ G, let K
′
= {g◦ x : x ∈ K} is a Riesz subspace of E.

Proof. Since E is a distributive RlG− module , from theorem 3.2 it follows that K
′

is a

Riesz subspace of E. �

Theorem 3.6. For g ∈G, x ∈ E, | g | ◦ | x |= | | g | ◦ x |. Hence, for g ∈G+, g ◦ | x |=

| g ◦ x|.

Proof. | g |◦| x |= | g |◦(x∨(−x)) = (| g |◦x)∨(| g |◦(−x)) (by condition (iv) in the definition

of a Riesz lG− module)

= (| g | ◦ x) ∨ −(| g | ◦ x) = | | g | ◦ x |.The second result follows immediately. �

Theorem 3.7. Let x and y be two disjoint elements of E. Then g◦x and g◦y are disjoint

for all g ∈ G+.
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Proof. Let x, y ∈ E and g ∈ G+. Since x, y are disjoint, | x | ∧ |y|= 0.

Now, 0 = g◦0 = (g◦ (| x | ∧ |y|)) = (g◦ | x |)∧ (g◦ |y|) = |g◦ x| ∧ |g◦ y| using the theorem

3.6. Hence g◦ x and g◦ y are disjoint. �

Definition 3.8. Two elements x and y in a Riesz lG− module E are said to be Rlg−dis joint

denoted by x ⊥Rlg y if |g◦ x| ∧ |g◦ y| = 0 for some g ∈ G+. That is, if g◦ x and g◦ y

are disjoint for some g ∈ G+. If x and y are Rlg− dis joint for all g ∈ G+, then they are

called RlG−dis joint.

Remark 3.9. In a Riesz lG− module E, the identity element 0 is RlG− disjoint to all other

elements in E.

Remark 3.10. If x and y are disjoint (x⊥ y), then they are RlG−dis joint.

Theorem 3.11. Let E be a Riesz lG− module. Let g ∈ G+. If x and y are Rlg−dis joint,

then |g◦ (x+ y)|= |g◦ x|+ |g◦ y|.

Proof. If x and y are Rlg− dis joint, then | g ◦ x| ∧ | g ◦ y|= 0 for g ∈ G+. That is,

g ◦ x and g ◦ y are disjoint. Therefore, |g ◦ x+ g ◦ y| = |g ◦ x|+ |g ◦ y|. Hence, |g ◦ (x+ y)| =

|g◦ x|+ |g◦ y|. �

Theorem 3.12. Let x, y ∈ E and fix g ∈ G+. Let y ⊥Rlg
= {x : x⊥Rlg y} denotes the set of

all elements of E which are Rlg−dis joint to y. Then y ⊥Rlg is a linear subspace of E.

Proof. Note that y ⊥Rlg is nonempty as 0 ∈ y ⊥Rlg . Let x, z ∈ y ⊥Rlg and g ∈ G+. Then

|g◦ x| ∧ |g◦ y|= 0 and |g◦ z| ∧ |g◦ y|= 0. That is, g◦ x and g◦ z are disjoint to g◦ y. Then,

(g◦ x+g◦ z)⊥ g◦ y. Therefore, g◦ (x+ z)⊥ g◦ y. Hence x+ z ∈ y ⊥Rlg .

Let r ∈ R. Now x ⊥ y implies rx ⊥ y. Since, x and y are Rlg− dis joint, g ◦ x is

disjoint to g◦ y which in turn shows that r(g◦ x)⊥ (g◦ y). But, r(g◦ x) = g◦ (rx). Hence,

rx ∈ y ⊥Rlg . �

Theorem 3.13. Let E be a Riesz lG− module and y ∈ E. For g ∈ G+, the set of distinct

nonzero elements which are pairwise Rlg−dis joint is linearly independent.
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Proof. Let {xi : i = 1,2, . . . ,n} be a set of nonzero elements that are pairwise Rlg−dis joint.

Let x1 = r2x2 + r3x3 + . . .+ rnxn for ri ∈ R, i = 2,3, . . . ,n. From theorem 3.12, it follows

that x1 ⊥Rlg r2x2 + r3x3 + . . .+ rnxn. Then x1 ⊥Rlg x1. That is, |g ◦ x1| ∧ |g ◦ x1| = 0. Hence,

|g◦ x1|= 0. That is, g◦ x1 = 0 =⇒ x1 = 0 which contradicts the choice of elements. �

The positive cone G+ maps E+ onto E+ (3.1) . This made us to define the following.

Definition 3.14. z ∈ E+ =⇒ g◦ z ∈ E+ for all g ∈G, then G is said to be RlG− strict on z.

The l-group G is said to be RlG− strict on E, if G is RlG− strict on x for every x ∈ E+.

Theorem 3.15. Let E be a Riesz lG− module and x,y ∈ E. Then G is RlG− strict on E

if and only if x≤ y⇐⇒ g◦ x≤ g◦ y for all g ∈ G.

Theorem 3.16. Let E be a Riesz lG− module and I is an ideal of E. Let g ∈G+. Suppose

that G is RlG− strict on E. Then I
′
= {g◦ x : x ∈ I} is an ideal of E.

Proof. Theorem 3.2 shows that I
′

is a Riesz subspace of E. Now, let x ∈ I and g ∈ G+.

Then g◦ x ∈ I
′
. Choose y ∈ E such that |g◦ y| ≤ |g◦ x|, then, g◦ |y| ≤ g◦ | x |. Since G is

RlG− strict on E, |y| ≤ | x |. Since, I is an ideal, y ∈ I and thus g◦y ∈ I
′
. Thus, I

′
is an ideal

of E. �

Definition 3.17. Let E be a Riesz lG− module and S be a vector subspace of E. Then S is

called a RlG− semi solid in E if for, any g∈G+, x ∈ S,y∈ E, |g ◦y| ≤ |g ◦x| =⇒ y∈ S.

Theorem 3.18. Let E be a Riesz lG− module and D be a nonempty subset of E+. Let

D⊥Rlg
= {x : x⊥Rlg y for all y ∈ D}. Then D⊥Rlg is a RlG−semi solid in E. The set D⊥Rlg

denotes the set of all elements of E that are Rlg− disjoint to every y ∈ D.

Proof. Since 0 ∈D⊥Rlg , it is nonempty. Theorem 3.12 shows that D⊥Rlg is a vector subspace

of E.

Let x ∈ D⊥Rlg
,y ∈ D,z ∈ E and g ∈ G+. To prove D⊥Rlg is RlG−semi solid, we prove that

if x⊥Rlg y, |g◦ z| ≤ |g◦ x| =⇒ z⊥Rlg y. For that, let |g◦ z| ≤ |g◦ x|. Then |g◦ z|∧ |g◦ y| ≤

|g◦ x| ∧ |g◦ y|= 0. Therefore, |g◦ z|∧ |g◦ y|= 0. Thus, z⊥Rlg y. �

Theorem 3.19. Intersection of any two RlG−semi solids is again an RlG− semi solid.
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Proof. Let E be Riesz lG− module and I1, I2 be two RlG−semi solids in E. Then I1∩ I2

is a vector subspace of E. Let z ∈ E. Suppose x ∈ I1 ∩ I2, and |g ◦ z| ≤ |g ◦ x|. Since,

x ∈ I1 : |g ◦ z| ≤ |g ◦ x| =⇒ z ∈ I1. Since, x ∈ I2 : |g ◦ z| ≤ |g ◦ x| =⇒ z ∈ I2. Therefore,

z ∈ I1∩ I2. �

Definition 3.20. Let D be a nonempty subset of E. The intersection of RlG−semi solids in

E containing D is an RlG−semi solid in E and contains D. It is called an RlG−semi solid

generated by D. If D contains only one element, then it is called a principal RlG−semi solid.
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