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Abstract. The model under consideration is a single server multiple vacation queueing system where the vacation

is classified into two categories namely type I vacation and type II vacation. The server opts type I vacation

following non-empty busy period of providing service to at the minimum of one customer. On returning from type

I vacation if the server finds the system empty, it goes for type II vacation. In type I vacation, depending on the

environment, there are n distinct kinds of vacations. All types of vacation are vulnerable to Interruption. Each type

of vacation can be interrupted when the number of customers in the system reaches predefined thresholds, where

each vacation has a different threshold. The long run system probabilities, mean and variance of the number of

customers in the system, etc. are computed. Using Little’s formula the expression for waiting time is obtained and

numerically illustrated. An optimization problem is discussed with numerical illustration.
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1. INTRODUCTION

In queueing theory, vacation is the absence of server from the service center or the unavail-

ability of server for a random duration of time at a stretch. Occasional operation of a service
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may be economically invoking when entire time service would result in substantial server idle

time or would prevent the utilization of the server in different productive capacities. Queueing

models with vacation have been studied extensively in the past and the same has been suc-

cessfully applied in diverse areas such as manufacturing, computer/communication networks

etc. Excellent survey on the earlier works of vacation models have been reported by Doshi [1],

Takagi [2] and Tian and Zhang [3]. These paper and books provide a vast description of the

queueing systems with server vacation.

The most commonly used vacation policies are single vacation policy, multiple vacation policy

and working vacation policy. In multiple vacation policy, when the server returns from a va-

cation and finds the queue empty, it immediately takes another vacation. If there is atleast one

customer the server will start functioning according to the service policy. Zhang and Tian [4]

analysed a Geo/G/1 queue with Multiple Adaptive Vacation (MAV) where the server can take

at most a certain number (n) of vacations continuously. In a working vacation policy the server

works at a lower rate during vacation period rather than completely stopping the service during

vacation period. As the risk of loosing customers and the dissatisfaction of customers are less

during working vacation, the research interest on working vacation models grew fast. Servi

and Finn [5] were the pioneers of the concept of working vacation. Appreciable work has been

done on queue with interruption since the concept was first introduced by Levy and Yechiali

[6]. Another significant aspect is vacation interruption. It was introduced and developed by Li

and Tian [7], [8]. Zhang and Hou [9] studied an M/G/1 queue with multiple working vacation

and vacation interruption. Zhang [10], presented an analysis on the multi server vacation model

with three threshold policy.

Ibe and Isijola [11] considers a model with two types of vacations, where type I vacation is

taken after a non zero busy period of serving at least one customer and type II vacation is taken

after a zero busy period, on completing type I vacation. The distribution of both vacations are

different. The authors extend the idea in paper [12] by introducing two new concepts, partial

vacation interruption and total vacation interruption. In partial vacation interruption only type

II vacation is interrupted. The interruption to vacation occurs when the number of customers in
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the system reaches a threshold value K. In total vacation interruption, type I and type II vaca-

tions are interrupted when the number of customers in the system reaches the threshold values

K1 and K2 respectively, where K1 ≥ K2.

In almost all vacation models in literature, the focus is mainly on various vacation policies like

multiple adaptive vacation, multi server vacation, working vacation and vacation interruption.

In the model under consideration the server utilizes the vacation time to extend service to mul-

tiple entities which can be provided with available infrastructure and for server maintenance,

depending on the need of the situation. Here the service is referred as primary service and

service during vacation is referred as secondary service. During vacation time the server finds

n-number of other organizations in need of secondary service.The server chooses on among

them based on circumstances which we call as environment. On returning from the vacation if

the server finds the primary queue empty it utilizes the time for system correction and up grada-

tion which is referred as type II vacation. If the priority is for maintenance, the server will go for

maintenance instead of secondary service. Interruption occurs in the secondary service when

the queue length in the primary queue exceeds a threshold value depending on the environment.

The remaining discussions on this model is arranged as follows. Section 2 provides a de-

tailed description of the model. The analysis of the model is consolidated in section 3. An

optimization problem is discussed in section 4. Numerical illustrations are provided in section

5.

2. MODEL DESCRIPTION

The model under consideration is a single server queueing system in which arrival occurs

according to a Poisson process with parameter λ . The service time is exponentially distributed

with parameter µ . There are two type of vacations in this model. The type I vacation is taken

at the end of non-zero busy period. There are n different category of type I vacation based

on n environmental factors. These n category of vacation are numbered 1 to n based on the

descending order of duration of vacation. On returning from type I vacation, if the server finds

the queue empty, it goes for type II vacation. The type II vacation is numbered as the (n+1)th

category of vacation. The ith vacation duration is exponentially distributed with parameter γi,

1≤ i≤ n+1. At the end of a non-zero busy period, depending on the environment, the server
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opts for a vacation of ith kind with probability pi,1≤ i≤ n. When the number of customers in

the system exceeds Kn+1 during the n+1th kind of vacation, the server returns from vacation and

starts serving customers. The ith type of vacation is interrupted when the number of customers

in the queue reaches Ki, where K1 > K2 > .. . > Kn+1.

FIGURE 1. Model description

FIGURE 2. Model description

3. ANALYSIS OF THE MODEL

The state of the system is defined as (n,k), where n is the number of customers in the system

and k is the status of server:

k =


0, when service is going on ;

i, server is on the ith category of type I vacation; 1 = 1,2, . . . ,n;

n+1, server is on the n+1th category of vacation(type II).
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FIGURE 3. Model description

FIGURE 4. Model description

Let Pi,k denote the steady state probability that the system contains i customers when the server

is in the kth state. First consider the case of n = 2. From the global balance in figure:1

(1) (λ + γ1)P0,1 = µ p1P1,0,

(2) (λ + γ2)P0,2 = µ p2P1,0,

(3) λP03 = γ1P0,1 + γ2P0,2,

(4) (λ + γ3)Pk,3 = λPk−1,3, 1≤ k < K3,

(5) (λ + γ2)Pk,2 = λPk−1,2, 1≤ k < K2,

(6) (λ + γ1)Pk,1 = λPk−1,1, 1≤ k < K1.

From the local balance

(7) λ (Pk,0 +Pk,1 +Pk,2 +Pk,3) = µPk+1,0, 1≤ k < K3,
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(8) λ (Pk,0 +Pk,1 +Pk,2) = µPk+1,0, K3 ≤ k < K2,

(9) λ (Pk,0 +Pk,1) = µPk+1,0, K2 ≤ k < K1,

(10) λ (Pk,0) = µPk+1,0, k ≥ K1.

From (1) P0,1 = β1P10, From (2) P0,2 = β2P10, From (3) P0,3 = β3P10. In the above β1 =
µ p1

λ+γ1
,

β2 = µ p2
λ+γ2

and β3 = ( γ1
λ

µ p1
λ+γ1

+ γ2
λ

µ p2
λ+γ2

). (4)⇒ Pk,3 = αk
3β3P10, for 1 ≤ k ≤ K3− 1. (5)⇒

Pk,2 = αk
2β2P10, for 1≤ k ≤ K2−1.

(6)⇒ Pk,1 = αk
1β1P10, for 1≤ k ≤ K1−1.

(7)⇒ Pk,0 =

[
ρk−1 +

3

∑
i=1

ραiβi

[
ρk−1−α

k−1
i

ρ−αi

]]
P10, for 2≤ k ≤ K3.

From(8)

Pk,0 =

[
ρk−1 +

2

∑
i=1

ραiβi

[
ρk−1−α

k−1
i

ρ−αi

]
+ρ

k−K3+1
α3β3

[
ρK3−1−α

K3−1
3

ρ−α3

]]
P10,

for K3 +1≤ k ≤ K2.

From (9)

Pk,0 =

[
ρk−1 +ρα1β1

[
ρk−1−α

k−1
1

ρ−α1

]
+

3

∑
i=2

ρ
k−Ki+1

αiβi
ρKi−1−α

Ki−1
i

ρ−αi

]
P10,

for K2 +1≤ k ≤ K1.

From(10), Pk,0 = [ρk−1 +
3

∑
i=1

ρ
k−Kiαiβi

ρKi−1−α
Ki−1
i

ρ−αi
]P10, for k ≥ K1 +1.

Since the total probability equals one,
∞

∑
k=1

Pk,0 +
K1−1

∑
k=0

Pk,1 +
K2−1

∑
k=0

Pk,2 +
K3−1

∑
k=0

Pk,3 = 1

⇒ [A1 +A2 +A3 +A4]P10 = 1,

where A1 =
1

1−ρ
, A2 = ∑

3
i=1

[
ρ2αiβi
1−ρ

][
ρKi−1−α

Ki−1
i

ρ−αi

]
,

A3 = ∑
3
i=1

[
αiβiρ
ρ−αi

][
αi−α

Ki
i

1−αi
− ρ−ρKi

1−ρ

]
, A4 = ∑

3
i=1 ∑

Ki
k=1 α

k−1
i βi, P10 =

1
[A1+A2+A3+A4]

.

Also the expected number of customers in the system,

E(N) =
∞

∑
k=1

kPk,0 +
K1−1

∑
k=0

kPk,1 +
K2−1

∑
k=0

kPk,2 +
K3−1

∑
k=0

kPk,0 = [B1 +B2 +B3 +B4]P10 where

B1 =
1

(1−ρ)2 ,
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B2 =
3

∑
i=1

αiβiρ

(αi−ρ)

[
Kiα

Ki+1
i − (Ki +1)αKi

i −α2
i +2αi

(1−αi)2 − Kiρ
Ki+1− (Ki +1)ρKi−ρ2 +2ρ

(1−ρ)2

]
,

B3 =
3

∑
i=1

αiβi

(αi−ρ)

[
α

Ki−1
i −ρ

Ki−1
][ (Kiρ

2)

(1−ρ)
+

ρ2

(1−ρ)2

]
, B4 =

3

∑
i=1

βi

[
(Ki−1)αKi+1

i −Kiα
Ki
i +αi

(1−αi)2

]
.

Now consider the case of n = 3. Then [C1 +C2 +C3 +C4]P10 = 1,

where C1 =
1

1−ρ
, C2 = ∑

4
i=1

[
ρ2αiβi
1−ρ

][
ρKi−1−α

Ki−1
i

ρ−αi

]
,

C3 = ∑
4
i=1

[
αiβiρ
ρ−αi

][
αi−α

Ki
i

1−αi
− ρ−ρKi

1−ρ

]
,

C4 = ∑
4
i=1 ∑

Ki
k=1 α

k−1
i βi, P10 =

1
[C1+C2+C3+C4]

.

Also the expected number of customers in the system,

E(N) = [D1 +D2 +D3 +D4]P10 where D1 =
1

(1−ρ)2 ,

D2 =
4

∑
i=1

αiβiρ

(αi−ρ)

[
Kiα

Ki+1
i − (Ki +1)αKi

i −α2
i +2αi

(1−αi)2 − Kiρ
Ki+1− (Ki +1)ρKi−ρ2 +2ρ

(1−ρ)2

]
,

D3 =
4

∑
i=1

αiβi

(αi−ρ)

[
α

Ki−1
i −ρ

Ki−1
][ (Kiρ

2)

(1−ρ)
+

ρ2

(1−ρ)2

]
, D4 =

4

∑
i=1

βi

[
(Ki−1)αKi+1

i −Kiα
Ki
i +αi

(1−αi)2

]
.

So depending on the environmental factor, for n category of type I vacation,
Kn+1

∑
k=1

Pk,0 +
n+1

∑
i=2

Ki−1

∑
k=Ki+1

Pk,0 +
∞

∑
k=K1+1

Pk,0 +
n+1

∑
i=1

Ki−1

∑
k=0

Pk,i = 1⇒ [S1 +S2 +S3 +S4]P10 = 1.

P10 =
1

[S1+S2+S3+S4]
, where S1 =

1
1−ρ

, S2 = ∑
n+1
i=1

[
ρ2αiβi
1−ρ

][
ρKi−1−α

Ki−1
i

ρ−αi

]
,

S3 = ∑
n+1
i=1

[
αiβiρ
ρ−αi

][
αi−α

Ki
i

1−αi
− ρ−ρKi

1−ρ

]
, S4 = ∑

n+1
i=1 ∑

Ki
k=1 α

k−1
i βi, P10 =

1
[S1+S2+S3+S4]

Expected number of customers in the system,

E(N) =
Kn+1

∑
k=1

kPk,0 +
n+1

∑
i=2

Ki−1

∑
k=Ki+1

kPk,0 +
∞

∑
k=K1+1

kPk,0 +
n+1

∑
i=1

Ki−1

∑
k=0

kPk,i

= [I1 + I2 + I3 + I4]P10, where I1 =
1

(1−ρ)2 ,

I2 =
n+1

∑
i=1

αiβiρ

(αi−ρ)

[
Kiα

Ki+1
i − (Ki +1)αKi

i −α2
i +2αi

(1−αi)2 − Kiρ
Ki+1− (Ki +1)ρKi−ρ2 +2ρ

(1−ρ)2

]
,

I3 =
n+1

∑
i=1

αiβi

(αi−ρ)

[
α

Ki−1
i −ρ

Ki−1
][ (Kiρ

2)

(1−ρ)
+

ρ2

(1−ρ)2

]
,

I4 =
n+1

∑
i=1

βi

[
(Ki−1)αKi+1

i −Kiα
Ki
i +αi

(1−αi)2

]
.

Using Little’s Law E(N) = λW , expected waiting time in the system, E(W ) = E(N)
λ

.

Variance of the number of customers in the system, V (N) = E(N2)− (E(N))2.
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E(N2) = ∑
Kn+1
k=1 k2Pk,0 +

n+1

∑
i=2

Ki−1

∑
k=Ki+1

k2Pk,0 +
∞

∑
k=K1+1

k2Pk,0 +
n+1

∑
i=1

Ki−1

∑
k=0

k2Pk,i

= [R1 +R2 +R3 +R4]P10, where R1 =
(1+ρ)
(1−ρ)3 ,

R2 = ∑
n+1
i=1

αiβiρ
(αi−ρ)

[
K2

i α
Ki+2
i −(2K2

i +2Ki−1)αKi+1
i +(Ki+1)2α

Ki
i −α3

i +3α2
i −4α

(αi−1)3

−K2
i ρKi+2−(2K2

i +2Ki−1)ρKi+1+(Ki+1)2ρKi−ρ3+3ρ2−4ρ

(ρ−1)3

]
,

R3 = ∑
n+1
i=1

[
αiβiρ

2

(1−ρ)

][
α

Ki−1
i −ρKi−1

αi−ρ

][
K2

i +
2Ki

(1−ρ) +
1+ρ

(1−ρ)2

]
,

R4 = ∑
n+1
i=1 βi

[
(K2

i −2Ki+1)αKi+2
i −(2K2

i −2Ki−1)αKi+1
i +(Ki)

2α
Ki
i −α2

i −αi
(αi−1)3

]
.

4. OPTIMIZATION PROBLEM

For the effective utilization of the model discussed, optimization of the threshold values (K′i s)

is inevitable. So an optimization problem is discussed in this section and Numerical illustrations

are provided. Let C0 be the unit time revenue obtained from providing service, Ci,1≤ i≤ n+1

be the unit time revenue obtained from ith category of vacation, C be the holding cost per

unit time per customer and C
′
i be the fixed cost for switching the service from ith category of

vacation to normal service. So the expected total profit, T P = T1 +T2−C−Ĉ where, T1 is the

total revenue from service, T2 is the revenue from vacation, C is the holding cost of waiting

customers and Ĉ is the total switching cost. Here T1 =
1

µ−λ
C0,

T2 = ∑
n
i=1 piCi

[(
λ

λ+γi

)Ki Ki
λ
+∑

Ki−1
r=0

λ r

(λ+γi)r+1

]
+

∑
n
i=1

piγiCn+1
λ+γi

[(
λ

λ+γn+1

)Kn+1 Kn+1
λ

+∑
∞
s=1

s
γn+1

(γn+1)
s

(λ+γn+1)s+1

]
.

C = c.E(N).

Ĉ = ∑
n
i=1 piC

′
i

[(
λ

λ+γi

)Ki 1
Ki
+∑

Ki−1
r=1

λ rγi
(λ+γi)r+1

]
(µ−λ )+

∑
n
i=1 piC

′
i

γi
(λ+γi)

[(
λ

λ+γn+1

)Kn+1 1
Kn+1

+

(
1−
(

λ

λ+γn+1

)Kn+1
)]

(µ−λ ).

5. NUMERICAL ILLUSTRATIONS

As an example consider a model with the duration of first category of type I vacation, γ1 = 0.1,

the duration of second category of type I vacation, γ2 = 0.2, the duration of type II vacation,

γ3 = 0.3. Let p1 = 0.6 be the probability for the server proceeding to first category of type I

vacation and p2 = 0.4 be the probability for the server proceeding to second category of type I
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vacation. Then the effect of various values of traffic intensity (ρ), K1,K2, and K3 on the expected

number of customers in the system and expected waiting time are plotted below (fig.5-fig.10).
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FIGURE 5. Effect of various values of K1 and ρ on E(N) when K2 = 10,K3 = 5
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FIGURE 6. Effect of various values of K2 and ρ on E(N) when K1 = 25,K3 = 8

From fig.5, 6 and 7 we note that as ρ and K1 increase the expected number of customers in

the system E(N) also increases. Increase in ρ means either arrival rate increases or service rate

decreases. When arrival rate increases the number of customers in the system also increases.

When service rate decreases then also the number of customers in the system increases due to

slow service.

When K1 increases it is trivially seen that the number of customers in the system will increase

as the customers should wait for the return of the server from vacation until the threshold value
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FIGURE 7. Effect of various values of K3 and ρ on E(N) when K1 = 25,K2 = 10
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FIGURE 8. Effect of various values of K1 and ρ on W when K2 = 10,K3 = 5
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FIGURE 9. Effect of various values of K2 and ρ on W when K1 = 25,K3 = 8

K1 is reached.
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FIGURE 10. Effect of various values of K3 and ρ on W when K2 = 10,K1 = 25
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FIGURE 11. Effect of various values of K1 and ρ on W when K2 = 10,K3 = 5
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FIGURE 12. Effect of various values of K2 and ρ on W when K1 = 25,K3 = 8

From fig.8 and fig.9 it is clear that as ρ increases expected waiting time also increases. From

fig.10 it is clear that for small values of ρ the value of K1 does not make much difference in the
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expected waiting time. As K1 increases the expected waiting time also increases. This is due

to the delay of the server return from vacation due to the increased threshold value K1. From

fig.12, for small values of ρ , as K3 increases waiting time also increases but as the value of

ρ increases, the waiting time is greater for smaller values of K3. As the duration of vacations

decrease, expected waiting time increases with increase in the value of K3.

By assuming C0 = $250,C1 = $250,C2 = $100,C3 = $50,C = $25 and C
′
1 = C

′
2 = C

′
3 = $100

the effect of various values of traffic intensity(ρ), K1,K2, and K3 on expected profit EP are

plotted below (fig.11-fig.13).

From fig.11, 12 and fig.13 it is clear that as ρ increases the expected profit decreases, reaches

a minimum value and then begins to increase. As ρ increases either arrival rate increases or

service rate decreases. Increase in arrival rate causes frequent interruption of vacation and

switching of service which is very expensive and it reduces the profit. Also the increase in

arrival rate or the decrease in service rate reduces the chance of occurrence of vacation. This

reduces the loss due to switching of service.
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FIGURE 13. Effect of various values of K3 and ρ on W when K2 = 10,K1 = 25

For small values of λ expected profit shows convexity (fig.14). As λ increases the expected

profit decreases(fig.15).
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FIGURE 14. Effect of various values of λ&µ on EP when K2 = 10,K3 = 5
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FIGURE 15. Effect of threshold values and traffic intensity on waiting time

6. CONCLUSIONS

A multiple vacation M/M/1 queueing system with two types of vacation is considered here.

The server goes for type II vacation after a zero busy period provided there is no customer

in the system. The type II vacation is numbered as the (n+ 1)th category of vacation. All the

vacations can be interrupted depending on the threshold value Ki,1≤ i≤ n+1. If the number of

customers in the system reaches Ki,1≤ i≤ n, while the server is in the ith category of vacation

that vacation is interrupted and the server starts service. We obtained the expression for the

mean and variance of the number of customers in the system. An optimization of expected profit

is discussed. Numerical examples are graphically illustrated. The graphical representations

clearly indicates that by suitably picking out the threshold values, maximization of profit and

minimization of waiting time are viable.
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