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Abstract: A study of a transient MHD mass transfer flow of a viscous incompressible and electrically conducting 

Newtonian non-Gray optically thin fluid through a vertical circular cylinder influenced by a time dependent periodic 

pressure gradient subject to a magnetic field applied in azimuthal direction, in the presence of a frequency parameter 

and periodic wall temperature is provided. The flow, heat and mass transfer governing equations are converted into 

ordinary differential equations by imposing some suitable transformations and solved in closed form using Bessel 

functions of order zero. Graphs depict the effects of various physical parameters on concentration, velocity, 

temperature field and on the coefficient of the skin friction, mass flux across a normal suction of the cylinder and the 

rates of heat and mass transfer at surface of the cylinder in the issue. 
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1. INTRODUCTION 

MHD viscous fluid flow through pipes is important in many fields of Science and Technology, 

including Bio-mechanics, Petroleum Industry, Drainage and Irrigation Engineering and so on. 

Many authors have investigated the problems of steady and unsteady flows of viscous 

incompressible fluids through cylinders with various cross sections under various flow 

geometries and physical aspects. Some of them are Kumari and Bansal [1], Drake [2], Varma et 

al. [3], Antimirov and Kolyshkin [4], Hughes and Young [5], Sankar et al. [6], Jain and Mehta [7] 

and Globe [8.]  Several scholars, on the other hand, have looked into MHD flows and heat 

transfer in channels and circular pipes. Chamkha [9] looked at how two different applied 

pressure gradients (ramp and oscillating) affected unsteady laminar MHD flow and heat transfer 

in channels and circular pipes. Singh [10] gave an exact solution to the problem of MHD mixed 

convection periodic flow in a rotating vertical channel in the presence of heat radiation. 

Problems with MHD heat transfer and periodic wall temperature are also common. 

Israel-Cookey et al. [11] looked into MHD free convection and oscillating flow of an optically 

thin fluid surrounded by two horizontal porous parallel walls in the presence of periodic wall 

temperature. In addition, Reddy et al. [12] added periodic wall temperature to their problem. 

In the context of geothermal power generation and drilling operations, studies of free convection 

flow along a vertical or horizontal cylinder are important because the free stream and buoyancy 

induced fluid velocities are of approximately the same order of magnitude. In the presence of a 

first-order chemical reaction, Machireddy [13] found a numerical solution to investigate the 

effects of radiation on MHD heat and mass transfer flow past a moving vertical cylinder. 

Ganesan and Loganathan [14] looked at the effects of radiation and mass transfer on the 

movement of an incompressible viscous fluid through a moving vertical cylinder. The study of 

flow and heat transfer in the vertical circular cylinder is a focus of investigation due to its wide 

range of practical applications such as solar collectors, electrical machineries, cooling system for 

electronic devices and other rotating system. 

The effects of thermal radiation on heat and mass transfer are more significant in many system, 
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and they play a key role in the filtrations processes, design of spacecraft, nuclear reactors and the 

drying of porous material in textiles industries solar energy collector. Raju et al. [15] recently 

investigated the effect of thermal radiation on an unsteady free convection flow of water near 

four degree Celsius through a vertically moving porous plate by taking into account the effect of 

suction/injection. Gundagani et al. [16] investigated the effects of radiation on an unsteady MHD 

two-dimensional laminar mixed convective boundary layer flow along a vertically moving 

semi-infinite permeable plate with suction, embedded in a uniform porous medium, thus 

accounting for viscous dissipation. Rao et al.[17]  looked at how radiation influenced the 

unsteady mass transfer flow of a chemically reacting fluid through a semi-infinite vertical plate 

in the presence of viscous dissipation. Recently, Ahmed and Dutta [18] carried out an analytical 

study of a laminar unsteady MHD flow past a vertical annulus in presence of thermal radiation 

under the influence of periodic wall temperature and  pressure gradient.  N. Ahmed [19] made 

a theoretical analysis of a steady MHD  free convective flow on a vertical circular cylinder with 

Soret and Dufour effects. 

The present investigation is concerned with the study of unsteady, MHD flow of Newtonian 

non-Gray optically thin fluid through a vertical circular cylinder in the presence of frequency 

parameter, time dependent pressure gradient and periodic temperature and concentration 

maintained at the wall of the cylinder.  In the current work, such an attempt has been made. 

 

2. BASIC EQUATIONS 

The equations defining the motion of an incompressible, electrically conducting, viscous and 

radiating fluid in the presence of magnetic field are: 

Equation of continuity: 

. 0q =                                  (1) 

Momentum equation: 

( ) 2.
q

q q p q J B g
t

  
 

+  = − +  +  + 
 

            (2) 
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Energy equation:  

( ) 2. .p r

T
C q T T q

t
  

 
+  =  + −  

                 (3) 

Ohm’s law for an electrically conducting fluid: 

( )J q B=                              (4) 

Species continuity equation: 

( ) 2. M

C
q C D C

t


+  = 


                          (5) 

The nomenclature specifies all physical quantities. 

 

3. MATHEMATICAL ANALYSIS 

Consider a vertical circular cylinder of radius a with an unsteady laminar radiative flow of a 

viscous incompressible electrically conducting fluid. In Figure 1, z -axis is used as the axis of 

the cylinder in a cylindrical polar coordinate ( ), ,r z   . The fluid is influenced by a time 

dependent periodic pressure gradient as well as a magnetic field ( )0, ,0oB B=  applied in the 

azimuthal direction.  

Our investigation is limited to the following assumptions in order to idealize the mathematical 

model of the problem: 

i. Except for the density in the buoyancy force term, all fluid properties are constant. 

ii. Energy dissipation due to viscous and ohmic dissipation is insignificant. 

iii. The radiative heat flux in the vertical direction is insignificant in comparison to that 

in normal direction. 

iv. The induced magnetic field can be ignored because the magnetic Reynolds number is 

so small. 

v. The flow is parallel to the cylinder’s axis. 
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Let ( )0,0, zq V =  stand for fluid velocity, so that in ( ), ,r z   system the equation (1) becomes 

to 

0zV

z


=


 which yields ( ),z zV V r t   =                   (6) 

From equations (2) and (6), we get 

2
2 2

2

1z z z
e o z

V V Vp
H V g

t z r rr
   

     
= − + + − − 

      
           (7) 

Where, 
^

e oB H =  and 
2

2

2

1

r rr

 
 = +

  
  

In the case of a static condition, equation (7) becomes 

0 s

s

p
g

z



= − −


                            (8) 

The state equation as approximated by the classical Boussinesq approximation  

( ) ( )1s s sT T C C    = + − + − 
                           (9) 

a

  

B

  

g

  

zV 

  

( )

1

1

0, ,0o

i t

z o

i t

S S

i t

S S

B B

V V e

T T T n e

C C C n e







 

 

 

=

 =

= +

= +

  

z

  

Figure1. Physical configuration 
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Momentum equation (7) on application of the equations (8) and (9), finally reduces to 

( ) ( )
2 22*

2

1 1 e o zz z z
s s

H VV V Vp
g T T g C C

t z r rr


  

 

     
= − + + − + − + − 

      
      (10) 

Where *

sp p p  = −   

In view of the assumptions, the following reduced form of the equations (3) is  obtained: 

2

2

1 r
p

qT T T
C

t r r rr
 

    
= + − 

      
                           (11) 

Additionally, since  the cylinder is  infinite in both directions and so equation (5) becomes 

2

2

1
M

C C C
D

t r rr

   
= + 

    
                                (12) 

According to Cogley et al. [20] result, the rate of radiative heat flux in the optically thin limit for 

a non- Gray gas near equilibrium is given by the formula below:  

( )4r
s

q
I T T

r


= −


                                     (13) 

Where ( )
0

h

ww

e
I K d

T


 


 

=  
 

   

Using equation (13) in the equation (11), we arrive at 

( )
2

2

1
4p s

T T T
C I T T

t r rr
 

   
= + − − 

    
                          (14) 

The pertinent boundary conditions are as follows: 

1 1, ,

, , 0

iw t iw t iw t

z o s s s s

z

V V e T T T n e C C C n e at r a

V finite T finite C finite at r

       = = + = + = 


 = = = = 
                (15) 

The following non-dimensional quantities are added to normalize the mathematical model: 
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* 2
*

2

2

3 3

2 2

2

, , , ,

, , ,

, ,

4
Pr , ,

oz
z o

s s

s s

s s e o

p

p M

aVV a r z p a
V V r z p

a a

T T C Ct a
t

T Ca

g a g a
Gr T Gm C M H a

C Ia
N Sc

C D

  

 
  



  


 

 

 

   
= = = = = 


  − −

= = = = 


= = =




= = = 


            (16) 

The non-dimensional forms of equations (10), (12) and (14) are as follows: 

2*
2

2

1z z z
z

V V Vp
M V Gr Gm

t z r rr
 

  
= − + + − + +

  
                (17) 

2

2

1
Pr PrN

t r rr

  


  
= + −

 
                         (18) 

2

2

1 1

t Sc r rr

     
= + 

  
                              (19) 

With corresponding boundary conditions: 

1 1, , 1

, , 0

i t i t i t

z o

z

V V e n e n e at r

V finite finite finite at r

   

 

= = = = 


= = = = 
                    (20) 

 

4. METHOD OF SOLUTION 

Consider the concentration as ( ) ( ), i tr t f r e  =   so that equation (19) becomes 

2
2 2 2

2
0

d f df
r r r

drdr
+ − =                           (21) 

Where 2 i Sc =   

We substitute ( ) ( )1,
z

z ir f r f f z
i




 
= = = 

 
 in equation (21) so that we obtain a Bessel 

equation of order 0: 
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2
2 21 1

12
0

d f df
z z z f

dzdz
+ + =                           (22) 

Hence the solution of equation (22) is  

( ) ( )1 of r A J ir=                                (23) 

Where 
oJ  is the Bessel function of first kind, of order 0. 

As a result, for the concentration field, we get the following expression: 

( ) ( )1, i t

or t A I r e  =                               (24) 

Where 
oI  is zeroth order modified Bessel function of first kind. 

( )
1

1

o

n
A

I 
=   

We define ( ) ( ), i tr t g r e  =  and obtain the following expression for the temperature field 

( ) ( )2, i t

or t A I r e  =                                (25) 

Where ( )2 Pr i N = +   and 
( )
1

2

o

n
A

I 
=   

Assume the pressure gradient to be periodic function of time. 
*

i t

o

p
p e

z


− =


 and defining zV  

as ( ) ( ), i t

zV r t h r e = , the velocity of the fluid flow can be expressed as 

( ) ( ) ( ) ( )3 4 52
, i to

z o o o

p
V r t A I r A I r A I r e   



 
= + + + 
 

             (26) 

Where 2 2M i = +  

( )3 12 2 2 2 2

1 o

o

o

p Gr Gm
A V n

I      

    
= − + +   

− −     

  

2
4 2 2

GrA
A

 
=

−
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1
5 2 2

GmA
A

 
=

−
. 

 

5. MASS FLUX 

The mass flux over every normal section of the cylinder can be calculated using the formula: 

2 1 2

0 0 0 0

a

z z

r r

M V r dr d a V rdrd

 

 

    
= = = =

  = =                      (27) 

The mass flux coefficient fM  is calculated using equation (27) as follows: 

( ) ( ) ( )

1 2

0 0

3 1 4 1 5 1

1 1 1
2

2

z

r

i t o

M
M V rdrd

a

p
e A I A I A I








 

   
   

= =

= =

  
= + + +  

  

 

          (28) 

Where 1I  is modified Bessel functions of first kind, of order 1. 

 

6. SKIN FRICTION 

The Newton’s law of viscosity, as shown below, gives the viscous drag per second area on the 

cylinder’s surface: 

2

1

z z

r a r

V V

r ra


 

= =

  
= − = −   

                         (29) 

The skin friction coefficient is calculated as follows: 

( ) ( ) ( )

1
2

3 1 4 1 5 1

z
f

r

i t

V
C

r

a

e A I A I A I





     

=

− − −

 
= = −  

 = − + + 

               (30) 

Where 1I−  is modified Bessel functions of first kind, of order -1. 
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7. SHERWOOD NUMBER 

Fick’s law of mass diffusion determines the molecular mass flux 
WM  on the cylinder’s surface 

is: 

1

S

W M M

r a r

CC
M D D

r a r



= =

  
= − = −   

                    (31) 

According to equation (31), the coefficient of mass transfer on the surface of the cylinder in 

terms of Sherwood number is as follows: 

( )
1

1 1

W

rM S

i t

aM
Sh

D C r

A e I



 

=

−

 
= = −   

= −

                                (32) 

 

8. NUSSELT NUMBER 

The Fourier law of conduction  gives the heat  flux *q  from  the cylinder’s surface into the 

fluid area as follows:   

*

1

S

r a r

TT
q

r a r

 


= =

  
= − = −   

                           (33) 

The heat transfer coefficient (Nusselt number) on the cylinder’s surface is 

( )

*

1

2 1

rS

i t

q a
Nu

T r

A e I





 

=

−

 
= = −   

= −

                                (34) 

 

9. RESULTS AND DISCUSSIONS 

Numerical calculations from the current investigation are valuable from a physical standpoint. 

Variations in the temperature field, velocity field, concentration field , mass flux, Sherwood 

number, Nusselt number, coefficient of skin friction, and different flow parameters such as 

frequency parameter   , Prandtl number Pr, solutal Grashof number Gm, thermal Grashof 
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number Gr, Schmidt number Sc, magnetic parameter M are graphically depicted in Figures 2 to 

15, while the values of other quantities are chosen at random. 

In Figures 2 and 3, the temperature profiles are illustrated. These diagrams show how Pr and   

affect the temperature field. Figure 2 depicts the effect of changing the value of Pr on the 

temperature field. This figure shows that when the fluid’s thermal diffusivity is decreased, the 

flow accelerates, which may be due to the fact that low thermal diffusivity causes a 

corresponding increase in the kinetic energy of the fluid’s molecules. In addition, as shown in 

Figure 3, the frequency parameter has a tendency to lower fluid temperature. It is worth nothing 

that the fluid temperature drops as the temperature on the cylinder’s surface oscillates. As a 

result, the frequency parameter serves as a useful regulatory mechanism for preserving the 

desired temperature field. 

Figures 4 to 5 show the effects of M and Gm on fluid velocity. Figure 4 shows that increasing the 

value of the magnetic parameter M causes the fluid flow to slow down. The strength of the 

applied magnetic field is determined by the magnetic parameter. The interaction of the magnetic 

field and the fluid velocity causes the appearance of a resistive force known as Lorentz force 

when an azimuthal magnetic field is applied. The Lorentz force becomes dominant as the 

magnetic field strength increases, causing the fluid motion to slow down. Figure 5 shows that as 

the value of the solutal Grashof number Gm increases, the velocity profile rises as well. The ratio 

of a species’ buoyancy force to its viscous hydrodynamic force is defined by the solutal Grashof 

number. As a result of the large rise in species buoyancy force, an increase in Gm shows small 

viscous effects in the momentum equation, and the fluid moves freely. Thus, our observation 

from Figure 5 is confirmed by physical reality. 

The concentration profiles for   and Sc variance are shown in Figures 6 and 7. Figure 6 shows 

that as the frequency parameter’s magnitude increases, so does the fluid concentration. Figure 7 

depicts the increase in concentration field caused by an increase in Sc. It is worth noting that as 

Sc rises, mass diffusivity decreases. As a result, high mass diffusivity causes fluid concentration 

to slow down.    
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Figure 8 and 9 show the variation in mass flux with time under the influence of Gm and Pr. 

These figures exhibit a common feature that the behaviour of mass flux under the effects of these 

parameters is periodic due to the pressure gradient being periodic function of time. Furthermore, 

we can see from these graphs that the magnitude of mass flux, which measures the rate at which 

mass is transmitted, increases as Gm and Pr  increase caused by an increase in solutal buoyancy 

force and thermal diffusivity. 

Figures 10 and 11 show how changes in Gm and Gr affect skin friction on the cylinder’s surface 

as times goes on. Figures 10 and 11 shows that the direction of skin friction changes on a regular 

basis. This could be explained by the fact that the pressure gradient is periodic. Figure 11 show 

that as Gr rises, skin friction rises in the direction of fluid flow, which may be due to the 

buoyancy force acting on the fluid. However, due to the increase in solutal buoyancy force, the 

magnitude of skin friction increases as Gm increases (see Figure 10). 

Figures 12 and 13 show how Pr and   affect the rate of heat transfer at the cylinder wall as 

time passes. The rate of heat transfer (at the wall of the cylinder) is shown to change direction 

regularly in the figure 12.  Due to the Pr and   effects, the rate of heat transfer on the surface 

of the cylinder increases in both figures. 

The profiles of Sherwood number versus time t, which determines the rate of mass transfer on 

the cylinder’s surface, are shown in Figures 14 and 15. Figure 14 shows the effect of the 

frequency parameter on the rate of mass transfer into the fluid. The magnitude of the rates of 

mass transfer on the surface of the cylinder increases as the frequency parameter is increased, as 

shown in diagram 14. Because the pressure gradient is a periodic function of time, the behaviour 

of the rate of mass transfer under the influence of Sc is periodic, as shown in Figure 15. This 

graph shows an increase in the rate of mass transfer due to an increase in Sc. 
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Figure 2. Temperature versus r for variation in 

Pr when 

  16, 5, .6, 1, 2N Sc n t= = = = =

 

Figure 3. Temperature versus r for variation in   

when 

 



1Pr .71, 6, 1, 1, 2N Sc n t= = = = =

Figure 4. Velocity versus r for variation in M 

when 

1

10, 10,Pr .71, 5,

5, 1, 1, 1, 1, 2o o

Gr Gm N

Sc V P n t

= = = =

= = = = = =
  

Figure 5. Velocity versus r for variation in Gm 

when  

1

10,Pr .71, 5, 1,

5, 1, 1, 1, 1, 2o o

Gr N M

Sc V P n t

= = = =

= = = = = =
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Figure 6. Concentration versus r for variation in   

when 

  

 



1.6, 5, .6Sc n t= = =

Figure 7. Concentration versus r for variation in Sc 

when 

 15, 5, .6n t = = =

  

Figure 8. Mass flux versus t for variation in Gm when  

1

10,Pr .71, 1, 1,

1, .22, 1, 1, .01, .2o o

Gr N M

Sc V P n t

= = = =

= = = = = =
  

 

Figure 9. Mass flux versus t for variation in Pr when  

1

10, 10, 1, 1,

1, .22, 1, 1, .01, .2o o

Gr Gm N M

Sc V P n t

= = = =
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Figure 12. Nusselt number versus t for variation 

in Pr when 

 11, 4, 1N n= = =

 

Figure 10. Skin friction  versus t for variation in 

Gm when  

1

10,Pr .71, 5, 1,

1, .6, 1, 1, 1, 2o o

Gr N M

Sc V P n t

= = = =

= = = = = =
  

 

 

Figure 11. Skin friction versus t for variation in Gr 

when  

1

10,Pr .71, 5, 1,

1, .6, 1, 1, 1, 2o o

Gm N M

Sc V P n t

= = = =

= = = = = =
  

 

 

Figure 13. Nusselt number versus t  for variation 

in    when 

1Pr .71, 1, 1N n= = =
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10. CONCLUSIONS 

The following are the key findings of the previous investigation: 

• The fluid temperature falls under the influence of thermal diffusivity and frequency 

parameter. 

• The fluid velocity increases as the solutal Grashof number rises, but the opposite is true 

as the magnetic parameter rises. 

• Increase the mass diffusivity associated with the fluid flow to decrease species 

concentration. 

• The mass flux is increased by the solutal buoyancy force, while themal diffusivity has the 

opposite effect. 

• With increasing solutal and thermal Grashof numbers, the level of viscous drag in the 

fluid increases. 

• The rate of heat transfer and mass transfer increases as the frequency parameter is 

increased. 

 
 

Figure 14. Sherwood number versus t for 

variation in   when 

 



1.22, 1Sc n= =

Figure 15. Sherwood number versus t for variation in 

Sc when 

 15, 1n = =
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NOMENCLATURE 

a  radius of the cylinder, m 

B  magnetic flux density 

oB  strength of the applied magnetic field, Tesla 

C  species concentration, 3/Kmol m   

SC fluid concentration in static condition, 3/Kmol m    

pC  specific heat at constant pressure, / ( )Joule kg K   

MD  molecular mass diffusivity, 2 1m s−   

be   Planck function 

g  acceleration due to gravity, 2ms−   

Gr  thermal Grashof number 

Gm  solutal Grashof number 

J  current density vector 

 thermal conductivity, /W mK    

( )
w

K absorption coefficient  

M  magnetic parameter 

fM  mass flux 

1n  amplitude 

p  fluid pressure, 2/Newton m   

Sp  fluid pressure in static condition, 2/Newton m   

op  amplitude of the pressure gradient 

Pr  Prandtl number 
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q  velocity vector 

rq  radiative heat flux vector 

rq  radiative heat flux, 2/W m   

N  radiation parameter 

Sc Schmidt number 

t   time, s 

T  temperature, K 

ST  temperature of the fluid in static condition, K 

Greek symbols 

  dimensionless frequency parameter 

  dimensional frequency parameter, 

  coefficient of volume expansion for heat transfer, 1/ K   

  coefficient of volume expansion for mass transfer, 1/ Kmol   

  viscous dissipation of energy per unit volume, 3/J m s   

  non-dimensional temperature 

  coefficient of viscosity, /kg ms   

e  magnetic permeability, /Weber Am   

  kinematic viscosity, 2 1m s−   

  electrical conductivity, ( )
1

ohm meter
−

   

 fluid density, 3/kg m   

S  fluid density in static condition, 3/kg m   
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