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Abstract. The present paper investigates some of the properties of the induced topology on generalized approxi-

mation spaces. The properties of the induced topology are characterized in terms of the type of the binary relation

used. Also, the conditions upon which the induced topology will be an indiscrete or a discrete one are derived.

Besides, the separation axioms on the induced topological space are studied. Moreover, characterization theorems

for continuity of a function and homeomorphism are explored.
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1. INTRODUCTION

The theory of rough sets was launched by Zdzislaw Pawlak in the early 1980’s [13] in or-

der to provide a mathematical mechanism for tackling the uncertainty present in data occuring

due to the incompleteness in the available information. This is achieved by the construction of

approximations of concepts when the information at hand is incomplete. That is, a vague con-

cept is expressed in terms of two precise concepts called the lower and upper approximations.
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The mathematical framework of this theory has been enhanced further by many researchers in

various directions.

Rough set theory is apparently connected with the theory of topology and their interrelations

provide much scope for research [2, 6, 8, 10, 12, 17]. In his pioneering paper, Z. Pawlak [13]

mentioned that the family of equivalence classes on an approximation space induce a topology

on the set under consideration and the collection of equivalence classes of the rough equality

relation produce a topology on the power set of it. Both of them were quasi discrete topologies.

A study of the basic properties of the induced topology of generalized rough sets was made by

M. Kondo [7]. A comparison of the topologies induced by a reflexive relation and the trans-

missing expression of it was carried out by Z. Li [9]. J. Mahanta and P. K. Das [11] proposed the

idea of transmissing neighbourhood and investigated the properties of Yao’s Rough Set in the

topological point of view based on a reflexive relation. Z. Pei et al. [15] explored the relations

among different topologies determined by a pre-order, a reflexive relation and an inverse serial

relation. Q. Qiao [16] described the topological structure of rough sets based on reflexive and

transitive relation. The topology defined by a reflexive relation and a quasi order are proved to

be the same as the those respectively defined by its transitive closure and equivalence closure

by H. Yu and W. R. Zhan [20]. K. Anitha [2] made a generalization of rough sets in the context

of topological spaces and also studied the quasi discrete topology and π0-rough sets.

In this paper, we give a comprehensive exploration of the induced topology on generalized

approximation spaces and try to bridge the gaps in the existing studies. We obtain some char-

acterization theorems on the interconnections between the induced topology on (X ,θ) and the

binary relation θ . The conditions for the induced topology to be discrete or indiscrete are

also presented. Then, the concepts of separation axioms, continuity and homeomorphism on

generalized approximation spaces are discussed. The paper is organized as follows: section 2

provides some basic concepts of rough set theory and topology, section 3 and 4 respectively

discuss the induced topology and continuity on generalized approximation spaces and section 5

concludes the paper.
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2. PRELIMINARIES

Definition 2.1. [3] A binary relation θ on X is called (i) connected (serial) if ∀u ∈ X , ∃ v ∈ X

such that (u,v) ∈ θ , (ii) reflexive if it satisfies (u,u) ∈ θ , ∀u ∈ X , (iii) symmetric if for all

u,v ∈ X ,(u,v) ∈ θ ⇒ (v,u) ∈ θ , (iv) transitive if (u,v) ∈ θ , (v,z) ∈ θ ⇒ (u,z) ∈ θ for all

u,v,z ∈ X , (v) quasiorder if it is reflexive and transitive and (vi) equivalence if it is reflexive,

symmetric and transitive.

Definition 2.2. [5] The topological space (X ,τ) is said to be regular at the point u ∈ X , if for

a closed set G not containing u, there exist two disjoint open sets H and K such that u ∈ H and

G⊆ K. (X ,τ) is called a regular topological space if it is regular at every point in X .

Definition 2.3. [5] Let (X ,τ) and (X ′,τ ′) be topological spaces. A function f : X→ X ′ is called

continuous with respect to the topologies τ and τ ′ if the inverse image of every open set in τ ′ is

open in τ .

Theorem 2.4. [5] For the function f : X → X ′, the following conditions are equivalent.

(i) f is continuous

(ii) There exists a sub base S⊆P(X ′) for τ ′ such that f−1(V ) ∈ τ , ∀V ∈ S

(iii) For every closed subset A′ ⊆ X ′, f−1(A′) is a closed subset of X

(iv) For every A⊆ X, f (cl(A))⊆ cl( f (A))

Definition 2.5. [5] The function f : X → X ′ is labeled as a homeomorphism if both f and f−1

are continuous with respect to τ and τ ′ and f is a bijective function.

Definition 2.6. [19] The pair (X ,θ) is called a generalized approximation space if θ is an

arbitrary binary relation on X. The lower approximation and upper approximations of A ⊆ X

with respect to θ are defined as

θ(A) = {u ∈ X : θ(u)⊆ A}

θ(A) = {u ∈ X : θ(u)∩A 6= φ},

respectively, where θ(u) = {v ∈ X : (u,v) ∈ θ}.
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Proposition 2.7. [3, 19] Consider a generalized approximation space (X ,θ) and A and B be

subsets of X. Then,

(i) θ(φ) = φ

(ii) θ(X) = X

(iii) θ(A∩B) = θ(A)∩θ(B)

(iv) θ(A∩B)⊆ θ(A)∩θ(B)

(v) θ(A∪B)⊇ θ(A)∪θ(B)

(vi) θ(A∪B) = θ(A)∪θ(B)

(vii) θ(A) = [θ(AC)]C and θ(A) = [θ(AC)]C

(viii) A⊆ B⇒ θ(A)⊆ θ(B) and θ(A)⊆ θ(B).

(ix) θ(A)⊆ θ(A) if θ is connected.

(x) θ(A)⊆ A and A⊆ θ(A), iff θ is reflexive.

(xi) θ(A)⊆ θ(θ(A) iff θ is transitive.

(xii) θ(θ(A))⊆ θ(A) iff θ is transitive.

3. TOPOLOGY ON GENERALIZED APPROXIMATION SPACES

Let (X ,θ) be a generalized approximation space. In [7], it is shown that if θ is reflexive, then

(1) τθ = {A⊆ X : θ(A) = A}

is a topology on X , which is called the induced topology on (X ,θ). But, the following example

illustrates that the converse need not be true.

Example 3.1. Let X = {p,q,r,s} and θ = {(p,q),(q,r),(r, p),(s,s)}. Then, θ(p) = {q},

θ(q) = {r}, θ(r) = {p} and θ(s) = {s}. From equation (1), τθ = { /0,X ,{p,q,r},{s}}.

Obviously, τθ defines a topology on X but θ is not a reflexive relation.

It is also clear from example 3.1 that τθ can form a topology even if θ is neither a symmetric

nor a transitive relation. The following theorem presents a necessary and sufficient condition

for τθ to form a topology on X .

Theorem 3.2. τθ is a topology on X if and only if θ is connected.



4108 T. K. SHEEJA, A. SUNNY KURIAKOSE

Proof. Suppose that τθ forms a topology on X . Clearly, /0 ∈ τθ . From equation (1), θ( /0) = /0.

∴ θ(u) = /0⇒ θ(u)⊆ /0⇒ u ∈ θ( /0)⇒ u ∈ /0. This is a contradiction. Hence, θ(u) 6= /0, ∀u ∈ X .

Therefore, θ is connected.

Now, if θ is a connected relation, then θ( /0) = /0.

Again, θ(X) = X , θ(A∩B) = θ(A)∩θ(B) and θ(∪Ai)⊇ ∪iθ(Ai).

∴ A,B ∈ τθ ⇒ θ(A) = A, θ(B) = B⇒ θ(A∩B) = θ(A)∩θ(B) = A∩B. ⇒ A∩B ∈ τθ

For i ∈ Λ, Ai ∈ τθ ⇒ θ(Ai) = Ai,∀i ∈ Λ⇒ θ(∪Ai)⊇ ∪θ(Ai) = ∪Ai.

Hence, θ(∪Ai) = ∪Ai, as θ(∪Ai)⊆ ∪iAi So, ∪Ai ∈ τθ . Thus, τθ is a topology on X . �

From proposition 2.7, the property

(2) θ(A)⊆ A⊆ θ(A)

is satisfied if and only if θ is reflexive. So, it is obvious that the approximations of a set will

be a meaningful concept only if the binary relation θ on X is reflexive. Hence, only reflexive

approximation spaces are considered in the following discussion.

Lemma 3.3. On a reflexive approximation space (X ,θ), θ(u) is an open set in τθ ,∀u ∈ X if

and only if θ is transitive.

Theorem 3.4. On a reflexive approximation space (X ,θ), θ(A) = ∪{θ(a) : a ∈ X ,θ(a)⊆ A},

∀A⊆ X if and only if θ is transitive.

Proof. Assume that θ(A) = ∪{θ(a) : a ∈ X ,θ(a)⊆ A}, ∀A⊆ X . Then, ∀u ∈ X ,

(3) θ [θ(u)] = ∪{θ(a) : a ∈ X ,θ(a)⊆ θ(u)}

Again, θ(u) ∈ {θ(a) : a ∈ X ,θ(a)⊆ θ(u)} because θ(u)⊆ θ(u).

Hence, θ(u)⊆ θ [θ(u)], from equation (3).

Using equation (2), θ [θ(u)]⊆ θ(u), since θ is reflexive.

Thus θ [θ(u]) = θ(u),∀u ∈ X . It follows from lemma 3.3 that θ is transitive.

Conversely, let θ be transitive and A⊆ X . Then, u ∈ θ(A)⇒ θ(u)⊆ A

⇒ θ(u) ∈ {θ(a) : a ∈ X ,θ(a)⊆ A} ⇒ u ∈ ∪{θ(a) : a ∈ X ,θ(a)⊆ A}.

Therefore, θ(A)⊆ ∪{θ(a) : a ∈ X ,θ(a)⊆ A}.
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Now, u ∈ ∪{θ(a) : a ∈ X ,θ(a)⊆ A} ⇒ u ∈ θ(v) for some v ∈ X with θ(v)⊆ A

⇒ θ(u)⊆ A, as θ(u)⊆ θ(v), since θ is transitive⇒ u ∈ θ(A).

Hence, ∪{θ(a) : a ∈ X ,θ(a)⊆ A} ⊆ θ(A).

Thus, θ(A) = ∪{θ(a) : a ∈ X ,θ(a)⊆ A},∀A⊆ X . �

Theorem 3.5. On a reflexive approximation space (X ,θ), the family B = {θ(a) : a ∈ X} is an

open base for τθ on X if and only if θ is transitive.

Proof. A family B form an open base for τθ if and only if it is possible to express every open

set in τθ as the union of some members of B and B ⊆ τθ . Here,

(4) B = {θ(a) : a ∈ X}.

In case B form a base for τθ , then B ⊆ τθ . Hence, θ(a) is open for all a ∈ X .

Using lemma 3.3, θ is transitive.

Also, if θ is a transitive relation, using lemma 3.3, B ⊆ τθ .

From equation (1), a subset A⊆ X is an open set if and only if θ(A) = A.

It follows from theorem 3.4 that every open set can be written as the union of members of B.

Therefore, B form an open base for τθ . �

Theorem 3.6. On a reflexive approximation space, θ(A) = ∪{θ(a) : a ∈ X ,θ(a)∩A 6= /0},

∀A⊆ X if and only if θ is an equivalence relation.

Proof. If θ is an equivalence, then θ(A) = ∪{θ(a) : a ∈ X ,θ(a)∩A 6= /0}, ∀A⊆ X [14].

So, consider that

(5) θ(A) = ∪{θ(a) : a ∈ X ,θ(a)∩A 6= /0}, ∀A⊆ X

Let (u,v) ∈ θ . So, v ∈ θ(u).

Then, (v,u) /∈ θ ⇒ u /∈ θ(v)⇒ u ∈ [θ(v)]C ⇒ θ(u)∩ [θ(v)]C 6= /0

⇒ θ(u) ∈ {θ(a) : a ∈ X ,θ(a)∩ [θ(v) ] C) 6= /0} ⇒ θ(u)⊆ θ ( [θ(v) ] C), from equation 5

⇒ v ∈ θ ( [θ(v) ] C), since v ∈ θ(u)⇒ θ(v)∩ [θ(v)]C 6= /0.

This is a contradiction. Therefore, θ is symmetric.

Now, using lemma 3.3, it is enough to prove that θ(u) is open in τθ , for all u ∈ X .
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Consider v ∈ θ(u). Then, u ∈ θ(v), as θ is symmetric.

So, θ(v)* θ(u)⇒ θ(v)∩ [θ(u)]C 6= /0⇒ θ(v)⊆ θ ( [θ(u) ]C), from equation 5

⇒ u ∈ θ( [θ(u) ]C), as u ∈ θ(v)⇒ θ(u)∩ [θ(u)]C 6= /0, which is a contradiction.

Therefore, θ(v)⊆ θ(u). So, v ∈ θ [θ(u)]. Hence, θ(u)⊆ θ [θ(u)].

Thus, θ [θ(u)] = θ(u),∀u ∈ X .

Hence, θ is a transitive relation and so, it is an equivalence. �

Theorem 3.7. On a reflexive approximation space (X ,θ), θ(u) is a closed set in τθ , ∀u ∈ X if

and only if θ is an equivalence.

Proof. Assume that θ is an equivalence. Then all open set in τθ are closed and vice versa. Since

θ is transitive, for all u ∈ X , θ(u) is open in τθ using lemma 3.3. Hence, for all u ∈ X , θ(u) is

closed for all u ∈ X .

Conversely, consider that for all u ∈ X , θ(u) is a closed set.

Consider u,v ∈ X . Then, (u,v) ∈ θ ⇒ v ∈ θ(u)⇒ θ(u)∩θ(v) 6= /0, because v ∈ θ(v).

So, u ∈ θ [θ(v)]. As, θ(v) is a closed set, θ [θ(v)] = θ(v).

Therefore, u ∈ θ(v) and so (v,u) ∈ θ . Hence, θ is symmetric.

If u,v,z ∈ X , then (u,v) ∈ θ and (v,z) ∈ θ ⇒ v ∈ θ(u) and z ∈ θ(v)

⇒ v ∈ θ(u) and v ∈ θ(z), as θ is symmetric⇒ θ(u)∩θ(z) 6= /0

⇒ z ∈ θ [θ(u)]⇒ z ∈ θ(u), because θ(u) is closed.

So, θ is transitive. Hence θ is an equivalence. �

Lemma 3.8. If θ1 and θ2 are reflexive relations on X, then, the following conditions are equiv-

alent.

(i) θ1 ⊆ θ2

(ii) θ1(A)⊆ θ2(A), ∀A⊆ X

(iii) θ1(A)⊇ θ2(A), ∀A⊆ X

Theorem 3.9. If θ1 and θ2 are reflexive relations on X, then θ1 ⊆ θ2⇒ τθ2 ⊆ τθ1 .

Proof. Let θ1 ⊆ θ2, Then A ∈ τθ2 ⇔ θ2(A) = A⇔ θ1(A)⊇ A, from lemma 3.8

⇔ θ1(A) = A, from equation 2⇔ A ∈ τθ1 .

Thus, τθ2 ⊆ τθ1 . �
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Corollary 3.10. If θ1,θ2, ...,θn are reflexive relations on the set X and θ = θ1 ∩ θ2 ∩ ...∩ θn,

then τθi ⊆ τθ , for i = 1,2, ...,n.

It is obvious that the finest possible reflexive relation on the set X is θD = {(u,u) : u ∈ X}.

Also, the strongest topology on X is the discrete topology on it. At this point is it is interesting to

check whether any reflexive relation can induce the discrete topology on X and if yes, whether

it can be induced by θD. The following theorem presents an answer to this question.

Theorem 3.11. For a reflexive approximation space (X ,θ), τθ is the discrete topology on X if

and only if θ = θD = {(u,u) : u ∈ X}.

Proof. τθ is the discrete topology on X ⇔ A ∈ τθ , for all A⊆ X ⇔{u} ∈ τθ , ∀u ∈ X

⇔ θ({u}) = {u}, ∀u ∈ X ⇔ θ(u) = {u}, ∀u ∈ X ⇔ θ = {(u,u) : u ∈ X} �

In a similar way, in the following theorem, the weakest topology, namely, the indiscrete

topology is proved to be induced by θI = X×X .

Theorem 3.12. τθI is the indiscrete topology on X, where θI = X×X.

Proof. For all u ∈ X , θI(u) = X as θI = X ×X . From equation 1, it follows that τθI consists of

/0 and X only. Therefore, τθI coincides with the indiscrete topology on X . �

Unlike the case with the discrete topology, the indiscrete topology can also be obtained by

other reflexive relations also, as can be seen from the following example.

Example 3.13. Take X = {p,q,r} and let θ = {(p, p),(p,q),(q,q),(q,r),(r,r),(r, p)}. Then,

θ(a) = {p,q}, θ(q) = {q,r} and θ(r) = {p,r}. Hence, θ 6= X×X .

From equation (1), τθ = { /0,X}, the indiscrete topology on X .

Theorem 3.14. If θ is a quasi order on X, then τθ coincides with the indiscrete topology on X

if and only if θ = X×X.

Proof. From lemma 3.3, θ(u) ∈ τθ ,∀u ∈ X because θ is a quasi order.

Hence, τθ is the indiscrete topology on X ⇔ the only open sets in τθ are /0 and X

⇔ θ(u) = X , ∀u ∈ X ⇔ θ = X×X �
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Theorem 3.15. On a reflexive approximation space (X ,θ), τθ satisfies T0 separation axiom if

and only if θ = {(u,u) : u ∈ X}.

Proof. Suppose that (X ,τθ ) is T0. Let (u,v) ∈ X and u 6= v.

As (X ,τθ ) is T0, there is an open set containing u but not v or an open set containing v but

not u. Without any loss of generality, assume that A be an open set such that u ∈ A and v /∈ A.

So,θ(u)⊆ A, but v /∈ A. Therefore, v /∈ θ(u). ie; (u,v) /∈ θ , ∀ (u,v) with u 6= v.

But, since θ is reflexive, (u,u) ∈ θ ,∀u ∈ X ,

Therefore, θ = {(u,u) : u ∈ X}.

Now if θ = {(u,u) : u ∈ X}, then τθ is the discrete topology and hence it is T0, by theorem

3.11. �

Corollary 3.16. If θ is a reflexive relation on X, then τθ satisfies T1,T2,T3 or T4 separation

axioms if and only if θ = {(u,u) : u ∈ X}.

Now, the family B = {θ(a) : a ∈ X ,θ(a) ⊆ A}, constitutes an open base for the τθ on X if

and only f θ is reflexive and transitive. Also, the lower and upper approximation operators are

the interior and closure operators in τθ if and only if θ is reflexive and transitive [4]. So, we

further study the topology of induced by quasi orders. If θ is an equivalence on X , then τθ will

be a quasi-discrete topology on X [13]. Also, if θ is a reflexive and symmetric relation, then

τθ will be a quasi discrete topology [7]. However, the following example demonstrates that

symmetry is not a necessary condition for this.

Example 3.17. Take X = {p,q,r,s} and let θ = {(p, p),(p,q),(q,q),(q,r),(r,r),(r, p),(s,s)}.

Then, θ(p) = {p,q}, θ(q) = {q,r}, θ(r) = {p,r} and θ(s) = {s}. It is clear that θ is not

symmetric. From equation (1), τθ = { /0,X ,{p,q,r},{s}}. Thus, each open set in τθ is closed.

Therefore, τθ is quasi discrete.

In the next theorem,we prove that in a quasi ordered approximation space, symmetry is a

necessary and sufficient condition for τθ to be quasi discrete.

Theorem 3.18. If θ is a quasi order on X, then the topology τθ is quasi-discrete if and only if

the binary relation θ is symmetric.
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Proof. In case θ is symmetric, then it will be an equivalence and so, then topoloy τθ will be

quasi-discrete.

Conversely, assume that τθ is a quasi-discrete topology. Then, any subset A⊆ X is open if and

only if it is closed. ie; θ(A) = A if and only if θ(A) = A, as θ is a quasi order.

Let (u,v) ∈ θ , u,v ∈ X . Then, (v,u) /∈ θ ⇒ u /∈ θ(v)⇒ u ∈ [θ(v)]C.

By lemma 1, θ(v) is an open set and hence, [θ(v)]C is closed. Hence, [θ(v)]C is an open set

containing u. Therefore, θ(u)⊆ [θ(v)]C.

Hence, θ(u)∩θ(v) = /0. This is a contradiction since v ∈ θ(u)∩θ(v).

Hence, (v,u) ∈ θ and θ is symmetric. �

Corollary 3.19. If θ is a partial order on X, then the topology τθ is quasi-discrete if and only

if θ = {(u,u) : u ∈ X}.

Theorem 3.20. If θ is a quasi order on X, then, (X ,τθ ) is regular if and only if θ is symmetric.

Proof. First, assume that (X ,τθ ) is regular.

Then, (u,v) ∈ θ ⇒ v ∈ θ(u). Also, (v,u) /∈ θ ⇒ u /∈ θ(v)⇒ u ∈ [θ(v)]C.

From lemma 3.3, the set θ(v) is open in τθ . Thus, [θ(v)]C is a closed set and v /∈ [θ(v)]C.

(X ,τθ ) being regular, there exist two disjoint open sets A and B with v ∈ A and [θ(v)]C ⊆ B.

As, A is open and v ∈ A, θ(v)⊆ A. Again, u ∈ B, since u ∈ [θ(v)]C.

Hence, θ(u)⊆ B, since B is open. Therefore, v ∈ B. This is a contradiction to A∩B = /0.

Hence, (v,u) ∈ θ and θ is symmetric.

In case θ is an equivalence, θ will be reflexive and symmetric.

Hence (X ,τθ ) is regular [9]. �

4. CONTINUITY ON APPROXIMATION SPACES

In this section, the continuity of a bijective function defined on quasi ordered approximations

is discussed. Further, the largest topology on the range set X ′ which makes a bijective function

g : X → X ′ continuous in the context of quasiordered approximation spaces is obtained.
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Lemma 4.1. Let (X ,θ) and (X ′,θ ′) be two quasi ordered approximation spaces. Then, the

function g : (X ,τθ )→ (X ′,τθ ′) is continuous if and only if (u,v) ∈ θ ⇒ (g(u),g(v)) ∈ θ ′, for all

u,v ∈ X.

Proof. First, assume that g : (X ,τθ )→ (X ′,τθ ′) is continuous. Consider (u,v) ∈ θ .

As θ ′ is a transitive relation and g(u) ∈ X ′, the set θ ′[g(u)] is open in τθ ′ using lemma 3.3.

Also, u ∈ g−1[θ ′[g(u)]]. So, θ(u)⊆ g−1[θ ′[g(u)]]. Thus, v ∈ g−1[θ ′[g(u)]], since v ∈ θ(u).

Hence, g(v) ∈ θ ′[g(u)]. Therefore (g(u),g(v)) ∈ θ ′.

Now let (u,v) ∈ θ ⇒ (g(u),g(v)) ∈ θ ′,∀u,v ∈ X . Take A be an open set in τθ .

Then, u ∈ g−1(A)⇒ g(u) ∈ A⇒ θ ′[g(u)]⊆ A.

Also, v ∈ θ(u)⇒ (u,v) ∈ θ ⇒ (g(u),g(v)) ∈ θ ′, by assumption.

⇒ g(v) ∈ θ ′[g(u)]⊆ A⇒ v ∈ g−1(A). Thus, θ(u)⊆ g−1(A).

Therefore, θ [g−1(A)] = g−1(A). Hence, g−1(A) ∈ τθ ′ . Thus, g is continuous. �

Theorem 4.2. Let (X ,θ) and (X ′,θ ′) be quasi ordered approximation spaces. A function

g : (X ,τθ )→ (X ′,τθ ′) is continuous if and only if g[θ(u)]⊆ θ ′[g(u)], ∀u ∈ X.

Proof. By lemma 4.1, g : (X ,τθ )→ (X ′,τθ ′) is continuous⇔ (u,v) ∈ θ

⇔ (g(u),g(v))∈ θ ′, ∀u,v∈ X ⇔ v∈ θ(u)⇔ g(v)∈ θ ′[g(u)]⇔ g[θ(u)]⊆ θ ′[g(u)] �

Theorem 4.3. Let (X ,θ) and (X ′,θ ′) be two quasi ordered approximation spaces. Consider a

bijective function g : (X ,τθ )→ (X ′,τθ ′). Then the following statements are equivalent.

(i) g is a homeomorphism

(ii) g[θ(A)] = θ ′[g(A)],∀A⊆ X.

(iii) g[θ(A)] = θ ′[g(A)],∀A⊆ X

Proof. First let g be a homeomorphism. Then, g and g−1 will be continuous.

So, v ∈ g[θ(A)]⇒ v = g(u), for some u ∈ θ(A).

⇒ v = g(u), for some u ∈ X , with θ(u)∩A 6= /0.

Let x ∈ θ(u)∩A. Then, (u,x) ∈ θ and x ∈ A. Since g is a continuous bijection, (g(u),g(x)) ∈ θ ′

by lemma 4.1. Also, g(x) ∈ g(A). ie;g(x) ∈ θ ′[g(u)] and g(x) ∈ g(A).

As, v = g(u), we have, g(x) ∈ θ ′(v)∩g(A). Hence, θ ′(v)∩g(A) 6= /0. Therefore, v ∈ θ ′ [g(A)].
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Thus, g[θ(A)]⊆ θ ′[g(A)]. Also, v ∈ θ ′[g(A)]⇒ θ ′(v)∩g(A) 6= /0.

Let z ∈ θ ′(v)∩g(A). Then, (v,z) ∈ θ ′ and z ∈ g(A). ie;(v,z) ∈ θ ′, z = g(y), for some y ∈ A.

Thus, (g(u),g(y)) ∈ θ ′. So, (u,y) ∈ θ , as g−1 is continuous. So, y ∈ θ(u). Also, y ∈ A.

Thus, y ∈ θ(u)∩A. Hence, θ(u)∩A 6= /0. Thus, u ∈ θ(A). Therefore, v ∈ g[θ(A).

So, θ ′[g(A)]⊆ g[θ(A)]. Therefore, g[θ(A)] = θ ′[g(A)].

Thus (i)⇒ (ii).

Now assume (ii). Since g is a bijection, g(AC) = [g(A)]C,∀A⊆ X .

Also, by the property of approximations, [θ(AC)]C = θ(A).

Then, g(θ(A)) = g[θ(AC)]C] = [g[θ(AC)]]C = [θ ′[g(AC)]]C = [θ ′[g(A)C)]]C = θ ′[g(A)].

Thus (ii)⇒ (iii).

Again, suppose that g[θ(A)] = θ ′ [g(A)],∀A⊆ X . Take A be an open set in τθ ′ .

Then θ ′(A) = A. Consider g−1(A). Then, g[θ [g−1(A)]] = θ ′[g[g−1(A)]] = θ ′(A)] = A.

So, θ [g−1(A)] = g−1(A). Hence, g−1(A) ∈ τθ . Therefore g is continuous.

Now consider B ∈ τθ . Then, θ(B) = B. Also, θ ′[g(B)] = g[θ(B)] = g(B).

Therefore, g(B) is open in τθ ′ . Hence g−1 is continuous. So, g is a homeomorphism.

Thus (iii)⇒ (i). This completes the proof. �

Theorem 4.4. If the function g : X→X ′ is bijective and (X ,θ) is a quasi ordered approximation

space, then g defines a quasi order θ ′g on X ′ such that g : (X ,τθ )→ (X ′,τθ ′g) is a homeomor-

phism.

Proof. Consider the relation θ ′g on X ′ defined by

(6) (u,v) ∈ θ ⇔ (g(u),g(v)) ∈ θ
′
g

As g is a bijective function, ∀u′ ∈ X ′, ∃u ∈ X such that g(u) = u′.

Also, (u,u) ∈ θ since θ is reflexive. Using equation 6, (u′,u′) = (g(u),g(u)) ∈ θ ′g,∀u′ ∈ X ′.

Also, (u′,v′) ∈ θ ′g, (v′,z′) ∈ θ ′g⇒ (g(u),g(v)) ∈ θ ′g, (g(v),g(z)) ∈ θ ′g.

From equation 6, (u,v) ∈ θ and (v,z) ∈ θ . Hence, (u,z) ∈ θ as θ is transitive.

So, (g(u),g(z)) ∈ θ ′g. That is, (u′,z′) ∈ θ ′g. Hence, θ ′g is transitive.

Therefore, (X ′,θ ′g) is a quasi ordered approximation space.
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From lemma 4.1 and equation (6) it follows that both g and g−1 are continuous with respect to

(X ,τθ ) and (X ′,τθ ′g). Therefore g is a homeomorphism. �

Corollary 4.5. If (X ,θ) is a quasi ordered approximation space, and g : X → X ′ is bijective,

then g determines a quasi order θ ′g on X ′ such that τθ ′g is the strongest topology on X ′ that makes

g continuous.

Proof. The relation θ ′g on X ′ defined by the equation (6) makes g continuous with respect to

(X ,τθ ) and (X ′,τθg).

Now, assume that τ is a topology on X ′ such that g : (X ,τθ )→ (X ,τ) is continuous. If A ∈ τ ,

then g−1(A) ∈ τθ . Consider θg(u′) for u′ ∈ A.

Then, v′ ∈ θg(u′)⇒ (u′,v′) ∈ θg⇒ (g(u),g(v)) ∈ θg, for u,v ∈ X , since g is a bijection

⇒ (u,v) ∈ θ , from equation (8)⇒ v ∈ θ(u), where u ∈ g−1(A)

⇒ v ∈ g−1(A), as g−1(A) ∈ τθ ⇒ g(v) ∈ A⇒ v′ ∈ A.

So, θg(u′)⊆ A. Therefore, A⊆ θg(A). Hence, θg(A) = A. Therefore, A ∈ τθg . So, τ ⊆ τθg �

5. CONCLUSION

The concept of approximation spaces is closely related to the concept of topological spaces

and many studies have been conducted on this point of view. In the present paper, an exploratory

discussion of the properties of the topology induced by rough set approximations on generalized

approximation space with respect to the type of binary relation used is conducted. Also, many

characterization theorems are presented on this aspect. The continuity of functions defined on

generalized approximation spaces are also investigated and necessary and sufficient conditions

for a function to be continuous and homeomorphism are obtained.
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