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Abstract. The correlation of rough set theory with topology has been a captivating field of research since the

inception of this relatively new theory. However, there has not been much study related to rough topology. In the

present paper, the topological definition of continuity of a function is extended to rough topological spaces. The

concept of rough continuity is defined and the properties are explored.
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1. INTRODUCTION

At present, the rough set theory, initiated by Zdzislaw Pawlak in 1982 [12], has become a

promising realm of research in various theoretical and applicational perspectives [3, 4, 5, 22,

25]. From the beginning itself, this theory has been constantly being correlated with topology

in many ways. Several authors studied the topological properties of rough set approximations

[2, 7, 8, 26, 10, 14, 15, 23]. A few others defined rough set approximations on topological

spaces [1, 9, 17, 18]. The topological framework of rough sets has provided a solid basis for

information processing and knowledge discovery [17, 20, 21].
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Even though the topological properties of rough set approximations has been investigated

extensively, only a few studies have been conducted on the concept of rough topology. Q. Wu

et al. [21] used a metric to define rough topology on a rough set and then generalized it to

topological spaces. M. L. Thivagar et al. [20] defined rough topology on a subset of X as the

family consisting of the universal set, the null set, the lower and upper approximations and the

boundary region of the subset. B. P. Mathew and S. J. John [11] defined a pair of topologies

of exact subsets of the lower and upper approximations of a rough set as a rough topology on

that rough set. M. Ravindran and A. J. Divya [16] studied compactness, connectedness and

the separation axioms on such rough topological spaces. But neither of them considered rough

topology as a rough subset of the power set of X . In [19], the present authors studied the ap-

proximations of subfamilies of P(X) and proposed a new definition of θ≈-rough topology on an

approximation space using the rough subsets of the extended approximation space. Analogous

to the definition of a rough set, which is a pair of subsets of X , a rough topology is defined as a

pair of subfamilies of the power set P(X).

In this paper, the rough image and inverse rough image of rough sets under a function are

defined and the properties are explored. Further, the concept of θ≈-rough continuity is defined

in line with the topological definition of continuity of a function. Moreover, it is proved that

the discrete rough topology on the approximation space makes each function rough continuous.

The organization of the paper is as follows: section 2 presents some of the basic definitions

and propositions related to rough topological spaces, section 3 introduces θ≈-rough continuous

functions and discusses its properties and section 4 gives the conclusion.

2. PRELIMINARIES

Let X be a non-empty set of objects and θ be an equivalence relation on X .

Definition 2.1. [12] The pair (X ,θ) is called an approximation space. The lower approxima-

tion and upper approximation of A ⊆ X defined by θ are given by θ(A) = {u ∈ X : [u]
θ
⊆ A}

and θ(A) = {u ∈ X : [u]
θ
∩A 6= φ} respectively, where [u]

θ
represents the equivalence class

containing u.
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Definition 2.2. [12] The pair (A,B) ∈ P(X)×P(X) is called a rough set on (X ,θ) if and only

if ∃H ⊆ X such that θ(H) = A and θ(H) = B.

A rough set is denoted by θ(A) = 〈θ(A),θ(A)〉. The collection of all rough sets on (X ,θ) is

denoted by RS(X).

Definition 2.3. [12] The relation θ≈ on the power set P(X) given by (A,B) ∈ θ≈ if and only if

θ(A) = θ(B) and θ(A) = θ(B), ∀A,B ∈ P(X) is called the rough equality relation on P(X).

Proposition 2.4. [12] The relation θ≈ is an equivalence relation on P(X).

Definition 2.5. [13] The rough sets θ(A) = θ(B) if and only if θ(A) = θ(B) and θ(A) = θ(B)

Definition 2.6. [13] A rough set θ(A) is contained in θ(B) if θ(A)⊆ θ(B) and θ(A)⊆ θ(B)

Definition 2.7. [24] The rough union and intersection of the rough sets θ(A) and θ(B) are

respectively defined as

θ(A)dθ(B) = 〈θ(A)∪θ(B),θ(A)∪θ(B)〉(1)

θ(A)eθ(B) = 〈θ(A)∩θ(B),θ(A)∩θ(B)〉(2)

Definition 2.8. [24] The rough complement of 〈θ(A),θ(A)〉 is given by

〈θ(A),θ(A)〉{ = 〈(θ(A))C,(θ(A))C〉= θ(AC)

Definition 2.9. [19] The θ≈ -lower and upper approximations of the sub family A ⊆ P(X) are

respectively given by

θ≈(A) = {H ∈ P(X) : [H]
θ≈
⊆A}(3)

θ≈(A) = {H ∈ P(X) : [H]
θ≈
∩A 6= /0}(4)

Definition 2.10. [19] Let T be a subfamily of P(X). If θ≈(T) and θ≈(T) both form topologies

on X , then, θ≈(T) = 〈θ≈(T),θ≈(T)〉 is said to be a θ≈-rough topology on X . Also, (X ,θ≈(T))

is called a θ≈-rough topological space.

Definition 2.11. [19] The rough set θ(A) = 〈θ(A),θ(A)〉, where A⊆ X is said to be a θ≈-rough

open set if θ(A) is an open set in θ≈(T) and θ(X) is an open set in θ≈(T).



ON ROUGH CONTINUITY 5159

Theorem 2.12. [19] The family of all θ≈-rough open sets in (X ,θ≈(T)), denoted by TT, forms a

topology on P(U)×P(U) with respect to the operations of rough union and rough intersection.

Definition 2.13. [19] Let τD represent the discrete topology on X . Any θ≈-rough topology on

X which is equivalent to θ≈(τD) is called a discrete θ≈-rough topology on X .

Proposition 2.14. [19] θ≈(τθ ) = τθ = θ≈(τθ ), where τθ is the topology on X induced by θ .

Hence, 〈τθ ,τθ 〉 is a θ≈-rough topology on X in which every rough set is θ≈-rough open. Also,

〈τθ ,τθ 〉 is a discrete θ≈ topology.

3. θ≈-ROUGH CONTINUITY

Consider two approximation spaces (X ,θ) and (X ′,θ ′) and a function g from X to X ′. Let

θ(A) = 〈θ(A),θ(A)〉 be a rough set on (X ,θ). Then, its image under g ie; 〈g(θ(A)),g(θ(A))〉

need not be a rough set on (X ′,θ ′). Similarly, the inverse image of θ ′(A′) = 〈θ ′(A′),θ ′(A′)〉 ie;

〈g−1(θ ′(A′)),g−1(θ ′(A′))〉 need not be a rough set on (X ,θ). So, the concept of rough image

and inverse rough image of a rough set under g is introduced in the following definitions.

Definition 3.1. The rough image of a rough set θ(A) on (X ,θ) under g : X → X ′ is defined by

(5) g(θ(A)) = e{θ ′(A′) ∈ RS(X ′) : g(θ(A))⊆ θ
′(A′), g(θ(A))⊆ θ ′(A′)}

Definition 3.2. The inverse rough image of a rough set θ ′(A′) on (X ′,θ ′) under g is given by

(6) g−1(θ ′(A′)) = d{θ(A) ∈ RS(X) : g−1(θ ′(A′))⊇ θ(A), g−1(θ ′(A′))⊇ θ(A)}

Example 3.3. Let X = {a,b,c,d} and X/θ = {{a,b},{c},{d}}. Then,

P(X)/θ≈ = {{ /0},{X},{{a},{b}},{{c}},{{d}},{{a,c},{b,c}},{{a,d},{b,d}},{{a,b}},

{{c,d}},{{a,b,c}},{{a,b,d}},{{a,c,d},{b,c,d}}}.

Now, each equivalence class determines a rough set on (X ,θ) and so,

RS(X) = {〈 /0, /0〉,〈X ,X〉,〈 /0,{a,b}〉,〈{c},{c}〉,〈{d},{d}〉,〈{c},{a,b,c}〉,〈{d},{a,b,d}〉,

〈{a,b},{a,b}〉,〈{c,d},{c,d}〉,〈{a,b,c},{a,b,c}〉,〈{a,b,d},{a,b,d}〉,〈{c,d},X〉}.

Take X ′ = {p,q,r,s, t} and X ′/θ ′ = {{p,q},{r,s},{t}}.Then,

P(X ′)/θ ′≈ = {{ /0},{X ′},{{p},{q}},{{r},{s}},{{t}},{{p,q}},{{r,s}},{{p, t},{q, t}},

{{r, t},{s, t}},{{p,r},{p,s},{q,r},{q,s}},{{p,q, t}},{{r,s, t}},{{p,q,r},{p,q,s}},
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{{p,r, t},{p,s, t},{q,r, t},{q,s, t}},{{p,r,s},{q,r,s}},{{p,q,r, t},{p,q,s, t}},

{{p,r,s, t},{q,r,s, t}},{{p,q,r,s}}}.

RS(X ′) = {〈 /0, /0〉,〈X ′,X ′〉,〈 /0,{p,q}〉,〈 /0,{r,s}〉,〈{t},{t}〉,〈{p,q},{p,q}〉,〈{r,s},{r,s}〉,

〈{t},{p,q, t}〉,〈{t},{r,s, t}〉,〈 /0,{p,q,r,s}〉,〈{p,q, t},{p,q, t}〉,〈{r,s, t},{r,s, t},〉,

〈{p,q},{p,q,r,s}〉,〈{t},X ′〉,〈{r,s},{p,q,r,s}〉,〈{p,q, t},X ′〉,〈{r,s, t},X ′〉,

〈{p,q,r,s},{p,q,r,s}〉}.

Consider the function g : X → X ′ defined by g(a) = p,g(b) = q,g(c) = r,g(d) = s and the

rough set θ(A) = 〈{c},{a,b,c}〉. Then, g({c}) = {r} and g({a,b,c}) = {p,q,r}.

But, the pair 〈{r},{p,q,r}〉 is not a rough set on (X ′,θ ′).

From definition 3.1, g(θ(A)) = 〈{r,s}, p,q,r,s}〉.

Take θ ′(A′) = 〈{p,q},{p,q,r,s,}〉. Then, g−1({p,q}) = {a,b} and g−1({p,q,r,s}) = X .

In this case also, the pair 〈{a,b},X〉 is not a rough set on (X ,θ).

From definition 3.2, g−1(θ ′(A′)) = 〈{a,b},{a,b}〉.

Obviously, g(〈θ(A),θ(A)〉)= 〈g(θ(A)),g(θ(A))〉, if 〈g(θ(A)),g(θ(A))〉 is a rough set. Also,

g−1(〈θ ′(A′),θ ′(A′)〉) = 〈g−1(θ ′(A′)),g−1(θ ′(A′))〉 if 〈g−1(θ ′(A′)),g−1(θ ′(A′))〉 forms a rough

set on (X ,θ).

Theorem 3.4. Let g be be a function from (X ,θ) to (X ′,θ ′). Then, for all 〈θ(A),θ(B)〉 ∈ RS(X)

and 〈θ ′(A′),θ ′(B′)〉 ∈ RS(X ′),

(i) g(〈 /0, /0〉) = 〈 /0, /0〉

(ii) g−1(〈 /0, /0〉) = 〈 /0, /0〉

(iii) g−1(〈X ′,X ′〉) = 〈X ,X〉

(iv) θ(A)⊆ θ(B)⇒ g(θ(A))⊆ g(θ(B))

(v) θ ′(A′)⊆ θ ′(B′)⇒ g−1(θ ′(A′))⊆ g−1(θ ′(B′))

(vi) g(θ(A))⊆ θ ′(A′)⇔ θ(A)⊆ g−1(θ ′(A′))

Proof. Let 〈θ(A),θ(B)〉 ∈ RS(X) and 〈θ ′(A′),θ ′(B′)〉 ∈ RS(X ′).

(i) Because g( /0) = /0 and 〈 /0, /0〉 is a rough set on (X ′,θ ′), we get g(〈 /0, /0〉) = 〈 /0, /0〉.

(ii) g−1(〈 /0, /0〉) = 〈 /0, /0〉, as g−1( /0) = /0 and 〈 /0, /0〉 is a rough set on (X ,θ).
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(iii) g−1(X ′) = X and 〈X ,X〉 is a rough set on (X ,θ).

Thus, g−1(〈X ′,X ′〉) = 〈X ,X〉.

(iv) θ(A)⊆ θ(B)⇒ θ(A)⊆ θ(B),θ(A)⊆ θ(B)⇒ g[θ(A)]⊆ g[θ(B)], g[θ(A)]⊆ g[θ(B)].

So, g(θ(B))⊆ θ ′(A′) and g(θ(B))⊆ θ ′(A′)}⇒ g(θ(A))⊆ θ ′(A′) and g(θ(A))⊆ θ ′(A′)}.

Therefore, {θ ′(A′) : g(θ(B))⊆ θ ′(A′), g(θ(B))⊆ θ ′(A′)} forms a subfamily of the family

{θ ′(A′) : g(θ(A))⊆ θ ′(A′), g(θ(A))⊆ θ ′(A′)}.

From definition 3.1, it follows that g(θ(A))⊆ g(θ(B)).

(v) θ ′(A′)⊆ θ ′(B′)⇒ θ ′(A′)⊆ θ ′(B′), θ ′(A′)⊆ θ ′(B′)

⇒ g−1[θ ′(A′)]⊆ g−1[θ ′(B′)], g−1[θ ′(A′)]⊆ g−1[θ ′(B′)].

So, θ(A)⊆ g−1(θ ′(A′)) and θ(A)⊆ g−1(θ ′(A′))}

⇒ θ(A)⊆ g−1(θ ′(B′)) and θ(A)⊆ g−1(θ ′(B′))}.

Hence, {θ(A) : g−1(θ ′(A′))⊇ θ(A), g−1(θ ′(A′))⊇ θ(A)} forms a subfamily of the family

{θ(A) : g−1(θ ′(B′))⊇ θ(A), g−1(θ ′(B′))⊇ θ(A)}.

Therefore, by definition 3.2, g−1(θ ′(A′))⊆ g−1(θ ′(B′)).

(vi) From definition 3.1, g(θ(A))⊆ θ ′(A′)⇔ g[θ(A)]⊆ θ ′(A′) and g[θ(A)]⊆ θ ′(A′)

⇔ θ(A)⊆ g−1{θ ′(A′)} and θ(A)⊆ g−1{θ ′(A′)}

⇔ θ(A)⊆ g−1〈θ ′(A′),θ ′(A′)〉, from definition 3.2. �

Theorem 3.5. Let g be be a function from (X ,θ) to (X ′,θ ′). Then,

(i) g(θ(A)dθ(B)) = g(θ(A))dg(θ(B))

(ii) g(θ(A)eθ(B))⊆ g(θ(A))eg(θ(B))

(iii) g−1(θ ′(A′)dθ ′(B′))⊇ g−1(θ ′(A′))dg−1(θ ′(B′))

(iv) g−1(θ ′(A′)eθ ′(B′)) = g−1(θ ′(A′))eg−1(θ ′(B′))

(v) g−1(θ ′(A′C))⊆ [g−1(θ ′(A′))]C.

Proof. (i) Let θ ′(Z′) = g(θ(A)dθ(B)) = g(〈θ(A)∪θ(B),θ(A)∪θ(B)〉).

Then, g(θ(A)∪θ(B))⊆ θ ′(Z′) and g(θ(A)∪θ(B))⊆ θ ′(Z′).

ie; g(θ(A))∪g(θ(B))⊆ θ ′(Z′) and g(θ(A))∪g(θ(B))⊆ θ ′(Z′)

Hence, g(θ(A))⊆ θ ′(Z′), g(θ(B))⊆ θ ′(Z′), g(θ(A))⊆ θ ′(Z′) and g(θ(B))⊆ θ ′(Z′).

So, g(θ(A))⊆ θ ′(Z′) and g(θ(B))⊆ θ ′(Z′). Therefore, g(θ(A))dg(θ(B))⊆ θ ′(Z′).

Now, let g(θ(A)) = θ ′(A′) and g(θ(B)) = θ ′(B′).
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Then, g[θ(A)]⊆ θ ′(A′), g[θ(A)]⊆ θ ′(A′), g[θ(B)]⊆ θ ′(B′) and g[θ(B)]⊆ θ ′(B′).

So, g(θ(A))∪g(θ(B))⊆ θ ′(A′)∪θ ′(B′) and g(θ(A))∪g(θ(B))⊆ θ ′(A′)∪θ(B′).

Hence, g[θ(A)∪θ(B)]⊆ θ ′(A′)∪θ ′(B′) and g[θ(A)]∪θ(B)]⊆ θ ′(A′)∪θ ′(B′).

Also, 〈θ ′(Z′),θ ′(Z′)〉 is the smallest rough set having this property.

So, 〈θ ′(Z′),θ ′(Z′)〉 ⊆ 〈θ ′(A′)∪θ ′(B′),θ ′(A′)∪θ ′(B′)〉.

ie; 〈θ ′(Z′),θ ′(Z′)〉 ⊆ 〈θ ′(A′),θ(A′)〉d 〈θ ′(B′),θ(B′)〉.

Thus, θ ′(Z′)⊆ g(θ(A))dg(θ(B)). Therefore, g(θ(A)dθ(B)) = g(θ(A))dg(θ(B))

(ii) Let θ ′(W ′) = g(θ(A)eθ(B)), g(θ(A)) = θ ′(A′) and g(θ(B)) = θ ′(B′).

Then, g[θ(A)]⊆ θ ′(A′), g[θ(A)]⊆ θ ′(A′), g[θ(B)]⊆ θ ′(B′) and g[θ(B)]⊆ θ ′(B′).

So, g[θ(A)]∩g[θ(B)]⊆ θ ′(A′)∩θ ′(B′) and g[θ(A)]∩g[θ(B)]⊆ θ ′(A′)∩θ ′(B′).

Hence, g[θ(A)∩θ(B)]⊆ θ ′(A′)∩θ ′(B′) and g[θ(A)]∩θ(B)]⊆ θ ′(A′)∩θ ′(B′).

Also, 〈θ ′(W ′),θ ′(W ′)〉 is the smallest rough set having this property.

Thus, 〈θ ′(W ′),θ ′(W ′)〉 ⊆ 〈θ(A′)∩θ(B′),θ(A′)∩θ(B′)〉= θ ′(A′)eθ ′(B′).

ie; 〈θ ′(W ′),θ ′(W ′)〉 ⊆ g(θ(A))eg(θ(B))

Therefore, g(θ(A)eθ(B))⊆ g(θ(A))eg(θ(B))

(iii) Let θ(Z) = g−1[θ ′(A′)dθ ′(B′)], θ(A) = g−1(θ ′(A′)) and θ(B) = g−1(θ ′(B′)). Then,

g−1[θ ′(A′)]⊇ θ(A), g−1[θ ′(A′)]⊇ θ(A), g−1[θ ′(B′)]⊇ θ(B) and g−1[θ ′(B′)]⊇ θ(B).

So, g−1[θ ′(A′)]∪g−1[θ ′(B′)]⊇ θ(A)∪θ(B) and g−1[θ ′(A′)]∪g−1[θ ′(B′)]⊇ θ(A)∪θ(B).

Hence, g−1[θ ′(A′)∪θ ′(B′)]⊇ θ(A)∪θ(B) and g−1[θ ′(A′)]∪θ ′(B′)]⊇ θ(A)∪θ(B).

Also, 〈θ(Z),θ(Z)〉 is the largest rough set having this property.

Hence, 〈θ(Z),θ(Z)〉 ⊇ 〈θ(A)∪θ(B),θ(A)∪θ(B)〉= θ(A)dθ(B).

ie; 〈θ(Z),θ(Z)〉 ⊇ g−1(θ ′(A′))dg−1(θ ′(B′)).

Therefore, g−1(θ ′(A′)dθ ′(B′))⊇ g−1(θ ′(A′))dg−1(θ ′(B′))

(iv) Let θ(W ) = g−1[θ ′(A′)eθ ′(B′)] = g−1[〈θ ′(A′)∩θ ′(B′),θ ′(A′)∩θ ′(B′)〉].

Then, g−1[θ ′(A′)∩θ ′(B′)]⊇ θ(W ) and g−1[θ ′(A′)∩θ ′(B′)]⊇ θ(W ).

Hence, g−1[θ ′(A′)]∩g−1[θ ′(B′)]⊇ θ(W ) and g−1[θ ′(A′)]∩g−1[θ ′(B′)]⊇ θ(W ).

∴ g−1[θ ′(A′)]⊇ θ(W ), g−1[θ ′(B′)]⊇ θ(W ), g−1[θ ′(A′)]⊇ θ(W ) and g−1[θ ′(B′)]⊇ θ(W ).

ie; g−1[θ ′(A′)]⊇ θ(W ), g−1[θ ′(A′)]⊇ θ(W ) and g−1[θ ′(B′)]⊇ θ(W ), g−1[θ ′(A′)]⊇ θ(W ).

Thus, g−1[θ ′(A′)]⊇ θ(W ) and g−1[θ ′(B′)]⊇ θ(W ). ∴ g−1[θ ′(A′)]eg−1[θ ′(B′)]⊇ θ(W ).
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Now let g−1[〈θ ′(A′),θ ′(A′)〉] = 〈θ(A),θ(A)〉 and g−1[〈θ ′(B′),θ ′(B′)〉] = 〈θ(B),θ(B)〉

∴ g−1[θ ′(A′)]⊇ θ(A), g−1[θ ′(B′)]⊇ θ(B), g−1[θ ′(A′)]⊇ θ(A) and g−1[θ ′(B′)]⊇ θ(B).

∴ g−1[θ ′(A′)]∩g−1[θ ′(B′)]⊇ θ(A)∩θ(B) and g−1[θ ′(A′)]∩g−1[θ ′(B′)]⊇ θ(A)∩θ(B).

Since θ(W ) is the largest rough set having this property, we get

〈θ(W ),θ(W )〉 ⊇ 〈θ(A)∩θ(B),θ(A)∩θ(B)〉= θ(A)eθ(B).

Hence, 〈θ(W ),θ(W )〉 ⊇ g−1[〈θ ′(A′),θ ′(A′)〉]eg−1[〈θ ′(B′),θ ′(B′)〉].

Therefore, g−1[θ ′(A′)eθ ′(B′)]⊇ g−1[θ ′(A′)]eg−1[θ ′(B′)].

Thus, g−1(θ ′(A′)eθ ′(B′)) = g−1(θ ′(A′))eg−1(θ ′(B′))

(v) Let g−1(θ ′(A′)) = θ(A).

Then, from definition 3.2, g−1[θ ′(A′)]⊇ θ(A) and g−1[θ ′(A′)]⊇ θ(A).

Taking complements on both sides, (g−1[θ ′(A′)])C ⊆ (θ(A))C and (g−1[θ ′(A′)])C ⊆ (θ(A))C.

Hence, g−1([θ ′(A′)]C)⊆ θ(AC) and g−1([θ ′(A′)]C)⊆ θ(AC).

Thus, g−1[θ ′(A′C)]⊆ θ(AC) and g−1[θ ′(A′C)])⊆ θ(AC).

Now, g−1(θ ′(A′C)) = g−1〈θ ′(A′C),θ ′(A′C)〉) = 〈θ(V ),θ(V )〉 (say).

Then, θ(V )⊆ g−1[θ ′(A′C)] and θ(V )⊆ g−1[θ ′(A′C)].

Hence, θ(V )⊆ θ(AC) and θ(V )⊆ θ(AC). Thus, 〈θ(V ),θ(V )〉 ⊆ 〈θ(AC),θ(AC)〉.

So, 〈θ(V ),θ(V )〉 ⊆ (θ(A))C. Thus, g−1(θ ′(A′)C)⊆ [g−1(θ ′(A′))]C. �

Theorem 3.6. Let g be be a function from (X ,θ) to (X ′,θ ′). Then, for all θ(A) ∈ RS(X) and

θ ′(A′) ∈ RS(X ′),

(i) θ(A)⊆ g−1{g(R(A))}.

(ii) g{g−1(θ ′(A′))} ⊆ θ ′(A′)

Proof. Let θ(A) ∈ RS(X) and θ ′(A′) ∈ RS(X ′).

(i) Let g(θ(A)) = θ ′(A′).

By definition 3.1, g[θ(A)]⊆ θ ′(A′) and g[θ(A)]⊆ θ ′(A′).

Hence, θ(A)⊆ g−1[θ ′(A′)] and θ(A)⊆ g−1[θ ′(A′)].

g−1{g(θ(A))} is the largest rough set having this property. So, it contains θ(A).

Hence, θ(A)⊆ g−1{g(θ(A))}.
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(ii) Let g−1(θ ′(A′)) = θ(A).

From definition 3.2, g−1[θ ′(A′)]⊇ θ(A) and g−1[θ ′(A′)]⊇ θ(A).

So, θ ′(A′))⊇ g[θ(A)] and θ ′(A′)⊇ g[θ(A)].

g(θ(A)) is the smallest rough set satisfying this property. So, it is contained in θ ′(A′).

Hence, g{g−1(θ ′(A′))} ⊆ θ ′(A′), ∀θ ′(A′) ∈ RS(X ′). �

Definition 3.7. Consider two rough topological spaces (X ,θ≈(T)) and (X ′,θ ′≈(T
′)) and a func-

tion g : X → X ′. Then, g is called a θ≈-rough continuous function if the inverse rough image of

every θ ′≈-rough open subset on (X ′,θ ′≈(T
′)) is a θ≈-rough open set on (X ,θ≈(T)).

Theorem 3.8. Every function defined from (X ,θ) to (X ,θ ′) is a θ≈-rough continuous function

with reference to the induced θ≈-rough topology 〈τθ ,τθ 〉 on (X ,θ).

Proof. If 〈τθ ,τθ 〉 is the induced θ≈-rough topology on (X ,θ), then every rough set on (X ,θ) is

θ≈-rough open with respect to 〈τθ ,τθ 〉.

If θ ′(A′) is a θ≈-rough open set, then, g−1(θ ′(A′)) = 〈θ(A),θ(A)〉 is a θ≈-rough open set.

Therefore, inverse image of every θ ′≈-rough open set is θ≈-rough open.

Hence, g is θ≈-rough continuous. �

The next corollary follows form the fact that every discrete θ≈-rough topology is equiva-

lent to the θ≈-rough topology corresponding to τθ .

Corollary 3.9. Every function defined from (X ,θ) to (X ,θ ′) is θ≈-rough continuous with ref-

erence to the discrete θ≈-rough topology on X.

4. CONCLUSION

The strong association of rough set theory with topology theory has been a well-discussed

topic of research. In this paper, the concept of rough topology introduced in [19] which is

a rough subset of the power set of the the set under consideration is explored further. The

rough image and inverse rough image of a rough set under a function have been defined and

investigated in detail. The continuity of a function on a topological space is extended to the

rough topological space and the properties of the rough continuous functions are presented.
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Also, it is found that all functions defined on discrete θ≈-rough topological spaces are θ≈-rough

continuous.
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