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Abstract. In this work, we proposed a mathematical model with an isolation rate and a control strategy, such

as confinement, to control the spread of the COVID’19 epidemic in society. We formulated an optimal control

problem and solved it. Also, a characterization of the optimal control is given using Pontryagin’s Maximum

Principle.
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1. INTRODUCTION

Corona-virus disease (COVID’19) is an epidemic of viral-looking pneumonia that is differ-

ent from Sars-Cov viruses. It was officially announced by Chinese health authorities and the

World Health Organization (WHO). Unfortunately, this virus was able to spread very quickly

leading to an increase in the number of deaths every day. Therefore, it is imperative to control

the spread of this disease using non-pharmaceutical strategies such as the confinement.
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Since the announcement of the first cases of COVID’19 in Morocco [9], the country has moved

up a gear in terms of measures to keep the Corona-virus under control, which consist of closing

schools, restaurants and all gathering places, and announcing a complete quarantine through-

out the country. Figure (1) shows the cumulative number of confirmed cases of Corona-virus

in Morocco between 2 March and 28 December 2020, showing that the quarantine and isola-

tion measures announced in mid-March contributed to reducing the contact rate. Therefore,

the incidence curve did not accelerate due to the slow and structured increase. Whereas after

announcing the lifting of the quarantine on 25 June, Morocco recorded a significant increase in

the number of confirmed cases.

Mathematical modelling methods are used to understand the dynamics of infectious diseases

and how to control their spread using epidemiological models that are considered the most ef-

fective for formulating disease and epidemic control strategies. From this standpoint, many

mathematical models have been applied to Corona-virus. Some authors have proposed models

to estimate the risks of transmission and effects of the virus [1], while others have suggested epi-

demic models to predict the potential local and global spread of the epidemic Corona-virus [2].

Although most researchers have focused on calculating the baseline reproductive R0 number

and predicting the number of infected and deaths [3, 4, 5, 6], some authors have been interested

in formulating models to investigate certain control strategies, such as social distance and health

education [7, 8].

In this paper, we applied the optimal control theory to propose the optimal strategy in order to

mitigate the spread of the COVID’19 epidemic by minimizing the susceptible individuals and

the infected individuals, where confinement was used as a control.

The model inspired by the COVID’19 pandemic associated with confinement is presented in the

following section. In section 3, we provide necessary condition for the existence of an optimal

control and its characterization using Pontryagin’s Maximum Principle.

2. COVID’19 MODEL WITH CONFINEMENT

To study the transmission dynamics of the novel Corona-virus epidemic, we use in our work

an extension of a SEIR model. This choice is motivated by the fact that this model takes into

account the latency period of the disease. That is to say that during this period, the individual
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is infected without any transmission of the disease to other individuals. In this model, we

consider a time-dependent control u(t) representing the confinement, that is bounded between

0 and Umax, with Umax < 1.

The population is made up of five classes of individuals (compartments), susceptible S, exposed

E, infected without protection I and we introduce the compartment R1 for infectious individuals,

but confined. In other words, individuals whose movement is restricted and completely removed

from individuals likely to be infected, and their infection is confirmed by tests in laboratories

approved by the state. Whereas, the compartment R2 contains contagious and isolated cases,

but they are not counted, that is to say that she has not undergone any test, either because some

of them are suffering from symptoms of low severity, either because some live in areas far from

laboratories and where live in retirement homes and some are afraid to test and prefer to isolate

themselves and adopt a health protocol to deal with the virus. It should be noted that the two

compartments R1 and R2 also include both cases which are no longer contagious, either because

they have cured or because they have died.

The parameter α is defined as the effective contact rate, the parameter β is the incubation rate at

which people infected in the latent phase become infectious, η is the isolation rate of infectious

people and therefore removed from the chain of transmission, and δ is the fraction of infectious

individuals who are counted among the confirmed cases in the time of isolation, it is assumed

that this fraction is constant, although it may change over time.

The total population is given by

N = S(t)+E(t)+ I(t)+R1(t)+R2(t).

Thus, we can write the model mathematically as:

dS(t)
dt

=−α (1−u(t))
S(t)I(t)

N
,

dE(t)
dt

= α (1−u(t))
S(t)I(t)

N
−βE(t),

dI(t)
dt

= βE(t)−ηI(t),
R1(t)

dt
= δηI(t),

R2(t)
dt

= (1−δ )ηI(t),

(1)
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with S(0)> 0,E(0)≥ 0, I(0)≥ 0,R1(0)≥ 0,R2(0)≥ 0,as the initial conditions.(2)

FIGURE 1. Daily new confirmed cases due to COVID’19 (rolling 7-day average, right-aligned).

3. OPTIMAL CONTROL PROBLEM

The aim of our work is to analyse the problem of optimal control to suggest the most effective

mitigation strategy for the COVID’19 epidemic by minimizing the level of susceptible and

infected individuals and therefore maximizing the number of recovered individuals.

In our model, we have included the control u which represents the confinement, so our goal is to

determine an optimal control u∗ to stop the spread of the epidemic by minimizing, over a finite

time horizon [0, t f ], the objective functional.

We define the objective functional J as follows:

J(u) =
∫ t f

0

[
C1S(t)+C2I(t)+

1
2

ρu2(t)
]

dt,(3)

where constants C1, C2 and ρ are positive. The weight parameter ρ is associated with the control

u. C1 describes the cost related to the susceptible class while C2 indicates the cost incurred due

to the symptomatic compartment. In addition, the objective functional J corresponds to the

total cost due to the Corona-virus epidemic and its control strategy. Further, the integrand of
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the objective functional is given by L (S,E, I,R1,R2,u) = C1S(t) +C2I(t) + 1
2ρu2(t). More

precisely, the optimal control problem can be defined as follows:

J(u∗) = minJ(u),u ∈Ω,(4)

where

Ω =
{

u : 0≤ u(t)≤ umax < 1, t ∈ [0, t f ],u(t)is lebesgue measurable
}

(5)

is the set of admissible controls.

3.1. Existence of optimal control.

In order to solve the optimal control problem, it is first necessary to show the existence of the

solution of system (1). Consider the state variables S(t), E(t), I(t), R1(t), R2(t) and the control

u(t) with non negative initial conditions as given (2), then the system can be written as

Xt = A X +B(X ),(6)

where

X =



S(t)

E(t)

I(t)

R1(t)

R2(t)


, A =



0 0 0 0 0

0 −β 0 0 0

0 β −η 0 0

0 0 δη 0 0

0 0 (1−δ )η 0 0


,

B(X ) =



−α (1−u(t))S(t)I(t)
N

α (1−u(t))S(t)I(t)
N

0

0

0



.
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Xt is derivative of X with respect to time t. It is clearly that the system (6) is a non linear

system with a bounded coefficient.

We pose

H (X ) = A X +B(X ).(7)

Then,

B(X1)−B(X2) =



−α (1−u(t))S1(t)I1(t)
N

α (1−u(t))S1(t)I1(t)
N

0

0

0



−



−α (1−u(t))S2(t)I2(t)
N

α (1−u(t))S2(t)I2(t)
N

0

0

0



=



α (1−u(t))
N

[−S1(t)I1(t)+S2(t)I2(t)]

α (1−u(t))
N

[S1(t)I1(t)−S2(t)I2(t)]

0

0

0


The second term on the right hand side of the equation (7) satisfies
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|B(X1)−B(X2)| =
2α (1−u(t))

N
|S1(t)I1(t)−S2(t)I2(t)|

≤ 2α (1−u(t))
N

[|S1(t)||I1(t)− I2(t)|+ |I2(t)||S1(t)−S2(t)|]

≤ M1|S1(t)−S2(t)|+M2|I1(t)− I2(t)|,

where M1 > 0 and M2 > 0 are independent of the variables S(t) and I(t) ≤ N respectively.

Therefore,

|B(X1)−B(X2)| ≤M [|S1(t)−S2(t)|+ |I1(t)− I2(t)|], with M = max(M1,M2).

Also, we get

|H (X1)−H (X2)| ≤ K|X1−X2| where K = ||A ||+M.

Thus, it follows that the function H satisfies the Lipschitz condition, uniformly with respect to

non negative state variables. Therefore, there exists a solution of the system (1).

Now, we present a result that will show the existence of an optimal control that minimizes the

objective functional J in a finite interval, subjected to the system (1).

Theorem 1. There exists an optimal control u∗ in Ω and a corresponding solution X ∗ =

{S∗,E∗, I∗,R∗1,R∗2} to the initial value problem (1)-(2) such that

J(u∗) = minJ(u), u ∈Ω.

Proof. To prove the existence of an optimal control, we use the conditions of theorem (III.4.1)

and its corresponding corollary in Fleming and Rischel [10].

Note that the set of solution to the system (1)-(2) with control variables in Ω is nonempty. Let

u1, u2 ∈Ω such that 0≤ u1 ≤ umax and 0≤ u2 ≤ umax. Then, for any ε ∈ [0,1], one has

0≤ εu1 +(1− ε)u2 ≤ umax,

which implies that Ω is convex and close. Also the state system is linear in the control variable

u with coefficients depending on time and state variables. In addition, it is easy to verify that all

ε ∈ [0,1] and all u1, u2 ∈Ω,

L (X ,εu1 +(1− ε)u2)≤ εL (X ,u1)+(1− ε)L (X ,u2),
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where X = {S,E, I,R1,R2}. Thus, the integrand of the objective functional is convex on Ω.

Furthermore, L (S,E, I,R1,R2,u)≥
1
2

ρu2. Let ν =
1
2

ρ and g is a continuous function defined

by g(u) = ν |u|2. Then,

L (S,E, I,R1,R2,u)≥ g(u)

such that |u|−1g(u)→ +∞ as |u| → +∞, u ∈ Ω. Thus, all conditions are achieved. Therefore,

we deduce the existence of an optimal control u∗ which minimizes the objective functional

J(u). �

3.2. Characterization of optimal control.

Theorem 1 assures us the existence of the solution of the problem (4) before attempting to

calculate the optimal control. Thereafter, we characterize this control by applying Pontryagin’s

Maximum Principle to the Hamiltonian.

Let X = {S,E, I,R1,R2}, u ∈ Ω and Λ = {λ1,λ2,λ3,λ4,λ5} the adjoint variable. The Hamil-

tonian function is defined as

H(X ,u,Λ, t) = C1S(t)+C2I(t)+
1
2

ρu2(t)+λ1(t)
dS(t)

dt
+λ2(t)

dE(t)
dt

+λ3(t)
dI(t)

dt
+λ4(t)

dR1(t)
dt

+λ5(t)
dR2(t)

dt
.

(8)

Necessary condition that {X ∗(t),u∗(t)} be can optimal solution for the optimal control prob-

lem is the existence of a non trivial vector function Λ(t) = {λ1(t),λ2(t),λ3(t),λ4(t),λ5(t)} such

that

dX

dt
=

∂H(X ∗(t),u∗(t),Λ(t), t)
dΛ

0 =
∂H(X ∗(t),u∗(t),Λ(t), t)

du
Λ
′
(t) = −∂H(X ∗(t),u∗(t),Λ(t), t)

dX
.

(9)
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Theorem 2. Given an optimal control u∗(t) and corresponding solutions S∗,E∗, I∗,R∗1 and R∗2

that minimize J(u) over Ω. Then, there exist adjoint variables λi, i = 1,2, · · · ,5 satisfying

dλ1(t)
dt

= −C1 +
α (1−u(t)) I(t)

N
[λ1(t)−λ2(t)] ,

dλ2(t)
dt

= λ2(t)β −λ3(t)β ,

dλ3(t)
dt

= −C2 +
α (1−u(t)S(t))

N
[λ1(t)−λ2(t)]+η [λ3(t)−λ5(t)]−δη [λ4(t)−λ5(t)] ,

dλ4(t)
dt

= 0,

dλ5(t)
dt

= 0,

(10)

where final time conditions λi(t f ) = 0, i = 1,2, · · · ,5. Moreover, the following characterization

holds:

u∗(t) = max
(

0,min
(

umax,
α[−λ1(t)+λ2(t)]S∗(t)I∗(t)

ρN

))
.(11)

Proof. The form of the adjoint system (10) endowed with terminal conditions results from

Pontryagin’s Maximum Principle by differentiating the Hamiltonian function (8), at the re-

spective solutions of the state system (1). Also, to get the characterizations of the opti-

mal control given by (11) we use the optimality conditions. After solving the equation
∂H(X ∗(t),u∗(t),Λ(t), t)

du
= 0, we obtain

ρu∗(t)+
α [λ1(t)−λ2(t)]S∗(t)I∗(t)

N
= 0 at u = u∗(t).

It follows that

u∗(t) =
α[−λ1(t)+λ2(t)]S∗(t)I∗(t)

ρN
.

Taking to account the boundedness condition given in (5), if we set

Σt =
α[−λ1(t)+λ2(t)]S∗(t)I∗(t)

ρN
.

Then,
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u∗(t) = 0 i f Σt ≤ 0,

u∗(t) = Σt i f 0 < Σt < umax,

u∗(t) = umax i f Σt ≥ umax.

Consequently, the optimal control u∗(t) is given by

u∗(t) = max
(

0,min
(

umax,
α[−λ1(t)+λ2(t)]S∗(t)I∗(t)

ρN

))
.

�

4. CONCLUSION

Among the most important measures taken to limit the propagation of Corona-virus is

quarantined and isolation of infected individuals, and it is the control option we supported

in this work. We have demonstrated the existence of optimal control over our model that

minimizes the number of susceptible individuals and infected individuals. The results

discussed in this article will be valuable for our future work because we aim to use other

optimal control strategies in the form of vaccination, health awareness and intensive prevention.
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