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Abstract: The aim of this paper is to establish a fixed point theorem for rational type contraction in a complete
controlled metric space. Our results extend/generalize many pre-existing results in literature. We also provide example
which show the usefulness of these results.
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1. INTRODUCTION AND PRELIMINARIES

Dass and Gupta [26] established first fixed point theorem for rational contractive type conditions
in metric space.

Theorem 1.1 (see [26]). Let (X,d) be a complete metric space, and let 7: X — X be a self-

mapping. If there exist a, 8 € [0,1) witha + f < 1 such that

1+ d(x,Tx)]dy,Ty)
1+d(xy)

d(Tx, Ty) < ad(x,y) + B (1.1)

for all x, y € X, then T has a unique fixed point x* € X.
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Nazam et al. [27] proved a real generalization of Dass-Gupta fixed point theorem in the frame
work of dualistic partial metric spaces.
Czerwik [1] reintroduced a new class of generalized metric spaces, called as b-metric spaces, as
generalizations of metric spaces.
Definition 1 ([1]). Let X be a nonempty set and s > 1. A function d;: X X X — [0, o) is said to
be a b -metric if for all o,¢, w € X,

(b1).d,(o,¢) =0iffo =¢

(b2).dy(0,¢) = dy(g,0) forall o,¢c € X

(b3).dp (0, w) < sldp(0,¢) + dp(¢, )]
The pair (X, d}) is then called a b-metric space. Subsequently, many fixed point results on such
spaces were given (see [2-7]).
Kamran et al. [8] initiated the concept of extended b-metric spaces.
Definition 2. Let X be a nonempty set and p: X x X — [1,0) be a function. A function
d,: X Xx X — [0, ) is called an extended b -metric if for all o,¢, w € X,

(el).d.(o,¢) =0iffeg =¢

(€2).d.(o,¢) =d,(¢,0) forall o,¢ € X

(€3). d.(0,w) < p(o, w)[d.(0,¢) + do(, w)]
The pair(X, d,) is called an extended b-metric space.
Very recently, a new kind of a generalized b-metric space was introduced by Mlaiki et al. [9].
Definition 3 ([9]). Let X be a nonempty set and p: X X X — [1,0) be a function. A function
d,: X x X — [0, ) is called a controlled metric if for all o,¢, w € X,

(cl).d.(o,¢) =0iffed =¢

(c2).d.(o,¢) =d.(¢,0) forall o,¢ € X

(€3).d.(0,w) < p(o, w)ld.(0,¢) + d (¢, w)]
The pair (X, d,) is called a controlled metric space (see also [10]).
The Cauchy and convergent sequences in controlled metric type spaces are defined in this way.

Definition 4 ([9]). Let (X, d.) be a controlled metric space and {a,, },,ob€ a sequence in D. Then,
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1. The sequence {a,} converges to some o in X; if for every € > 0, there exists N = N(¢) €

N such that d.(g,,,0) < € forall n = N. In this case, we write lim o,, = 0.

n—-oo

2. The sequence {o,} is Cauchy; if for every € > 0, there exists N = N(¢) € N such that
d (o, 0,) <cforalln,m = N.
3. The controlled metric space (X,d.) is called complete if every Cauchy sequence is
convergent.
Definition 5 ([9]). Let (X, d.) be a controlled metric space. Let 0 € X and € > 0.
1. Theopen ball B(g,¢) is
B(o,e) ={c € X:d_.(¢,0) < &}.
2. The mapping E: X — X is said to be continuous at o € X; if for all € > 0, there exists § >
0 such that E(B(o,€)) < B(Eg, ).
The main purpose of this paper is to present some fixed point theorems for mappings involving
rational expressions in the context of complete controlled metric spaces. Our result extends and
generalizes some well-known results in the literature. We also provide examples to show

significance of the obtained results involving rational type contractive conditions.

2. RESULTS ON RATIONAL TYPE CONTRACTIONS

Theorem 2.1 Let (X, d..) be a complete controlled metric space. Let E: X — X be so that there are

vi € (0,1),Vi € {1,2,3,4,5} with 1 = % <1

d.(0,E0).d,(¢.ES)
d.(Eo,E¢) < y1d.(0,¢) + v,d.(0, Ec) + y3d, (¢, Eq) + y, =2 222ee28)

1+dc(0'r€')
dc(¢.EQ)[1+d:(0,E0)]
+Vs td.(0.0) (2.1)
forall o,¢ € X. For g, € X, take g,, = E"0,. Assume that
sup lim P(0i+1,0i+2)P(0i+1,0m) < /1_1 (2 2)
ms1 i p(0,0i41) '

Suppose that lim p(a,, ) and lim p(o, g,,) exist, are finite, and (y; + ys) lim p(o,0,) < 1 for
n—->oo n—->oo n—->oo

every g € X, then E possesses a unique fixed point.
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Proof. Let g, € X be initial point. The considered sequence {c,,} verifies 6,,,, = Ea,, forall n €

N. Obviously, if there exists ny € N for which o, 4 = 0y,, then Ea,,, = oy,, and the proof is

finished. Thus, we suppose that o,,,; # a, for every n € N. Thus, by (2.1), we have
d.(0n, On41) = d.(Eoy_y,E0y)

< 11d, (O-n—l» Un) + y2d, (Un—l' Eo-n—l) + y3d, (Gn; Ean)

dc(on—1,Eon_1).d.(on,Eon) dc(opEop)[1+d.(opn_1,Eon_1)]

tVa 1+d.(0pn-1,0n) t¥s 1+d.(on-1,0n)

= Vldc(o-n—li Gn) + Vzdc(o-n—l' Gn) + y3dc(0-n' O-n+1)

dc(on-1,0n).dc(0n,0n+1) de(0n,0n+1)[1+d:(0n—1,00)]

+)/4 1+dc(0'n_1,0'n) + yS 1+dc(0'n—1v0'n)

< (y1 +v2)dc(on-1,04) + (3 + ¥4 + vs)d.(0n, Ony1)
The last inequality gives

Y1t7Y2

onryerre Ge(On-1,00) (2.3)

dc(on, Opt1) <
Thus, we have
de(Op, Ops1) < Ad(0y_1,03) < A2d(Op—2,0n-1) < -+ < A" (0p, 01) (2.4)
For all n,m € N and n < m, we have
de(On, Om) < P(On, On+1)de(On, Ons1) + P(Ons1,0m)de(Ons1, Om)
< (o, 0n11)de (00, Ons1) + P(Ons1, 0m)P(Ons1, Ot 2) e (Ons1, Ons2)
+0(0n+1, 0m)P(On42, Om)de (Oni2) Om)
< (o, 0n11)de (00, Ons1) + P(Ons1, 0m)P(Ons1, Ot 2) e (Ons1, Ons2)
+P(0n+1, om)P(Ons2, 0m)P(Ons2) Ont3)dc(Ony2, Ones)
+P(0n+1, 0P (On+2, 0P (On43, O ) e (On3, Om)
< p(0n, On+1)d.(0On, Opy1) + Zﬁ;ﬁq(l—[ﬁ':nﬂ p(Gj, Um)) p(0i,0141)d: (01, 0i41)
+I120510(0), o) de(Om—1, 1) (2.5)
This implies that

dc (Un' Um) < p(Un, Un+1)dc (O_n, Un+1)

+ Zﬁ%il(“i’:nﬂ P(Uj' Gm)) p(0;,0i11)d. (01, 0141)
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+ 172741 2(05, ) de(Om—1, )

< p(0n, On+1)A"d, (00, 01)

+ Zﬁ%ﬂ(“iﬁnﬂ p(‘fj’ Um)) p(0;, 0141)A'd.(0y, 01)
+IT205 p(aj, om) A™1d, (09, 01)

< p(0y, On41)A"d (09, 01)

+ 2?5111(1_[;::%1 P(Uj' Um)) p(0;, 0i41)Ad. (00, 01) (2.6)
Let
Uy = ?:0(“3’:0 p(o}" Um)) p(o;, 0'i+1)/1idc (00,01) (2.7)
Consider
vi = X1 o([T5=0 (0, 0m)) (01, 0141) A d, (09, 1) (2.8)

In view of condition (2.2) and the ratio test, we ensure that the series );; v; converges. Thus,

lim wu,, exists. Hence, the real sequence {u,,} is Cauchy. Now, using (2.6), we get

n—-oo

d(on, o) < dc (00, 01) [A"P(On, Ons1) + (Un-1 — Un)] (2.9)
Above, we used p(o,¢) = 1. Letting n,m — oo in (2.9), we obtain
lim d.(o,,0,) =0 (2.10)
nm-c
Thus, the sequence {a,,} is Cauchy in the complete controlled metric space (X, d,). So, there is
some o* € X.So that
lim d(0,,0%) = 0; (2.11)
that is, g, — o* as n — oo. Now, we will prove that ¢* is a fixed point of E. By (2.1) and
condition (iii), we get
de(0",Ec") < p(07,0011)dc(07, Ons1) + P(Ons1, E0)d(On41, ETT)
= p(07,0n11)d: (07, 0n11) + P(Ons1, Ec™)d (Eoy, Ec™)
< p(0%,0n41)d: (07, 0n11)

+P(0ns1, E07) [11dc(00,0°) + V2do(on, Eon) + vsdo(o”, Ea™) +

d.(on,Eon).d.(c*,Ec™) d.(o*,Ec*)[1+d, (O'n,EO'n)]]

Va 1+d (on,0%) Vs 1+d.(on,0%)
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= p(O'*, O-n+1)dc (G*’ O-n+1)

+p(0'n+1; EG*) [yldc(o-nﬂ O-*) + )/ch(o-nl O-n+1) + )/3dc(0'*, EO-*) +

(2.12)

dc(on,0nt1).dc(0",ET") dc(o",Ec") [1+dc(0'nr0'n+1)]]

Va 1+d.(opn,0*%) T Vs 1+d.(op,0*%)

Taking the limit as n — oo and using (2.10), (2.11) and the fact that lim p(o,,0) and
n—-oo

lim p(o, g,,) exist, are finite, we obtain that
n—-oo

do(o",E0") < |(vs +5) lim p(onss, Eo")| (0", Ea”) (2.13)
Suppose that * # Ec*, having in mind that [(y3 +ys) lim p(an+1,E0*)] <1,s0
n—oo

0<d.(o"Ec") < [(ys + ys) lim P(Ons1, E07)] d. (0", Eo") < d, (0", Eo”) (2.14)

It is a contradiction. This yields that ¢* = Ec*. Now, we prove the uniqueness of ¢*. Let ¢* be
another fixed point of E in X, then E¢* = ¢*. Now, by (2.1), we have
d.(o%,¢") =d.(Ed", E¢")

d.(c",Ec").d.(¢"EG")
1+d.(o*,¢*)

< y1d.(07,6¢") +y2d. (6", Ec™) + y3d.(¢", E¢™) + Vs

d.(¢"E¢")[1+d (" ,Ec™)]

d.(c",Ec*).d.(¢"Ec")
1+d,(o*,¢%)

=1y1d.(07,¢") +y2d.(07,0%) + v3d.(¢",¢") + Vs

d.(¢"E¢")[1+d (c",Ec™)]
1+d.(o*,¢*)

+Vs

d;(0%,07).d.(¢*,¢*)
1+d.(o*,¢*)

=1y1d.(07,¢") +y2d.(07,0%) + v3d.(¢",¢") + Vs

de(¢" ¢ [1+dc(a%,07)]
1+d.(o*¢*)

< y1d.(0%,¢7) (2.15)

+Vs

It is a contradiction. This yields that ¢* = ¢*. It completes the proof.

3. EXAMPLE

Example 3.1 Consider X = {0,1,2}. Take the controlled metric d, defined as
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3
E!

d.(01) = -,d.(0,2) = -,d.(1,2) =
where p: X X X — [0, o) is symmetric such that
p(0,0) = p(1,1) = p(2,2) = p(1,2) = 1,p(0,2) = 2,p(0,1) =~
GivenE : X — X as
E0=2and E1 = E2 = 1.
Consider y; = i andy, =y3 =Ys =7Vs = % Then

1 2

_ ntyv. _ T1t11 =§<1
1-¥3v 1-3(&) 5 7
=Y 1-3()

Take o, = 0,then oy, = 2,and 0,, = 1, forall n > 2, we have

P(0i+1,0i+2)P(0i+1,0m) =1< 5 _ 271
3

sup lim
mz? {—00 p(03,0i+1)

Clearly, (2.2) is satisfied. On the other hand, note that (2.1) holds for all o,¢ € X. All other

hypotheses of Theorem 2.1 are verified, and so E has a unique fixed point, whichis ¢* = 1.
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