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Abstract. In this paper, we prove propositions of a class of integral transform, this class includes Laplace trans-

form and Fourier transform. In particular, under certain conditions, we prove an explicit formula for the integral

transform of the product of two functions.
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1. INTRODUCTION

Differential operators and integral operators, and in general operator theory, play important

roles in Mathematics. The details for operator theory details are discussed in [10] and [15].

Recently, properties of difference operators and their applications are discussed in [1]- [7].

Define the integral transform T f as

(1.1) f̂ (t) = (T f )(t) =
∫

Ω

K(u, t) f (u)du,
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where Ω⊆ R and K is the kernel of T f that satisfies the following conditions

(1.2) K(a,b) = K(b,a)

for all (a,b) ∈Ω×Ω.

(1.3) K(a,b)K(c,b) = K(a+ c,b)

for all (a,b),(c,b) ∈Ω×Ω.

The kernel of Laplace transform K(t,u) = e−tu with Ω = (0,∞) and the kernel of Fourier

transform K(t,u) = (2π)−1/2e−itu with Ω = (−∞,∞) satisfy the conditions (1.2) and (1.3).

One of the disappointments of the Laplace transform and Fourier transform is that the trans-

form of the product of two functions does not equal the product of their transforms. In fact, the

Laplace (Fourier) transform of the convolution of two functions is the product of their Laplace

(Fourier) transforms.

In [14], it is proved that the Laplace transform of the product of f (t) and 1
t is

Ls

(
f (t)
t

)
=
∫

∞

s
F(ξ )dξ .

The Laplace transform of a product of two functions was given in [5] as

Theorem 1.1. Assume that L ( f (t)) = F(s) and L (g(t)) = G(s). If∫
∞

0
∫

∞

0 e−(s+ξ )tg(ξ ) f (t)dtdξ converges absolutely for s > α , then Ls ( f (t)G(t)) is given

as

(1.4)

Ls

(
f (t)G(t)

)
= Ls

(
f (t)L (g(t))

)
=
∫

∞

0
g(ξ )F(ξ + s)dξ =

∫
∞

s
g(ξ − s)F(ξ )dξ for s > α.

Example 1.2.

Ls

(1− cos(t)
t2

)
=
∫

∞

s
(u− s)(

1
u
− u

u2 +1
)du

=
∫

∞

s

du
u2 +1

− s
∫

∞

s
(
1
u
− u

u2 +1
)du

= arctan(
1
s
)+ s ln(

s√
s2 +1

).
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Example 1.3. For s > 1

Ls

(
et− t−1

t2

)
=
∫

∞

s
(ξ − s)

( 1
ξ −1

− 1
ξ 2 −

1
ξ

)
dξ

= (s−1) ln(
s−1

s
)−1.

In the following section, we extend the result in Theorem 1.1 to a more generalized kernel.

2. MAIN RESULTS

Theorem 2.1. Let K be the kernel of the operator T which satisfies (1.2) and (1.3). Moreover,

assume that
∫

Ω

∫
Ω

K(t,u)K(ξ , t)g(t) f (ξ )dξ dt converges absolutely for some u, then

(2.1) (̂g f̂ )(u) =
∫

Ω

ĝ(ξ +u) f (ξ )dξ .

Proof.

((̂g f̂ ))(u) =
∫

Ω

K(t,u)(g f̂ )(t)dt

=
∫

Ω

K(t,u)g(t) f̂ (t)dt

=
∫

Ω

K(t,u)g(t)
∫

Ω

K(ξ , t) f (ξ )dξ dt

=
∫

Ω

∫
Ω

K(t,u)K(ξ , t)g(t) f (ξ )dξ dt.

Therefore,

(2.2) (̂g f̂ )(u) =
∫

Ω

∫
Ω

K(t,u)K(ξ , t)g(t) f (ξ )dξ dt.

Now, interchanging the integrals of (2.2)(By Fubini’s Theorem ( see [13])) and using condi-

tions (1.2) and (1.3), then

(̂g f̂ )(u) =
∫

Ω

∫
Ω

K(t,u)K(ξ , t)g(t) f (ξ )dtdξ

=
∫

Ω

∫
Ω

K(u, t)K(ξ , t)g(t) f (ξ )dtdξ

=
∫

Ω

f (ξ )
∫

Ω

K(ξ +u, t)g(t)dtdξ

=
∫

Ω

ĝ(ξ +u) f (ξ )dξ .
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Example 2.2. Consider Ω = (0,∞) and K(t,u) = e−αtu, where α ∈ C. Clearly K satisfies

conditions (1.2) and (1.3).

If f (t) = ebt , then f̂ (u) = 1
αu−b for ℜ(αu−b)>0. In particular, If f (t) = 1, then f̂ (u) = 1

αu

for ℜ(αu)>0.

Applying Theorem 2.1 on h(t) = 1−e−t

t and for ℜ(αu)>max{0,b} , we get that

ĥ(u) =
∫

∞

0
ĝ(ξ +u) f (ξ )dξ

=
∫

∞

0
(

1
ξ +u

− α

α(ξ +u)+1
)dξ

= log(
1

αu
+1).
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