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Abstract. This paper presents an extension of a deterministic epidemic model for schistosomiasis. The model is

extended into an optimal control problem with the inclusion of three time-dependent optimal control measures.

The optimal controls included are: early diagnosis and treatment of exposed humans; snail elimination using

chemical mulluscicide; and chlorination of water to eliminate free living cercariae. The existence of the optimal

control solution is proven and the necessary conditions required for an optimal control with respect to the proposed

model was established using Pontryagin’s minimum principle. The forward-backward Runge Kutta scheme was

used to carry out the numerical simulation. Seven control measures (S1–S7) were simulated using the three control

strategies: u1(t), u2(t) and u3(t) and a combination of these controls. The results from the numerical simulation

showed the effectiveness of each of the control strategies in controlling the prevalence of schistosomiasis. Based

on the results, the most effective and swift control strategies are those involving snail elimination using chemical
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mulluscicide. But due to the environmental implications of these control strategies, as it may lead to total extinction

of the snails, it is highly recommended that no control involving snail elimination should be practiced. Thus, the

best and also an effective control strategy will be a combination of treatment of infectious individuals and water

treatment to eliminate cercariae by chlorination.

Keywords: Schistosomiasis; optimal control; Pontryagin’s minimum principle; Runge Kutta method.

2010 AMS Subject Classification: 35Q92.

1. INTRODUCTION

Schistosomiasis is a disease that is caused by a group of parasitic worms known as schis-

tosomes. It affected about 290.8 million people in 2018 out of which only about 97.2 million

people were treated, [32]. The mortality rate of the disease is about 4,400 to 200,000 per an-

num. The disease is endemic in Africa, Asia and South America. However, few cases have been

reported in other continents. Species of schistosomes that cause illnesses in humans are: schis-

tosoma haematobium, schistosoma mansoni, and schistosoma japonicum, [32]. These species

of schistosomes are common in parts of Africa, Asia and South America, [33]. Schistosoma

mansoni and schistosoma japonicum mainly cause diseases in the liver and bowels but schis-

tosoma haematobium mostly affect the urinary and genital areas, [8]. Symptoms of schistoso-

miasis include but not limited to diarrhea, bloody stool, abdominal pain, liver damage, kidney

failure etc. Fresh water with infected snails is the major means by which the disease is spread.

Humans become infected when they come in contact with contaminated fresh water. Availabil-

ity of clean water and reduction in the number of snails are two major effective strategies in

controlling the disease, [32].

The prevalence of schistosomiasis in an endemic area could be reduced by the introduction of

control strategies into a mathematical model, [36]. Zhang et al., [38] opined that schistosomi-

asis could be eliminated from an endemic area through multiple strategies targeted at different

stages of development of schistosome parasite. The combination of the use of sanitary mea-

sures, hygiene education and treatment of infected individuals on large scale and vector control

measures are the most effective strategy that can lead to the elimination of schistosomiasis.

The analysis of the optimal control of malaria and schistosomiasis co-infection model was

carried out. The impart of the parameters on the spread of the disease was examined using
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sensitivity analysis. Numerical simulation of the model showed that changes in the values of

a parameter of the co-infection dynamics indicated a change in the stability of the equilibrium

point, [3]. Furthermore, Okosun K.O. and Smith R., [29] developed a mathematical model

for malaria and schistosomiasis co-infection to investigate the synergistic relationship between

the two diseases in the presence of treatment. The results showed that schistosomiasis control

has little effect on the prevalence of malaria. However, optimal control of schistosomiasis

prevention and treatment has a moderate effect on reducing infected mosquitoes. This would

lead to a reduction the malaria prevalence.

The results of the stability analysis performed on a schistosomiasis model showed that good

public health education and latent period of infection could help to reduce the prevalence of

schistosomiasis, [15]. A model comprising of four delay differential equations for the control

of schistosoma japonicum was developed. The results suggested that the prevalence of schis-

tosomiasis could be reduced by lengthening the pre-patent periods in humans through drug

treatment, [37].

Elmojtaba Ibrahim M. and Adam Salma O.A., [13] used an SVCIRS model to study the

effects of a vaccine on schistosomiasis disease in a human population and distinguished between

the recovered with disabilities and the recovered without disabilities. The results showed that

the disease could be controlled with high vaccine uptake. Similarly, since S. mansoni cercariae

are very sensitive to chlorine, higher PH and CT values and lower temperature are required to

significantly deactivate S. mansoni cercariae contaminated water. A regression model for the

prediction of CT was obtained from the laboratory data,[5].

The total cost of treatment of infected individuals could be minimized by an optimal control

technique by reducing the prevalence of the infected individuals. This could be achieved by

increasing the treatment rate of infected individuals, [12]. Kalinda et al., [19] applied optimal

control technique on a schistosomiasis model that depended on temperature by minimizing the

cost of pre-patent and patent compartments. The results showed that schistosomiasis could

be reduce by more than three-fold if the optimal control strategies were well implemented.

The study also provided a cost-effective control strategies for schistosomiasis. Lo Nathan et

al., [24] examined the cost-effectiveness of snail control implemented together with mass drug
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administration (MDA) strategies to obtain the optimal epidemiological conditions that support

previous control techniques. The results indicated that the method of snail control should be

implemented in regions with high burden of schistosomiasis disease burden and recommended

doses of the chemical should be used to avert negative ecological consequences.

Over the years, several other mathematical models have been developed for the transmission

dynamics and control of schistosomiasis, [1], [7], [8], [11],[21], [31] [34] and others referenced

herein.

This study is an extension of the deterministic epidemic model of Kanyi et al., [20]. The

model studied the transmission dynamics of schistosomiasis based on the life cycle of the schis-

tosome parasite. Two control strategies, treatment and WASH, were considered and analyzed

numerically. Here, the model is extended into an optimal control problem with three time de-

pendent optimal controls.

2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

The model is designed to study the transmission dynamics of schistosomiasis within the

sub-populations of humans and snails alongside the dynamics of the free living miracidia and

cercariae. Hence, the proposed model comprises of the Susceptible humans (Sh), Susceptible

snails (Ss), Exposed humans (Eh), Exposed snails (Es), Infected humans (Ih), Infected snails (Is),

Treated humans (Th), the free living miracidia (Nm) and the free living cercariae (Nc). Moreover,

an SEITS model for the human sub-population due to the fact that treated humans acquire no

immunity and an SEI model for the snail sub-population on the assumption that infected snails

do not recover are considered. The total human and the total snail sub-populations are denoted

by Nh and Ns respectively. Thus, Nh = Sh+Eh+ Ih+Th and Ns = Ss+Es+ Is. Furthermore, this

model incorporates three time dependent optimal control strategies. These controls are denoted

by u1(t), u2(t) and u3(t), where:

u1(t) = early diagnosis and treatment of exposed humans;

u2(t) = snail elimination using chemical mulluscicide, and

u3(t) = chlorination of water to eliminate free living cercariae.

The parameters used in this model, the descriptions and values are illustrated in table 1.
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TABLE 1. A table showing description of the model parameters and their re-

spective values

Parameter Description Value Source

αh recruitment rate of humans 254 d−1 Estimate, [20]

αs recruitment rate of snails 3000 d−1 [38]

βh rate of transmission of humans from susceptible to exposed 0.09753 L cer−1 d−1 [19]

βs rate of transmission of snails from susceptible to exposed 0.615 L mir−1 d−1 [8], [10]

µh natural death rate of humans 0.00004379 d−1 Estimate, [20]

µs natural death rate of snails 0.000569 d−1 [8]

µm natural death rate of miracidia 0.9 d−1 [8]

µc natural death rate of cercariae 0.004 d−1 [8]

δh death rate of humans due to infection 0.000274−0.000913 d−1 Estimate, [20]

δs death rate of snails due to infection 0.0004012 d−1 [8]

σh rate of transmission of humans from exposed to infected 0.0238−0.0286 d−1 Estimate, [20]

σs rate of transmission of snails from exposed to infected 0.0286−0.0357 d−1 Estimate, [20]

γh transmission rate of humans from infected to treated 0.03 d−1 [10]

λ1 rate individuals produce miracidia 6.96 mir host−1 d−1 [23]

λ2 rate snails produce cercariae 2.6 cer host−1 d−1 [8]

ρ treatment efficacy 0.8 Assumed, [20]

m0 miracidia saturation constant 1×108 [8]

c0 cercariae saturation constant 9×107 [8]

ε limitation of the growth velocity 0.2 [8]
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The optimal control problem is given by the following system of non-linear ordinary differ-

ential equations (1):

(1)

dSh
dt = αh +ρTh− βhNcSh

c0+εNc
−µhSh

dEh
dt = βhNcSh

c0+εNc
−σhEh−u1Eh−µhEh

dIh
dt = σhEh− γhIh−δhIh−µhIh

dTh
dt = u1Eh + γhIh−ρTh− (1−ρ)δTh−µhTh

dNm
dt = λ1Ih−µmNm

dSs
dt = αs− βsNmSs

m0+εNm
−u2Ss−µsSs

dEs
dt = βsNmSs

m0+εNm
−σsEs−u2Es−δsEs−µsEs

dIs
dt = σsEs−u2Is−δsIs−µsIs

dNc
dt = λ2Is−u3Nc−µcNc

Sh(0)≥ 0, Eh(0)≥ 0, Ih(0)≥ 0, Th(0)≥ 0, Nm(0)≥ 0, Ss(0)≥ 0, Es(0)≥ 0, Is(0)≥ 0, Nc(0)≥ 0.

3. ANALYSIS OF THE OPTIMAL CONTROL

Now, we define the objective functional that minimizes the control vector u = (u1,u2,u3) as

(2) J (u) =
∫ t f

0
(v1Eh + v2Ns + v3Nc + v4u2

1 + v5u2
2 + v6u2

3)dt

subject to the system of non-linear ordinary differential equations 1 with the weight constants

denoted by the sequence {vi} for i = 1,2, ...,6. The weight constants are essential for balancing

the terms in the integral by preventing the dominance of one over another. Thus, they are called

the balancing cost factors. The goal is to minimize the vector population (to reduce the pro-

duction of cercariae) and the number of infective individuals alongside the cost of registering

treatment (on exposed individuals) and the cost of applying chemical mulluscicide and chlori-

nation of water on snails and cercariae respectively. Hence, we attempt to obtain an optimal

control u∗ = (u∗1,u
∗
2,u
∗
3) that can minimize the objective functional 2. That is,

(3) J (u∗) = min
u
{J (u1,u2,u3)|u1,u2,u3 ∈U}
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where

(4)

U =
{
(u1(t),u2(t),u3(t)) : 0≤ u1 ≤ u1max < 1, 0≤ u2 ≤ u2max < 1, 0≤ u3 ≤ 1, 0≤ t ≤ t f

}
is the control set, which is assumed to be Lebesgue measurable. The terms v1,v2 and v3

represent the costs associated with the model variables Eh,Ns and Nc respectively, where

Ns = Ss +Es + Is, denote the total snail sub-population. And the terms v4,v5 and v6 represent

the costs associated with each corresponding control u j and because costs are mostly assumed

to be non-linear in nature, consequently, each u j, for j = 1,2,3, is taken to be quadratic.

3.1. Existence of the Optimal Controls. Here, we established the existence of an optimal

control using the results presented in Theorem 4.1 and its subsequent corollary, corollary 4.1, in

Fleming and Rishel, [14]. These results are based on the satisfaction of the following properties:

P1: the control set and its corresponding state variables are non-empty;

P2: the control set is convex and closed;

P3: the right-hand side of each of the equations in the state system is continuous and

bounded above by a linear function in the state and control;

P4: the integrand of the objective functional is convex on the control.

P5: there are real numbers a1, a2 > 0 and ω > 1 such that the integrand, L, of the objective

functional satisfies

L≥ a1
(
|u1|2 + |u2|2 + |u3|2

)ω

2 −a2.

Now, consider the following theorem:

Theorem 3.1. Given an optimal control problem with respect to the system equation (1),

then there is an optimal control u∗ = (u∗1,u
∗
2,u
∗
3) ∈ U with the corresponding solution

(S∗h,E
∗
h , I
∗
h ,T

∗
h ,N

∗
m,S
∗
s ,E
∗
s , I
∗
s ,N

∗
c ) that can minimize J (u) over U.

Proof. To prove this theorem, the above stated properties from Fleming and Rishel, [14] are

considered. For property P1, the existence results found in Theorem 9.2.1 of Lukes (1982), [25]

for the system equation (1) is used. The boundedness of the coefficients shows that property

P1 is satisfied. Property P2 also holds, since the control set U , by definition is both closed
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and convex. The priori boundedness of the model’s solutions shows that the right-hand side

satisfies property P3. Moreover, Property P4 is satisfied because the integrand, L of the objective

functional J (u) is clearly convex on the control set U . Finally, there are constants a1, a2 >

0 and ω > 1 such that L ≥ a1
(
|u1|2 + |u2|2 + |u3|2

)ω

2 − a2, due to the fact that all the state

variables are bounded and hence property P5 holds.

Accordingly, based on the results from Fleming and Rishel, [14], there exist an optimal con-

trol u∗ =
(
u∗1,u

∗
2,u
∗
3
)
∈U that minimizes the objective functional J (u) over U . �

3.2. Characterization of the Optimal Controls. The Pontryagin’s minimum principle pro-

vide the necessary conditions that the optimal controls are required to fulfill. The Hamiltonian

function is defined by incorporating a differentiable piece-wise vector-valued function Λ(t) =

[Λ1(t),Λ2(t),Λ3(t),Λ4(t),Λ5(t),Λ6(t),Λ7(t),Λ8(t),Λ9(t)] where the Λk’s are the adjoint vari-

ables and each Λk corresponds to a state variable xk with x = (Sh,Eh, Ih,Th,Nm,Ss,Es, Is,Nc).

The Hamiltonian function is defined as

(5)

H(t,x,u,Λ) = L+Λ1
dSh
dt +Λ2

dEh
dt +Λ3

dIh
dt +Λ4

dTh
dt +Λ5

dNm
dt +Λ6

dSs
dt +Λ7

dEs
dt +Λ8

dIs
dt +Λ9

dNc
dt

where t denotes time, L the Lagrangian (the integrand in 2), the state variables are denoted by

x = (Sh,Eh, Ih,Th,Nm,Ss,Es, Is,Nc), and the controls as u = (u1,u2,u3). The adjoint variables

are denoted by Λ = (Λ1,Λ2,Λ3,Λ4,Λ5,Λ6,Λ7,Λ8,Λ9). Clearly, the Lagrangian

(6) L = v1Eh + v2Ns + v3Nc + v4u2
1 + v5u2

2 + v6u2
3

From the definition of the Hamiltonian function 5, we obtain:
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H(t,x,u,Λ) = v1Eh + v2Ns + v3Nc + v4u2
1 + v5u2

2 + v6u2
3

+Λ1(αh +ρTh− βhNcSh
c0+εNc

−µhSh)

+Λ2(
βhNcSh
c0+εNc

−σhEh−u1Eh−µhEh)

+Λ3(σhEh− γhIh−δhIh−µhIh)

+Λ4(u1Eh + γhIh−ρTh− (1−ρ)δhTh−µhTh)

+Λ5(λ1Ih−µmNm)

+Λ6(αs− βsNmSs
m0+εNm

−u2Ss−µsSs)

+Λ7(
βsNmSs

m0+εNm
−σsEs−u2Es−δsEs−µsEs)

+Λ8(σsEs−u2Is−δsIs−µsIs)

+Λ9(λ2Is−u3Nc−µcNc)

(7)

The adjoint system is given by

(8) dΛk
dt =− ∂H

∂xk(t)

whose solution gives the adjoint or co-state variables. Moreover,

(9)



dΛ1
dt =− ∂H

∂Sh(t)
= (Λ1−Λ2)

(
βhNc

c0+εNc

)
+Λ1µh

dΛ2
dt =− ∂H

∂Eh(t)
= (Λ2−Λ3)σh +(Λ2−Λ4)u1 +Λ2µh− v1

dΛ3
dt =− ∂H

∂ Ih(t)
= (Λ3−Λ4)γh +Λ3(δh +µh)−Λ5λ1

dΛ4
dt =− ∂H

∂Th(t)
= (Λ4−Λ1)ρ +Λ4((1−ρ)δh +µh)

dΛ5
dt =− ∂H

∂Nm(t)
= (Λ6−Λ7)

(
m0βsSs

(m0+εNm)2

)
+Λ5µm

dΛ6
dt =− ∂H

∂Ss(t)
= (Λ6−Λ7)

(
βsNm

m0+εNm

)
+Λ6(u2 +µs)− v2

dΛ7
dt =− ∂H

∂Es(t)
= (Λ7−Λ8)σs +Λ7(u2 +δs +µs)− v2

dΛ8
dt =− ∂H

∂ Is(t)
= Λ8(u2 +δs +µs)−Λ9λ2− v2

dΛ9
dt =− ∂H

∂Nc(t)
= (Λ1−Λ2)

(
c0βhSh

(c0+εNc)2

)
+Λ9(u3 +µc)− v3

which satisfies the boundary condition Λk(t f ) = 0, ∀ k = 1,2, ...,9.
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We therefore formulate the following theorem based on the Pontryagin’s Minimum Principle,

[30] together with the existence properties from Corollary 4.1 of Fleming and Rishel, [14].

Theorem 3.2. The optimal control triple (u∗1,u
∗
2,u
∗
3) with corresponding states

(S∗h,E
∗
h , I
∗
h ,T

∗
h ,N

∗
m,S
∗
s ,E
∗
s , I
∗
s ,N

∗
c ) to the state system 1 that minimizes the objective functional

J (u) in equation (2) over U is given by

(10)


u∗1 = min

{
max

(
0, (Λ2−Λ4)Eh

2v4

)
,u1max

}
u∗2 = min

{
max

(
0, Λ6Ss+Λ7Es+Λ8Is

2v5

)
,u2max

}
u∗3 = min

{
max

(
0, Λ9Nc

2v6

)
,1
}
.

where the solution sequence (Λk), for k = 1,2, ...,9 satisfy equation (9).

Proof. Consider the existence results of optimal control from Fleming and Rishel, [14] which

is based on the Lipschitz property of the model equations in relation to the model variables, the

convexity of the integrand of the objective functional J (u) in relation to the controls u1, u2

and u3, and that the solutions of the model variables are priori bounded. Clearly, the adjoint

system (9) is obtained using the relation dΛk
dt = − ∂H

∂xk(t)
, for k = 1,2, ...,9, as previously stated.

Additionally, the optimal controls (see [22]) is obtained by solving:

(11) ∂H
∂ û j

= 0

at u j = û j with j = 1,2,3. Thus,

(12)


∂H
∂u1

= 2v4u1 +(Λ4−Λ2)Eh

∂H
∂u2

= 2v5u2−Λ6Ss−Λ7Es−Λ8Is

∂H
∂u3

= 2v6u3−Λ9Nc

and accordingly, at u j = û j;

(13)


û1 =

(Λ2−Λ4)Eh
2v4

û2 =
Λ6Ss+Λ7Es+Λ8Is

2v5

û3 =
Λ9Nc
2v6
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Hence, the optimal control vector which minimizes the objective functional, J (u) (2) de-

noted by u∗ = (u∗1,u
∗
2,u
∗
3) is obtained as:

(14)


u∗1 = min{max(0, û1) ,u1max}

u∗2 = min{max(0, û2) ,u2max}

u∗3 = min{max(0, û3) ,1} .

Similarly, if we assign bounds to the control variable, then the optimality conditions are given

by:

u∗1 =


0, if û1 < 0

û1, if 0≤ û1 ≤ u1max

u1max, if û1 > u1max

, u∗2 =


0, if û2 < 0

û2, if 0≤ û2 ≤ u2max

u2max, if û2 > u2max

and

(15) u∗3 =


0, if û3 < 0

û3, if 0≤ û3 ≤ 1

1, if û3 > 1

The uniqueness for a small time interval is usual in ”two-point” boundary value problems due to

opposite time orientations, the state equations have initial conditions, and the adjoint equations

have final time conditions. The optimal controls, u1, u2 and u3 are characterized in terms of the

unique solution of the optimality system. �

4. NUMERICAL SOLUTIONS

In this section, we carried out numerical simulation of the optimality system as characterized

by the model equation (1) together with the adjoint system equation (9) using the forward-

backward Runge Kutta fourth order scheme. Basically, we examined the effects of the following

control strategies:

S1: Optimal diagnosis and treatment of exposed individuals (u1) only;

S2: Optimal application of chemical mulluscicides on snails (u2) only;

S3: Optimal treatment of water by chlorination (u3) only;
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S4: Optimal diagnosis and treatment of exposed individuals (u1) and optimal application of

chemical mulluscicides on snails (u2);

S5: Optimal diagnosis and treatment of exposed individuals (u1) and optimal treatment of

water by chlorination (u3);

S6: Optimal application of chemical mulluscicides on snails (u2) and optimal treatment of

water by chlorination (u3) and

S7: Optimal diagnosis and treatment of exposed individuals (u1), optimal application of

chemical mulluscicides on snails (u2) and optimal treatment of water by chlorination

(u3).

The parameter values used in the numerical simulation are presented in table 1. These values are

mainly obtained from existing literature and few others are estimated based on the population

of and the disease dynamics in The Gambia. The weight constants were theoretically chosen

and thus, it is assumed that let v1 = 0.6, v2 = 0.3, v3 = 0.4, v4 = 0.9, v5 = 0.1 and v6 = 0.5.

Moreover, u1max is taken as u1max = 0.8 and u2max = 0.4. Finally, the initial conditions used for

the state variables are: Sh(0) = 1000000, Eh(0) = 500, Ih(0) = 400, Th(0) = 0, Ss(0) = 800000,

Es(0) = 400, Is(0) = 200, Nm(0) = 200 and Nc(0) = 100.

S1 - Optimal diagnosis and treatment of exposed individuals (u1) only: Here, all the other

two optimal controls were neglected i.e. u2 = u3 = 0, so as to examine the effects of optimal

control u1. Results in figure 1, figure 2 and figure 3 showed the effects of this control strategy on

the various compartments. It can be observed that early diagnosis and treatment of the exposed

individuals only will actually slow the disease progression by reducing the rate of progression

from exposed to infected individuals thereby mitigating the rate of production of miracidia by

infected humans and hence, slowing down the number of snails contracting the disease. This

means that the shedding of cercariae will also be drastically reduced. However, this control

strategy alone is not sufficient enough to control entirely or in other words, eliminate the disease.
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(A) Susceptible humans with u1 only. (B) Exposed humans with u1 only.

(C) Infected humans with u1 only. (D) Treated humans with u1 only.

FIGURE 1. Evolution of the human sub-population with treatment of Exposed

humans only

(A) Miracidia sub-population with u1

only.

(B) Cercariae sub-population with u1

only.

FIGURE 2. Evolution of the pathogen sub-population with treatment of Exposed

humans only
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(A) Susceptible snails with u1 only. (B) Exposed snails with u1 only.

(C) Infected snails with u1 only.

FIGURE 3. Evolution of the snail sub-population with treatment of Exposed

humans only

FIGURE 4. The optimal control profile with respect S1
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S2 - Optimal application of chemical mulluscicide on snails (u2) only: By this method, we

considered u1 = u3 = 0 and then examine the influence of u2 on the optimal control of the spread

of the disease. Results in figure 5, figure 6 and figure 7 indicated the swiftness of this control

mechanism in eradicating the disease. The strategy seek to stop the production of cercariae

by killing the snails which are the intermediate hosts. However, from the figures, we can see

the environmental consequences of the application of this control strategy as it may lead to

the total extinction of the snail species. In other words, this control strategy is totally non-

environmentally friendly, although, it still stand out as one of the quickest ways to eradicate the

spread of schistosomiasis. These results are another indication that the spread of the disease

is mainly ecological i.e. schistosomiasis spreads faster from snails to humans than from the

humans to the snails.

(A) Susceptible humans with u2 only. (B) Exposed humans with u2 only.

(C) Infected humans with u2 only. (D) Treated humans with u2 only.

FIGURE 5. Evolution of the human sub-population with the use of chemical

mulluscicide only
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(A) Miracidia sub-population with u2

only.

(B) Cercariae sub-population with u2

only.

FIGURE 6. Evolution of the pathogen sub-population with the use of chemical

mulluscicide only

(A) Susceptible snails with u2 only. (B) Exposed snails with u2 only.

(C) Infected snails with u2 only.

FIGURE 7. Evolution of the snail sub-population with the use of chemical mul-

luscicide only
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FIGURE 8. The optimal control profile with respect S2

S3 - Optimal treatment of water by chlorination (u3) only: Here, we considered u3 in the

absence of both u1 and u2. The aim is to investigate the effects of the optimal control u3 on

the progression of schistosomiasis. The graphical results presented in figure 9, figure 10 and

figure 11 showed that u3 is effective in slowing down the transmission of schistosomiasis within

the human sub-population. But, since it only kill cercariae, the already exposed individuals will

progress to the infected class and thus, join those already shedding eggs for the production of

miracidia. This means that more snails (though at a slower rate) will continue to get infected

and the production of cercariae will be a continuous process and as a consequence, the disease

will possibly continue to spread although at a more slower rate.
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(A) Susceptible humans with u3 only. (B) Exposed humans with u3 only.

(C) Infected humans with u3 only. (D) Treated humans with u3 only.

FIGURE 9. Evolution of the human sub-population with treatment of water by

chlorination only

(A) Miracidia sub-population with u3

only.

(B) Cercariae sub-population with u3

only.

FIGURE 10. Evolution of the pathogen sub-population with treatment of water

by chlorination only
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(A) Susceptible snails with u3 only. (B) Exposed snails with u3 only.

(C) Infected snails with u3 only.

FIGURE 11. Evolution of the snail sub-population with treatment of water by

chlorination only

FIGURE 12. The optimal control profile with respect to S3
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S4 - Optimal diagnosis and treatment of exposed individuals (u1) and optimal application

of chemical mulluscicides on snails (u2). This strategy implements optimal control by early

diagnosis and treatment of exposed individuals (u1) and optimal application of chemical mullus-

cicides on snails (u2) only. The graphs in figure 13 , figure 14 and figure 15 show the effects of

this optimal control strategy on the dynamics of the disease with respect to the dynamics of the

human, snail and the free living miracidia and cercariae sub-populations. The results indicate

that the control strategy require high cost (see figure 16) but can eventually lead to the eradica-

tion of the disease. Further, the strategy, like strategy S2, will lead to the total extermination of

the snail species as shown in figure 15 .

(A) Susceptible humans with u1 and u2

only. (B) Exposed humans with u1 and u2 only.

(C) Infected humans with u1 and u2 only. (D) Treated humans with u1 and u2 only.

FIGURE 13. Evolution of the human sub-population with treatment of the Ex-

posed humans and use of chemical mulluscicide only.
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(A) Miracidia sub-population with u1 and

u2 only.

(B) Cercariae sub-population with u1 and

u2 only.

FIGURE 14. Evolution of the pathogen sub-population with treatment of the

Exposed humans and use of chemical mulluscicide only.

(A) Susceptible snails with u1 and u2 only. (B) Exposed snails with u1 and u2 only.

(C) Infected snails with u1 and u2 only.

FIGURE 15. Evolution of the snail sub-population with treatment of the Ex-

posed humans and use of chemical mulluscicide only.
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FIGURE 16. The optimal control profiles with respect to S4

S5 - Optimal diagnosis and treatment of exposed individuals (u1) and optimal treatment of

water by chlorination (u3). This optimal control strategy employed u1 and u3 in the absence

of the use of chemical mulluscicide (u2). The graphical results presented in figure 17 , figure 18

and figure 19 indicate the effects that a combination of u1 and u3 will have on the dynamics of

the human, snail and the free living miracidia and cercariae sub-populations. Figure 17 show

a rapid fall in the infectious human compartments and a steady rise in the susceptible human

compartment. Figure 18 show a sudden fall of the free living miracidia, figure 18a and the free

living cercariae, figure 18b. Figure 19 equally shows a fall in the exposed and infected snail

compartments which give way for a steady rise in the susceptible snail compartment. These

results are an indication that implementation of this control strategy will not only eradicate the

spread of schistosomiasis, it will, in fact, give way for a healthy snail population. Apparently,

this combined optimal control strategy, is both effective and more environmentally friendly.
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(A) Susceptible humans with u1 and u3 only. (B) Exposed humans with u1 and u3 only.

(C) Infected humans with u1 and u3 only. (D) Treated humans with u1 and u3 only.

FIGURE 17. Evolution of the human sub-population with treatment of the Ex-

posed humans and water by chlorination only.

(A) Miracidia sub-population with u1 and

u3 only.

(B) Cercariae sub-population with u1 and

u3 only.

FIGURE 18. Evolution of the pathogen sub-population with treatment of the

Exposed humans and water by chlorination only.
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(A) Susceptible snails with u1 and u3 only. (B) Exposed snails with u1 and u3 only.

(C) Infected snails with u1 and u3 only.

FIGURE 19. Evolution of the snail sub-population with treatment of the Ex-

posed humans and water by chlorination only.

FIGURE 20. The optimal control profiles with respect to S5



OPTIMAL CONTROL OF SCHISTOSOMIASIS 4623

S6 - Optimal application of chemical mulluscicides on snails (u2) and optimal treatment of

water by chlorination (u3). With this strategy, the controls u2 and u3 are considered i.e. use of

chemical muluscicides on snails and chlorination of water to kill cercariae. The results of this

strategy as revealed in figure 21 , figure 22 and figure 23 showed a steady rise in susceptible

human sub-population and a sudden fall in the infected human sub-population which indicated

the eradication of the disease within the human sub-population, figure 21a and figure 21c. The

pathogen sub-populations equally fall rapidly with the implementation of this control strategy,

figure 22a and figure 22b. This shows how swift the control strategy can be in eliminating

the disease. The results, however, further indicated that the process, similar to what is observed

with strategies S2 and S4, will equally lead to the extinction of snails, see figure 23a , figure 23b

and figure 23c.

(A) Susceptible humans with u2 and u3

only. (B) Exposed humans with u2 and u3 only.

(C) Infected humans with u2 and u3 only. (D) Treated humans with u2 and u3 only.

FIGURE 21. Evolution of the human sub-population with the use of chemical

mulluscicide and treatment water by chlorination only.
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(A) Miracidia sub-population with u2 and

u3 only.

(B) Cercariae sub-population with u2 and

u3 only.

FIGURE 22. Evolution of the pathogen sub-population the with use of chemical

mulluscicide and treatment water by chlorination only.

(A) Susceptible snails with u2 and u3 only. (B) Exposed snails with u2 and u3 only.

(C) Infected snails with u2 and u3 only.

FIGURE 23. Evolution of the snail sub-population with the use of chemical mul-

luscicide and treatment water by chlorination only.
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FIGURE 24. The optimal control profiles with respect to S6

S7 - Optimal diagnosis and treatment of exposed individuals (u1), optimal application of

chemical mulluscicides on snails (u2) and optimal treatment of water by chlorination (u3).

This strategy combines all the three optimal control measures. The results of the implementation

of these strategy are seen in figures 25 and 26. This measure is very effective in controlling

the spread of schistosomiasis as it leads to the total eradication of the disease. However, the

ecological impacts of the implementation of this strategy is highly negative. As observed in

relation to strategies S2, S4 and S6, this strategy results in the extinction of snails, see figure 27 .

Thus, in order to preserve the ecology by saving the snail species, this control strategy, although

very effective, should not be implemented.



4626 EBRIMA KANYI, AYODEJI SUNDAY AFOLABI, NELSON OWUOR ONYANGO

(A) Susceptible humans with optimal

control.

(B) Exposed humans with optimal con-

trol.

(C) Infected humans with optimal control. (D) Treated humans with optimal control.

FIGURE 25. Evolution of the human sub-population with optimal control.

(A) Miracidia sub-population with opti-

mal control.

(B) Cercariae sub-population with opti-

mal control.

FIGURE 26. Evolution of the pathogen sub-population with optimal control.
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(A) Susceptible snails with optimal con-

trol. (B) Exposed snails with optimal control.

(C) Infected snails with optimal control.

FIGURE 27. Evolution of the snail sub-population with optimal control.

FIGURE 28. The optimal control profiles with respect to S7
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5. CONCLUSION

This paper presents an optimal control problem for the control of schistosomiasis with three

time-dependent optimal control measures and a combination of these controls. The existence

of the optimal control was established and the Hamiltonian and adjoint equations that charac-

terize the optimal control problem based on the Pontryagin’s minimum principle were derived.

The optimal control problem was then solved numerically using the forward-backward Runge

Kutta scheme. The results from the numerical simulation indicate that within the single control

strategies, snail elimination using chemical mulluscicide is the most effective control approach.

However, the method is very damaging to the ecosystem as it may lead to the total extinction

of the snail species. In fact, any control strategy involving using chemical mulluscicide to kill

snails are very effective but has a negative effect on the ecology as it leads to the extermina-

tion snails. This is an indication that the disease transmits faster from snails to humans than

from humans to snails as observed in, [8], [9] and [10]. Consequently, we recommend the fifth

control strategy (S5), a combination of early diagnosis and treatment of the exposed individu-

als and water treatment by chlorination. This optimal control strategy according to the results

from the numerical simulations does not only eliminate the transmission of schistosomiasis, it

also tend to preserve the ecosystem by giving rise to a schistosomiasis free human and snail

sub-populations.
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