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Abstract: In this paper, we suggested a numerical scheme for solving singularly perturbed differential-difference 

equation with small shift.  First, Taylor series used to replace the given problem as singularly perturbed boundary 

value problem and then subsequently a fourth order finite difference scheme is employed to solve this problem. 

Convergence of the method is evaluated. By considering numerical experiments, the effect of small shift on the 

boundary layer solution of the problem is demonstrated. 
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1. INTRODUCTION 

In the area of differential equation having delay, calculating its solution was an immense task, and 

was of considerable significance due to versatility of these equations in the mathematical modeling 

of processes in various application fields [2, 17]. For the detailed theory of delay differential 

equations, also known as functional differential equations, one may refer to [4, 6]. The numerical 
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solution of singular perturbation problems is very well described in [3 5, 7, 12, 15].  In [1], the 

author derived a numerical scheme using finite differences for the solution of functional 

differential equations of second order. The authors in [8] presented a numerical method for solving 

boundary layer problems having delay, which works well, when delay argument is bigger one as 

well as smaller one. Kumara Swamy et al. [9] suggested a numerical integration scheme for solving 

delay differential equations with twin layers or oscillatory behavior. Lange and Miura [10] 

analyzed on the problems that display layer behavior at one or both boundaries using Laplace 

transforms. In [11], the same authors studied the problems having solutions which have turning 

point behavior. Phaneendra et al. [13] suggested a higher order compact numerical scheme for the 

solution of boundary layer problem with delay term. The same authors in [14] used Trapezoidal 

rule of integration to solve the delay differential equations having dual layers or oscillatory 

structure. Soujanya and Reddy [16] employed Simpson’s rule of integration for the problems of 

delay differential equations with layer composition. 

 

2. PROBLEM DESCRIPTION 

Consider a singularly perturbed linear two - point boundary value problem having small 

delay of the form: 

          𝜀𝜔′′(𝜃) + 𝑝(𝜃)𝜔′(𝜃 − 𝛿) + 𝑞(𝜃)𝜔(𝜃 − 𝛿) + 𝑟(𝜃)𝜔(𝜃) = 𝑓(𝜃)             (1) 

on (0, 1), under the boundary  

              𝜔(𝜃) = 𝜑(𝜃)    on -𝛿 ≤ 𝜃 ≤ 0,   𝜔(1) = 𝛾,                          (2) 

where the functions 𝑝(𝜃), 𝑞(𝜃), 𝑟(𝜃), 𝑓(𝜃) and 𝜑(𝜃) )  are smooth,    is small perturbation 

parameter,  0 < 𝜀 << 1  and the delay parameter 𝛿 (0 < 𝛿 < 1)  is of o(   ) satisfying the 

condition (𝜀 − 𝛿𝑝(𝜃) +
𝛿2

2
𝑞(𝜃)) < 0 and 𝑞(𝜃) + 𝑟(𝜃) < 0, ∀𝜃 ∈ (0,1). 

Expanding the terms 𝜔(𝜃 − 𝛿) and 𝜔′(𝜃 − 𝛿) by Taylor series, as the solution 𝜔(𝜃) 

of the problem Eq. (1) with Eq. (2) is sufficiently differentiable, we have 

                       𝜔′(𝜃 − 𝛿) ≈ 𝜔′(𝜃) − 𝛿𝜔′′(𝜃)                                        (3a)                  

          𝜔(𝜃 − 𝛿) ≈ 𝜔′(𝜃) − 𝛿𝜔′(𝜃) +
𝛿2

2
 𝜔′′(𝜃)                              (3b) 

Using (3) in (1), we get an equivalent problem as 

https://www.sciencedirect.com/topics/engineering/differential-delay
https://www.sciencedirect.com/topics/engineering/oscillatory-behavior
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     (𝜀 − 𝛿𝑝(𝜃) +
𝛿2

2
𝑞(𝜃)) 𝜔′′(𝜃) + 𝑎(𝜃)𝜔′(𝜃) + 𝑏(𝜃)𝜔(𝜃) = 𝑓(𝜃)                 (4) 

Eq. (4) is a second order singular perturbation problem.   

Here,              𝜀̃ = (𝜀 − 𝛿𝑝(𝜃) +
𝛿2

2
𝑞(𝜃))                                  (5a)                                                    

                   𝑎(𝜃) = 𝑝(𝜃) − 𝛿𝑞(𝜃)                                       (5b)                             

                    𝑏(𝜃) = 𝑞(𝜃) + 𝑟(𝜃)                             (5c) 

 

3. NUMERICAL METHOD 

Discretize the region [0, 1] into N subregions of mesh size h = 1/N so that 𝜃𝑖 = 𝑖ℎ,   

for 𝑖 =0, 1, 2, …, N are the nodes. 

At 𝜃 = 𝜃𝑖  the Eq. (4) becomes  

    𝜀̃𝜔𝑖
″ + 𝑎𝑖𝜔𝑖

′ + 𝑏𝑖𝜔𝑖 = 𝑓𝑖                    (6) 

Using the central difference formulae for 𝜔′𝑖 and 𝜔𝑖
″ in new form as  

                       𝜔𝑖
″ ≅ 𝐷+𝐷−𝜔𝑖 −

ℎ
2

12
𝜔𝑖

(4) + 𝑅1                       (7) 

     𝜔𝑖
′ ≅ 𝐷±𝜔𝑖 −

ℎ
2

6
𝜔𝑖

′′′ + 𝑅2                          (8) 

         where   𝐷+𝐷−𝜔𝑖 =
𝜔𝑖−1−2𝜔𝑖+𝜔𝑖+1

ℎ
2  , 𝐷±𝜔𝑖 =

𝜔𝑖+1−𝜔𝑖−1

2ℎ
 ,  𝑅1 = −

2ℎ
4𝜔(6)(𝜉)

6!
 

                     𝑅2 = −
ℎ

4𝜔(5)(𝜂)

5!
     for 𝜉, 𝜂 ∈ [𝜃𝑖−1,  𝜃𝑖+1].   

From the differential Eq. (6), we obtain 𝜔′′′𝑖,  𝜔𝑖
(4) as 

             
𝜔𝑖

′′′ = [−
𝑎𝑖

𝜀̃
𝜔′′𝑖 −

(𝑎𝑖
′ +𝑏𝑖)

𝜀̃
𝜔′𝑖 −

𝑏𝑖
′

𝜀̃
𝜔 +

𝑓′

𝜀̃
] 

       

𝜔𝑖
(4)

= [
𝑎𝑖

2

𝜀̃2 −
(2𝑎𝑖

′ +𝑏𝑖)

𝜀̃
] 𝜔′′𝑖 + [

𝑎𝑖(𝑎𝑖
′ +𝑏𝑖)

𝜀̃2 −
(𝑎𝑖

″+2𝑏𝑖
′)

𝜀̃
] 𝜔′𝑖 + [

𝑎𝑏𝑖
′

𝜀̃2 −
𝑏𝑖

″

𝜀̃
] 𝜔𝑖 +

1

𝜀̃
𝑓𝑖

″

 
Using these expressions in Eq. (7), Eq. (8) and then from Eq. (6), we get 

𝜀̃ {
[1 −

ℎ
2𝑎𝑖

2

12𝜀̃2
+

ℎ
2(2𝑎𝑖

′ +𝑏𝑖)

12𝜀̃
] (

𝜔𝑖−1−2𝜔𝑖+𝜔𝑖+1

ℎ
2 ) + [

ℎ
2(𝑎𝑖

″+2𝑏𝑖
′)

12𝜀̃
−

ℎ
2𝑎𝑖(𝑎𝑖

′ +𝑏𝑖)

12𝜀̃
]

(𝜔𝑖+1−𝜔𝑖−1)

2ℎ

− [
ℎ

2𝑏𝑖
″

12𝜀̃
−

𝑎𝑖𝑏𝑖
′ℎ

2

12𝜀̃2 ] 𝜔𝑖 −
ℎ

2

12𝜀̃
𝑓𝑖

″
}     

+𝑎𝑖 [
𝑎𝑖ℎ

2

6𝜀̃
(

𝜔𝑖−1−2𝜔𝑖+𝜔𝑖+1

ℎ
2 ) + (1 +

ℎ
2

6𝜀̃
(𝑎𝑖

′ + 𝑏𝑖))
(𝜔𝑖+1−𝜔𝑖−1)

2ℎ
+

ℎ
2

6𝜀̃
𝑏′𝜔𝑖 −

ℎ
2𝑓𝑖

′

6𝜀̃
] + 𝑏𝑖𝜔𝑖 = 𝑓𝑖     (9) 
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Eq. (9) can be written as 𝐸𝑖𝜔𝑖−1 − 𝐹𝑖𝜔𝑖 + 𝐺𝑖𝜔𝑖+1 = 𝐻𝑖,  for i = 1, 2, …, N-1           (10)    

where 

𝐸𝑖 =
𝜀̃

ℎ
2 −

𝑎𝑖
2

12𝜀̃
+

(2𝑎𝑖
′ + 𝑏𝑖)

12
+

𝑎𝑖
2

6𝜀̃
−

ℎ

24
(𝑎𝑖

″ + 2𝑏𝑖
′) +

ℎ𝑎𝑖(𝑎𝑖
′ + 𝑏𝑖)

24𝜀̃
−

𝑎𝑖

2ℎ
(1 +

ℎ
2

6𝜀̃
(𝑎𝑖

′ + 𝑏𝑖))
 

 𝐹𝑖 =
2𝑎𝑖

2

12𝜀̃
−

2𝜀̃

ℎ
2 −

2(2𝑎𝑖
′ + 𝑏𝑖)

12
−

2𝑎𝑖
2

6
+

ℎ
2𝑏𝑖

″

12
−

ℎ
2𝑎𝑖𝑏𝑖

′

12𝜀̃
+

ℎ
2𝑎𝑖

2𝑏𝑖
′

6𝜀̃
+ 𝑏𝑖

 

𝐺𝑖 =
𝜀̃

ℎ
2 −

𝑎𝑖
2

12𝜀̃
+

(2𝑎𝑖
′ + 𝑏𝑖)

12
+

𝑎𝑖
2

6𝜀̃
+

ℎ

24
(𝑎𝑖

″ + 2𝑏𝑖
′)_

ℎ𝑎𝑖(𝑎𝑖
′ + 𝑏𝑖)

24𝜀̃
+

𝑎𝑖

2ℎ
(1 +

ℎ
2

6𝜀̃
(𝑎𝑖

′ + 𝑏𝑖))
 

𝐻𝑖 =
𝜀̃ℎ2

12𝜀̃
𝑓𝑖

″ +
𝑎𝑖ℎ

2

6𝜀̃
𝑓𝑖

′ + 𝑓𝑖
 

We solve the tridiagonal system Eq. (10) by using Thomas algorithm. 

 

4. CONVERGENCE ANALYSIS 

The system of Eq. (10) in matrix-vector form is given by 

                       CAY = .                        (11) 

Here 𝐴 = (𝑚𝑖 𝑗) ,  1 ≤ 𝑖, 𝑗 ≤ 𝑁-1   is a tridiagonal matrix of order N-1, with 

𝑚𝑖 i+1 =
𝜀̃

ℎ
2 −

𝑎𝑖
2

12𝜀̃
+

(2𝑎𝑖
′ + 𝑏𝑖)

12
+

𝑎𝑖
2

6𝜀̃
+

ℎ

24
(𝑎𝑖

″ + 2𝑏𝑖
′)

ℎ𝑎𝑖(𝑎𝑖
′ +𝑏𝑖)

24𝜀̃

+
𝑎𝑖

2ℎ
(1 +

ℎ
2

6𝜀̃
(𝑎𝑖

′ + 𝑏𝑖)) 

𝑚𝑖 𝑖 =   
2𝑎𝑖

2

12𝜀̃
−

2𝜀̃

ℎ
2 −

2(2𝑎𝑖
′ + 𝑏𝑖)

12
−

2𝑎𝑖
2

6
+

ℎ
2𝑏𝑖

″

12
−

ℎ
2𝑎𝑖𝑏𝑖

′

12𝜀̃
+

ℎ
2𝑎𝑖

2𝑏𝑖
′

6𝜀̃
+  𝑏𝑖                          

𝑚i i−1 =  
𝜀̃

ℎ
2 −

𝑎𝑖
2

12𝜀̃
+

(2𝑎𝑖
′ + 𝑏𝑖)

12
+

𝑎𝑖
2

6𝜀̃
−

ℎ

24
(𝑎𝑖

″ + 2𝑏𝑖
′) +

ℎ𝑎𝑖(𝑎𝑖
′ + 𝑏𝑖)

24𝜀̃
−

𝑎𝑖

2ℎ
(1 +

ℎ
2

6𝜀̃
(𝑎𝑖

′ + 𝑏𝑖)) 

and   𝐶 = (𝑑𝑖) is a column vector with  𝑑𝑖 =
𝜀̃ℎ

2

12𝜀̃
𝑓𝑖

″ +
𝑎𝑖ℎ

2

6𝜀̃
𝑓𝑖

′ + 𝑓𝑖   for 𝑖 = 1 ,2 ,.., N-1 

with local truncation error  

|𝜏𝑖| ≤ 𝑚𝑎𝑥
𝑥𝑖−1≤𝑥≤𝑥𝑖+1

{
ℎ

4𝑎(𝜃)

5!
|𝜔(5)(𝜃)|} + 𝑚𝑎𝑥

𝑥𝑖−1≤𝑥≤𝑥𝑖+1

{
2ℎ

4𝜀̃

6!
|𝜔(6)(𝜃)|} 

i.e.,           |𝜏𝑖| ≤ 𝑜(ℎ
4)                                     (12) 

and   Y = (𝜔0, 𝜔1, 𝜔2, . . . , 𝜔𝑁)𝑡.      
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Let  𝑌
__

= (𝜔0

__
, 𝜔1

__
, 𝜔2

__
, . . . , 𝜔𝑁

__
)𝑡denotes the actual solution and the local truncation error be 

𝑇(ℎ) = (𝑇0(ℎ), 𝑇1(ℎ), . . . , 𝑇𝑁(ℎ))𝑡, then we have       

                                     𝐴𝑌
__

− 𝑇(ℎ) = 𝐶               (13)             

Using Eq. (11) and Eq. (13), we get 

                                  𝐴 (𝑌
__

− 𝑌) = 𝑇(ℎ)                            (14)  

Hence, the error equation is             AE = T(h)                               (15)  

where   𝐸 = 𝑌
__

− 𝑌 = (𝑒0, 𝑒1, 𝑒2, . . . , 𝑒𝑁)𝑡 .     

Clearly, we have   

𝑆𝑖 = ∑ 𝑚𝑖 j

𝑁−1

𝑗=1

= −
𝜀̃

ℎ
2 +

𝑎𝑖
2

12𝜀̃
−

(2𝑎𝑖
′ + 𝑏𝑖)

12
−

𝑎𝑖
2

6𝜀̃
+

𝑎𝑖ℎ
2𝑏𝑖

″

12
_

ℎ
2𝑎𝑖𝑏𝑖

1

12𝜀̃
+

𝑎𝑖
2ℎ

2𝑏𝑖
1

6𝜀̃
+ 𝑏𝑖 +

ℎ𝑎𝑖
″

24𝜀̃
 

                          +
ℎ𝑏𝑖

′

12
−

ℎ𝑎𝑖𝑎𝑖
′

24𝜀̃
 −

ℎ𝑎𝑖𝑏𝑖

24𝜀̃
+

𝑎𝑖

2ℎ
(1 +

ℎ
2

6𝜀̃
(𝑎𝑖

′ + 𝑏𝑖))  ,  for   𝑖 = 1   

𝑆𝑖 = ∑ 𝑚𝑖 j

𝑁−1

𝑗=1

= 𝑏 −
ℎ

2𝑏𝑖
″

12
−

𝑎𝑖𝑏𝑖
′ℎ

2

12𝜀̃
+

𝑎𝑖ℎ
2𝑏𝑖

′

6𝜀̃
= 𝑏𝑖 + 𝑜(ℎ

2) = 𝐵𝑖0
 ,   for   𝑖 = 2,3, . . . , 𝑁 − 2  

        𝑆𝑖 = ∑ 𝑚𝑖 j
𝑁−1
𝑗=1 =  −

𝜀̃

ℎ
2 +

𝑎𝑖
2

12𝜀̃
−

(2𝑎𝑖
′ +𝑏𝑖)

12
−

𝑎𝑖
2

𝜀̃
−

ℎ(𝑎𝑖
″+2𝑏𝑖

′)

24
+

ℎ𝑎𝑖(𝑎𝑖
′ +𝑏𝑖)

24𝜀̃
 

                                            −
𝑎𝑖

2ℎ
(1 +

ℎ
2

6𝜀̃
(𝑎𝑖

′ + 𝑏𝑖)) +
𝑎𝑖ℎ

2𝑏𝑖
″

12
_

ℎ2𝑎𝑖𝑏𝑖
1

12𝜀̃
+

𝑎𝑖
2ℎ2𝑏𝑖

1

6𝜀
+ 𝑏𝑖, for 𝑖 = 𝑁 − 1 

By choosing sufficiently small h, we get irreducible and monotone matrix A. It gives the existence 

of 𝐴−1 and its elements are non-negative. 

Hence from Eq. (15), we get               𝐸 = 𝐴−1𝑇(ℎ)              (16) 

Also, using the matrix theory [18], we have 

                           ∑   𝑚
__

k, i 𝑆𝑖 = 1  ,   𝑘 = 1 (1) 𝑁-1  𝑁−1
𝑖=1                (17) 

where  𝑚
__

𝑘,𝑖 is  (𝑘, 𝑖) element of the matrix  𝐴-1. 

Therefore,  for some 𝑖0 between 1 and N-1, we have          

                            ∑  𝑚
__

k, i  ≤
1

min
1≤𝑖≤𝑁−1

𝑆𝑖
 =  

1

𝐵𝑖0

≤
1

|𝐵𝑖0|

𝑁−1
𝑖=1                   (18)                                   

From Eq. (16), Eq. (18) and Eq. (12), we get 
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𝑒𝑗 = ∑   

𝑁−1

𝑖=1

 𝑚
__

k, i𝑇𝑖(ℎ),   𝑗 = 1,2,..., 𝑁-1  

           𝑒𝑗 ≤
𝑜(ℎ

4)

|𝐵𝑖0
|

  ,              𝑗 = 1,2,..., 𝑁-1                       (19)                                          

where 𝐵𝑖0
= 𝑏𝑖 .                                                         

Therefore,                  ‖𝐸‖ = 0(ℎ
4). 

Hence, the proposed method has a fourth order convergent on uniform mesh.     

 

5. NUMERICAL EXAMPLES 

We consider four examples to demonstrate the proposed method computationally. The maximum 

point-wise errors at all the mesh points are calculated using the double mesh principle                      

𝐸𝜀
𝑁 = 𝑚𝑎𝑥

0≤𝑗≤𝑁
|(𝜔𝜀

𝑁)𝑗 − (𝜔𝜀
2𝑁)𝑗|

 
when exact solution is not available for the problems. 

Example 1: Our first problem is the following differential equation with variable coefficients  

−𝜀𝜔′′(𝜃) + (1 + 𝜃)𝜔′(𝜃 − 𝛿) − 𝑒−2𝜃𝜔(𝜃 − 𝛿) + 𝑒−𝜃𝜔(𝑥) = 0 with 𝜔(𝜃) = 1,  −𝛿 ≤ 𝜃 ≤ 0 

and 𝜔(1) = −1. 

Table 1 shows the maximum absolute error values obtained by the present scheme for various 

values of 𝛿  and N with  𝜀 = 10−2 . The effect of the small parameter on the boundary layer 

solutions is shown in Figure. 1.                      

Example 2: Secondly, we consider the inhomogeneous equation  

 −𝜀𝜔′′(𝜃) + (1 + 𝜃)𝜔′(𝜃 − 𝛿) − 𝑒−2𝜃𝜔(𝜃 − 𝛿) + 𝑒−𝜃𝜔(𝑥) = 1 under the conditions 

 𝜔(𝜃) = 1,  0−   and 𝜔(1) = −1 

The maximum absolute error values are given in Table 2 for 𝜀 = 10−2 and different values of the 

delay parameter and N.  Figure 2 shows the influence of the small parameter on the solutions for 

the boundary layer.       

Example 3:   −𝜀𝜔′′(𝜃) + (1 + 𝜃)𝜔′(𝜃 − 𝛿) + 𝑒−𝜃𝜔(𝜃) = 1  with the conditions 𝜔(𝜃) = 1,  

−𝛿 ≤ 𝜃 ≤ 0 and 𝜔(1) = −1 

Table 3 shows the maximum absolute error values for 𝜀 = 10−2 with different values of the delay 

parameter. Figures 3 demonstrate the influence of small parameter on the solutions of boundary 

layers. 

implieswhich 
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Example 4:   −𝜀𝜔′′(𝜃) + (1 + 𝜃)𝜔′(𝜃 − 𝛿) + 𝑒−𝜃𝜔(𝜃) = 0  with 𝜔(𝜃) = 1,   −𝛿 ≤ 𝜃 ≤ 0 

and 1)1( −=  

The maximum absolute error values for 𝜀 = 10−2 are presented in Table 4 with different values 

of the delay parameter. Figures 4 display the influence of small parameter on the solutions of the 

boundary layer. 

 

6. DISCUSSIONS AND CONCLUSION 

For the solution of singularly perturbed differential equations with delay parameter, a 

numerical method has been developed which uses higher orders of finite differences. Four 

examples were solved for different values of delay and perturbation parameter in order to illustrate 

the applicability of the method. The maximum absolute error values are presented in Tables 1-4.  

It is observed that, the present method approximates the exact solution very well for                               

ℎ > 𝜀 and ℎ ≤ 𝜀.  It is also noticed that the error decreases as the number of subintervals N 

increases.  The influence of the delay parameter on solutions was analyzed and shown in the 

graphs. Figures 1-4 demonstrate that the thickness of a boundary layer decreases as the value of 

the delay increases. In addition, the proposed approach is simple and efficient technique for 

addressing singularly perturbed differential – difference problems. 

 

Table 1. The maximum absolute error values in the solution of Example 1 

 

𝛿 ↓    𝑁 →     32          64             128         256           512             1024 

𝛿 = 0.3𝜀   1.0198e-01    1.2790e-02    9.4382e-04   7.8752e-05      1.6921e-05       4.2306e-06 

𝛿 = 0.5𝜀   5.6795e-02    5.8630e-03    4.0715e-04   5.7102e-05      1.4280e-05       3.5704e-06 

𝛿 = 0.7𝜀   3.3507e-02    2.9926e-03    2.2552e-04   4.9301e-05      1.2329e-05       3.0824e-06 

𝛿 = 0.9𝜀   2.0769e-02    1.6566e-03    1.7301e-04   4.3298e-05      1.0827e-05       2.7070e-06 
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Table 2. The maximum absolute error values in the solution of Example 2   

 

𝛿 ↓   𝑁 →       32          64           128        256           512             1024  

𝛿 = 0.3𝜀   6.8088e-02    8.6165e-03    6.5347e-04   6.1724e-05      1.3880e-05       3.4705e-06 

𝛿 = 0.5𝜀   3.8149e-02    4.0039e-03    3.0046e-04   4.6857e-05      1.1719e-05       2.9300e-06 

𝛿 = 0.7𝜀   2.2671e-02    2.0800e-03    1.7802e-04   4.0450e-05      1.0116e-05       2.5292e-06 

𝛿 = 0.9𝜀   1.4173e-02    1.1768e-03    1.4185e-04   3.5507e-05      8.8797e-06       2.2201e-06 

 

Table 3. The maximum absolute error values in the solution of Example 3   

 

𝛿 ↓    𝑁 →     32          64             128         256           512             1024 

𝛿 = 0.3𝜀   1.0581e-01   1.1282e-02     6.9964e-04   1.7784e-04      4.6704e-05       1.2049e-05 

𝛿 = 0.5𝜀   5.4409e-02   3.9143e-03     5.7951e-04   1.5082e-04      3.9894e-05       1.0153e-05 

𝛿 = 0.7𝜀   2.8632e-02   1.9410e-03     4.9681e-04   1.3312e-04      3.4603e-05       8.7429e-06 

𝛿 = 0.9𝜀   1.5050e-02   1.6882e-03     4.4015e-04   1.1863e-04      3.0442e-05       7.6628e-06 

 

Table 4. The maximum absolute error values in the solution of Example 4.   

𝛿 ↓    𝑁 →     32          64             128         256           512             1024 

𝛿 = 0.3𝜀  7.9279e-02    8.5562e-03     4.7217e-04   1.1931e-04      3.1452e-05       8.1579e-06 

𝛿 = 0.5𝜀   4.1023e-02    3.0446e-03    3.9288e-04   1.0175e-04      2.7153e-05       6.9294e-06 

𝛿 = 0.7𝜀   2.1789e-02    1.3287e-03    3.3763e-04   9.0673e-05      2.3712e-05       5.9990e-06 

𝛿 = 0.9𝜀   1.1621e-03    1.1607e-03    2.9945e-04   8.1410e-05      2.0957e-05       5.2789e-06 

_____________________________________________________________________________________________ 
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Fig. 1. Solution profile in Example 1 for different values of  with 𝜀 = 10−2 

 

 

Fig. 2. Numerical solution of Example 2 for different values of  with 𝜀 = 10−2 
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Fig. 3. Layer behavior in the solution of Example 3 for different values of  with 𝜀 = 10−2 

 

 

 

Fig. 4. Numerical solution of Example 4 for different values of  with 𝜀 = 10−2 
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