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Abstract. Qualitative results such as existence and uniqueness of finite system of Riemann-Liouville (R-L) frac-

tional differential equations with initial time difference are obtained. Monotone technique coupled with method

of lower and upper solutions is developed to obtain existence and uniqueness of solutions of finite system of R-L

fractional differential equations with initial time difference.
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1. INTRODUCTION

Due to wide applications of fractional calculus in sciences, engineering, nature and so-

cial sciences numerous methods of solving fractional differential equations are developed

[1, 8, 9]. V.Lakshmikantham et.al [6] obtained local and global existence results for solutions of

Riemann-Liouville fractional differential equations.The Caputo fractional differential equation

with periodic boundary conditions have been studied in [3, 4] and developed monotone method.

Existence and uniqueness of solution of Riemann-Liouville fractional differential equation with
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integral boundary conditions is proved in [11, 12]. Monotone method for Riemann-Liouville

fractional differential equations with initial conditions is established by McRae [7]. Vasund-

hara Devi considered [2] the general monotone method for periodic boundary value problem

of Caputo fractional differential equation. Recently, initial value problems involving Riemann-

Liouville fractional derivative was studied by authors [5, 13]. Yaker et.al. proved existence

and uniqueness of solutions of fractional differential equations with initial time difference for

locally Holder continuous functions [14]. Authors have generalized these results for the class

of continuous functions [10] and extended for system. In this paper, we consider the finite sys-

tem of Riemann-Liouville fractional differential equations with initial time difference when the

function on the right hand side is mixed quasi-monotone and construct two monotone conver-

gent sequences to obtain existence and uniqueness of solution for the finite system.

The paper is organized as follows: In section 2, basic definitions and results are given. Section

3 is devoted to obtain main results .

2. BASIC RESULTS

Some basic definitions and results used for the development of monotone technique for the

problem are given in this section.

The Riemann-Liouville fractional derivative of order q(0 < q < 1) [?] is defined as

Dq
au(t) =

1
Γ(n−q)

(
d
dt

)n ∫ t

a
(t− τ)n−q−1u(τ)dτ, for a≤ t ≤ b.

Lemma 2.1. [2] Let m ∈Cp(J,R) and for any t1 ∈ (t0,T ] we have m(t1) = 0 and m(t) < 0 for

t0 ≤ t ≤ t1. Then it follows that Dqm(t1)≥ 0.

Theorem 2.1. [11] Let v,w ∈Cp([t0,T ],R), f ∈C([t0,T ]×R,R) and

(i) Dqv(t)≤ f (t,v(t))

and

(ii) Dqw(t)≥ f (t,w(t)),

t0 < t ≤ T. Assume f (t,u) satisfy one sided Lipschitz condition

f (t,u)− f (t,v)≤ L(u− v), u≥ v,L > 0.
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Then v0 < w0, where v0 = v(t)(t − t0)1−q|t=t0 and w0 = w(t)(t − t0)1−q|t=t0, implies v(t) ≤

w(t), t ∈ [t0,T ].

Corollary 2.1. The function f (t,u) = σ(t)u, where σ(t) ≤ L, is admissible in Theorem 2.1 to

yield u(t)≤ 0 on t0 ≤ t ≤ T .

The results proved by Yakar et.al. for the following problem

(2.1) Dqu(t) = f (t,u), u(t)(t− t0)1−q|t=t0 = u0

where 0 < q < 1, f ∈ C[R+×R,R], are generalized by authors [10] for class of continuous

functions u(t).

The corresponding Volterra fractional integral is given by

(2.2) u(t) = u0(t)+
1

Γ(q)

∫ t

t0
(t− s)q−1 f (s,u(s))ds

where

u0(t) =
u(t)(t− t0)1−q

Γ(q)

and that every solution of (2.2) is a solution of (2.1).

In this paper, we develop monotone technique coupled with lower and upper solutions for

the class of continuous functions for the following finite system of Riemann-Liouville frac-

tional differential equations with initial time difference and obtain existence and uniqueness of

solution for the problem.

(2.3) Dqui(t) = fi(t,u1(t),u2(t), . . . ,uN(t)), ui(t)(t− t0)1−q|t=t0 = ui
0

where i = 1,2, . . . ,N, t ∈ J = [t0,T ] fi in C(J×Rn,R),0 < q < 1.

Definition 2.1. A pair of functions v = (v1,v2, . . . ,vN) and w = (w1,w2 . . . ,wN) in Cp(J,R), p =

1−q are said to be ordered lower and upper solutions (v1,v2, . . . ,vN)≤ (w1,w2, . . . ,wN) of the

problem (2.3) if

Dqvi(t)≤ fi(t,v1(t),v2(t), . . . ,vN), vi(t)(t− t0)1−q|t=t0 = vi
0
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and

Dqwi(t)≥ fi(t,w1(t),w2(t), . . . ,wN(t)), wi(t)(t− t0)1−q|t=t0 = wi
0.

Definition 2.2. A function fi ∈C([0,T ]×RN ,RN) is said to satisfy mixed quasimonotone prop-

erty if for each i, fi(t,ui, [u]ri, [u]si) is monotone nondecreasing in [u]ri and monotone nonin-

creasing in [u]si.

When either ri or si is equal to zero a special case of the mixed quasimonotone property is

defined as follows:

Definition 2.3. A function fi ∈C([0,T ]×RN ,RN) is said to be quasimonotone nondecreasing

(nonincreasing) if for each i,ui ≤ vi and u j = v j, i 6= j, then fi(t,u1,u2, ...,

uN)≤ fi(t,v1,v2, ...,vN)

(
fi(t,u1, ...,uN)≥ fi(t,v1, ...,vN)

)
.

3. QUALITATIVE RESULTS

This section is devoted to develop monotone method for system of Riemann-Liouville frac-

tional differential equations with initial time difference and obtain existence and uniqueness of

solution of the problem (2.3).

Theorem 3.1. Assume that

(E1) v = (v1,v2, . . . ,vN) ∈ Cp[t0, t0 + T ],R], t0,T > 0,w = (w1,w2, . . . ,wN) ∈ C∗p[τ0,τ0 +

T ],R] is continuous and p = 1−q where

Cp(J,R) = {u(t) ∈C(J,R) and u(t)(t− t0)p ∈C(J,R)},J = [t0, t0 +T ],

C∗p(J
∗,R) = {u(t) ∈C(J∗,R) and u(t)(t− t0)p ∈C(J∗,R)},J∗ = [τ0,τ0 +T ],

f ∈C[[t0,τ0 +T ]×R,R] and

Dqvi(t) = fi(t,v1(t),v2(t), . . . ,vN(t)), t0 ≤ t ≤ t0 +T,

Dqwi(t) = fi(t,w1(t),w2(t), . . . ,wN(t)), τ0 ≤ t ≤ τ0 +T,

v0
i ≤ u0

i ≤ w0
i , where v0

i = vi(t)(t− t0)1−q}t=t0,w
0
i = wi(t)(t− τ0)

1−q}t=τ0

(E2) fi(t,u1,u2, . . . ,uN) is mixed quasimonotone in t for each ui and vi(t) ≤ wi(t +η), t0 ≤

t ≤ t0 +T, where η = τ0− t0
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(E3) fi satisfies one-sided Lipschitz condition,

fi(t,u1,u2, . . . ,uN)− fi(t,u1,u2, . . . ,uN)≥−Mi[ui−ui], for ui ≤ ui,Mi ≥ 0.

Then there exists monotone sequences {vn(t)} and {wn(t)} such that

{vn(t)}→ v(t) = (v1,v2, . . . ,vn) and {wn(t)}→ w(t) = (w1,w2, . . . ,wn) as n→ ∞

where v(t) and w(t) are minimal and maximal solutions of the problem (2.3) respectively.

Proof. Let wi0(t) = wi(t+η) and vi0(t) = vi(t) i = 1,2 for t0 ≤ t ≤ t0+T, where η = τ0− t0.

Since f (t,u1,u2, . . . ,uN) is quasimonotone nondecreasing in t for each ui we have

Dqw0(t) = Dqwi(t + η) ≥ f (t + η ,w1(t + η),w2(t + η), . . . ,uN(t + η)) ≥

f (t,w1(t),w2(t), . . . ,wN(t))

and

w0
0 = wi0(t)(t− t0)1−q}t=t0 = w+ i(t +η)(t− t0)1−q}t=t0 = wi(t)(t− t0)1−q}t=t0 = w0

Also,

Dqvi0(t) = Dqvi(t)≤ f (t,v10(t),v20(t), . . . ,vN0(t))

and

v0
i0 = vi0(t)(t− t0)1−q}t=t0 = vi(t)(t− t0)1−q}t=t0 = v0

i ,v
0
i ≤ u0

i ≤ w0
i

which proves that vi0 and wi0 are lower and upper solutions of IVP (2.3) respectively.

For any θ(t) = (θ1,θ2, . . . ,θN) in Cp(J,R) such that for αi0 ≤ θi ≤ βi0,αi0 ≤ θi ≤ βi0 on J,

consider the following linear system of fractional differential equations

(3.1)
Dqui(t) = fi(t,θ1(t), . . . ,θN(t))−Mi[ui(t)−θi(t)],

ui(0) = ui(t)(t− t0)1−q}t=t0

Since the right hand side of IVP (3.1) satisfies Lipschitz condition, unique solution of IVP (3.1)

exists on J.

For each η(t) and µ(t) in Cp(J,R) such that v0
i (0) ≤ ηi(t),w0

i (0) ≤ µi(t), define a mapping A

by A[η ,µ] = u(t) where u(t) is the unique solution of the problem (3.1). Firstly, we prove that

(A1) v0
i ≤ A[v0

i ,w
0
i ], w0

i ≥ A[w0
i ,v

0
i ]
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(A2) A possesses the monotone property on the segment

[v0,w0] =

{
(u1,u2, . . . ,uN) ∈C(J,R) : v0

i ≤ ui ≤ w0
i

}
.

Set A[v0,w0] = v1(t), where v1(t) = (v1
1,v

1
2, . . . ,v

1
n) is the unique solution of system (3.1) with

ηi = v0
i (0).

Setting pi(t) = v0
i (t)− v1

i (t) we see that

Dq pi(t)≤ fi(t,v0
1(t),v

0
2(t), . . . ,v

0
N(t))− fi(t,v1

1(t),v
1
2(t), . . .v

0
N(t))

≤−Mi pi(t)

and pi(t)≤ 0.

Applying Corollary 2.1, we get pi(t) ≤ 0 on 0 ≤ t ≤ T and hence v0
i (t)− v1

i (t) ≤ 0 which

implies v0
i ≤ A[v0,w0]. Set A[v0,w0] = w1(t), where w1(t) = (w1

1,w
1
2) is the unique solution

of the problem (3.1) with µi = w0
i (t). Setting pi(t) = w0

i (t)−w1
i (t), similarly by Corollary

2.1, we have w0
i ≥ w1

i . Hence w0 ≥ A[w0,v0]. Let η ,β ,µ ∈ [v0,w0] with η ≤ β . Suppose that

A[η ,µ] = u(t),A[β ,µ] = v(t). Then setting pi(t) = ui(t)− vi(t) we find that

Dq pi(t) = fi(t,η1, . . . ,ηN)− fi(t,β1, . . . ,βN)−Mi[ui(t)−ηi(t)]

+Mi[vi(t)−βi(t)]

≤−Mi pi(t)

and pi(t)≤ 0.

As before in (A1), we have A[η ,µ]≤ A[β ,µ].

Similarly, if η(t),γ(t),µ(t) ∈ [v0,w0] be such that γ(t) ≤ µ(t). Suppose that A[η ,γ] =

u(t),A[η ,µ] = v(t) we can prove that A[η ,γ] ≥ A[η ,µ]. Thus it follows that the mapping A

possesses monotone property on the segment [v0,w0].

Define the sequences

vn
i (t) = A[vn−1

i ,wn−1
i ], wn

i (t) = A[wn−1
i ,vn−1

i ]
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on the segment [v0,w0] by

Dqvn
i (t) = fi(t,vn−1

1 , . . . ,vn−1
N )−Mi[vn

i − vn−1
i ], vn

i (t)(t− t0)1−q|t=t0 = vn0
i

Dqwn
i (t) = fi(t,wn−1

1 , . . . ,wn−1
N )−Mi[wn

i −wn−1
i ], wn

i (t)(t− t0)1−q|t=t0 = wn0
i

From (A1), we have v0
i ≤ v1

i , w0
i ≥ w1

i . Assume that vk−1
i ≤ vk

i , wk−1
i ≥ wk

i . To prove

vk
i ≤ vk+1

i , wk
i ≥ wk+1

i and vk
i ≥ wk

i , define pi(t) = vk
i (t)− vk+1

i (t). Thus

Dq pi(t) = fi(t,vk−1
1 , . . . ,vk−1

N )−Mi[vk
i − vk−1

i ]

−{ fi(t,vk
1(t), . . . ,v

k
N(t))−Mi[vk+1

i (t)− vk
i (t)]}

≤ −Mi[vk−1
i − vk

i ]−Mi[vk
i − vk−1

i ]+Mi[vk+1
i (t)− vk

i (t)]

≤−Mi[vk
i (t)− vk+1

i (t)]

≤−Mi pi(t)

and pi(t)≤ 0.

It follows from Corollary 2.1 that pi(t) ≤ 0, which gives vk
i (t) ≤ vk+1

i (t). Similarly we can

prove wk
i (t)≥ wk+1

i (t) and vk
i (t)≥ wk

i (t). By induction, it follows that

v0
i (t)≤ v1

i (t)≤ v2
i (t)≤ ...≤ vn

i (t)≤ wn
i (t)≤ wn−1

i (t)≤ ...≤ w1
i (t)≤ w0

i (t).

Thus the sequences {vn(t)} and {wn(t)} are bounded from below and bounded from above

respectively and monotonically nondecreasing and monotonically non-increasing on J. Hence

point-wise limit exist and are given by

lim
n→∞

vn
i (t) = vi(t), limn→∞wn

i (t) = wi(t) on J

.

Using corresponding Volterra fractional integral equations

vn
i (t) = v0

i +
1

Γ(q)

∫ T

0
(t− s)q−1

{
fi(s,vn

1(s), . . . ,v
n
N(s))−Mi[vn

i − vn−1
i ]

}
ds

wn
i (t) = w0

i +
1

Γ(q)

∫ T

0
(t− s)q−1

{
fi(s,wn

1(s), . . . ,w
n
N(s))−Mi[wn

1−wn−1
1 ]

}
ds,
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as n→ ∞, we get

vi(t) =
v0

i (t− t0)q−1

Γ(q)
+

1
Γ(q)

∫ T

t0
(t− s)q−1 f (s,vn

1(s), . . . ,v
n
N(s))ds

wi(t) =
w0

i (t− t0)q−1

Γ(q)
+

1
Γ(q)

∫ T

t0
(t− s)q−1 f (s,wn

1(s), . . . ,w
n
N(s))ds

where v0
i = vi(t)(t − t0)1−q|t=t0 . It follows that v(t) and w(t) are solutions of system (2.3).

Lastly, we prove that v(t) and w(t) are the minimal and maximal solution of the problem (2.3).

Let u(t) = (u1, . . . ,uN) be any solution of (2.3) other than v(t) and w(t), so that there exists k

such that vk
i (t)≤ ui(t)≤ wk

i (t) on [t0,T ] and set pi(t) = vk+1
i (t)−ui(t) so that

Dq pi(t) = fi(t,vk
1, . . . ,v

k
N)−Mi[vk+1

i − vk
i ]− fi(t,u1, . . . ,uN)

≥−Mi pi(t)

and pi(t)≥ 0.

Thus vk+1
i (t)≤ ui(t) on J. Since v0

i (t)≤ ui(t) on J, by induction it follows that vk
i (t)≤ ui(t) for

all k. Similarly, we can prove ui ≤ wk
i for all k on J. Hence vk

i (t)≤ ui(t)≤ wk
i (t) on J. Taking

limit as n→ ∞, it follows that vi(t) ≤ ui(t) ≤ wi(t) on J. Now, we obtain the uniqueness of

solution of the problem (2.3) in the following

Theorem 3.2. Assume that

(U1) Assumptions (E1) and (E3) of Theorem 3.1 holds.

(U2) fi = fi(t,u1,u2, ...,uN) satisfies Lipschitz condition,

| fi(t,u1,u2,uN)− fi(t,u1,u2,uN)| ≥ −Mi|ui−ui|,Mi ≥ 0

then there exists unique solution of the problem (2.3).
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Proof. We know that v(t) ≤ w(t). It is sufficient to prove v(t) ≥ w(t). For this, if pi(t) =

wi(t)− vi(t) then we have

Dq pi(t)≤ Dqwi(t)−Dqvi(t)

≤Mi(wi(t)− vi(t))

≤−Mi pi(t)

and pi(t) = 0.

Applying Corollary 2.1, we obtain pi(t) ≤ 0 implies wi(t) ≤ vi(t). Thus v(t) = u(t) = w(t) is

the unique solution of (2.3) on [t0, t0 +T ].
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