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Abstract: Over the last few years, attention goes to the model of Three-Player Prisoner’s Dilemma Iterated Game. In 

this work we are concerned with studying the competition between strategies with special behavior in this model. 

These strategies have behavior similar to Tit for Tat strategy. We focus on strategies with angry behavior and strategies 

with tolerant behavior. The results reveal the qualities of the winning strategy. From our studies we can judge the 

social behavior that must be enjoyed by the person who follows the winning strategy. A learning algorithm has been 

designed and a multi-agent system has been developed to obtain our results. 

Keywords: game theory; iterated multiplayer dilemmas; decision making; behavioral prediction; reinforcement 

machine learning; parallel algorithms. 
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1. INTRODUCTION 

Game theory is a toolbox made to help understanding phenomena which is involved in the 

analysis of strategies between the players. Models of game theory represent our daily life [1, 2]. 

Game theory has great impact not only on mathematics and physics [3] but also on public health 
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[4], business [5], economics [6], biology [7], political science [8], engineering [9], and computer 

science [10]. 

In game theory, there are many examples of coordination games such as: Prisoner’s Dilemma 

(PD), Hawk–Dove, matching pennies, location game, etc. PD is one famous example of game 

theory complex decision-making process. Each player allows two choices either defect (D) or 

cooperate (C). The players play simultaneously without the knowledge of the other player’s choice. 

On the other hand, iterated PD (IPD) is the study of long-term behaviors which emerges 

cooperation between selfish and non-related competitors to coexist in the long term. At every 

repetition (round), each player’s choice may depend on the outcome of the previous round. This 

leads to developing players’ strategies according to their interactions in the previous game [11]. 

Earlier, Nowak et al. [12] worked in different strategies on two prisoner’s dilemma and expressed 

them by finite state automata. The attacking players showed each other that the best strategy was 

that of Pavlov. Recently, Essam and Karim [13] have studied Tit-for-Tat (TFT) strategy in three 

prisoner’s dilemmas and four strategies exhibits the same TFT’s behavior. 

Yet, Maurice and Emilian [14] were interested in investigating the role of anticipation on 

cooperation rates and payoffs. They reproduced several characteristics of individual play, and 

tested their model using multi-agent simulations of small societies. Whereas, Shiheng and 

Fangzhen [15] studied the invincible strategies, inspecting which strategies are not invaded by 

other strategies. Their results have shown that the strategy is a catalyst for cooperation and wining 

face to face.  

Furthermore, Bukowski and Mi¸ekisz [16] classified the three-player games with two strategies. 

They proved that there are many evolutionary stable strategies (ESS), and there are two pure 

strategies as in the stage hunt game. Whilst, Dominik, Jacek and Marcin [17] provided one pure 

and one mixed strategy and focused on the problem of equilibrium selection. They considered this 

problem from dynamical view. They discussed stochastic adaptation dynamics in the three-player 

game. 

On the other hand, Anurag and Deepak [18] studied IPD problem from the aspect of zero-sum 

games. A zero-sum game is a mathematical representation of the case where the profits and the 



4652 

SALSABEEL M. ABD EL-SALAM, ESSAM EL-SEIDY, NAGLAA M. REDA 

losses are exactly balanced. They explore how artificial intelligence and machine learning 

techniques work exceedingly to give the agent the capability of recognizing the player intention. 

In addition, Harper et al [19] proved that pre-trained strategies, using reinforcement learning 

techniques, generally outperforms human-designed strategies, and maximizes payoff versus varied 

series of opponents. They also showed that trained strategies using history of multiple rounds play 

outperforms memory-one strategies. While, Konstantinos [20] created an AI agent that uses 

reinforcement learning in order to discern an optimal strategy to the two-player iterated prisoner's 

Dilemma game using the Soar cognitive architecture. 

In this article, we are interested in the iterated three-player model of the prisoner's dilemma 

game. We first introduce our problem and the basic concepts of machine learning needed for this 

study. then, we start a theoretical discussion to detect moody players. Then, we propose new 

algorithm for predicting the best strategy to win the game. In the following section, experimental 

results followed by numerical analysis is provided. The article ends with a conclusion section with 

some possible future work. 

 

2. THE PROBLEM VS. MACHINE LEARNING  

In this section, we summarize the fundamentals of the iterated Three-Player Prisoner’s Dilemma 

game (3P-IPD). Then, we give a concise definition of reinforcement machine learning type and 

indicate how it is related to IPD game. 

2.1. 3P-IPD PROBLEM 

In [13], researchers give great attention to prisoner’s dilemma game involving three players in 

two population game. They suppose that two players harmonize between them to cooperate/defect 

together against the third player. Thus, a player’s current choice may affect the opposite players’ 

future behavior and payoffs. Subsequently, to maximize the received payoffs, players use more 

complex strategies depending on the game history. More precisely, each player in 3P-IPD round 

chooses his/her move based on the previous one saved in memory. Each round outcome lies 

between the eight probabilities for the three players to alternate between C and D. Because the 

game is symmetric, the outcomes are reduced to six combinations specified by the payoffs {P, L, 

T, S, K, R}, governed by the rule: S<P<K<L<R<T. This leads to sixty-four strategies denoted by 
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S0, S1, ..., S63. In binary, each strategy Sk is designated by a binary vector (x0, x1, x2, x3, x4, x5), 

where xi is the probability of the player to play C or D, it takes any number between 0 and 1. But 

in our work, we studied pure strategies, if the player plays C then xi is 1 otherwise xi is 0.  As an 

exemplification, the strategy S49 is represented by the transition rule (1, 1, 0, 0, 0, 1). Also, each 

payoff symbol corresponds to the binary representation of its players’ choices. Therefore, the 

produced payoff matric is as follows: 

 DD CD CC  

D  P L T 

C S K R 

For instance, consider the strategy S33 for player I against the two strategies S32 and S49 for 

players II and III consecutively. Thus, all cases of interaction of strategies will be as shown below.  

In infinitely repeated game, the payoff is computed as the mean payoff per round. Thus, for 

player I the payoff is R in the eighth case, while the payoff is (K+L+P)/3 in the seven other cases. 

Accordingly, the payoff for player II equals R in the eighth case, and equals (T+L+P)/3 in the 

seven other cases. Finally, for the player III, the payoff is R in the eighth case, while it is (K+S+P)/3 

in the seven other cases. 

In the seven other cases. Accordingly, the payoff for player II equals R in the eighth case, and 

equals  (T+L+P)/3 in the seven other cases. Finally, for the player III, the payoff is R in the eighth 

case, while it is  (K+S+P)/3 in the seven other cases. 

 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

Round 1 (D, D, D) (D, D, C) (D, C, D) (D, C, C) (C, D, D) (C, D, C) (C, C, D) (C, C, C) 

Round 2 (C, D, C) (D, D, D) (D, D, D) (D, D, C) (D, D, D) (D, D, C) (D, D, D) (C, C, C) 

Round 3 (D, D, C) (C, D, C) (C, D, C) (D, D, D) (C, D, C) (D, D, D) (C, D, C) (C, C, C) 

Round 4 (D, D, D) (D, D, D) (D, D, C) (C, D, C) (D, D, C) (C, D, C) (D, D, C) (C, C, C) 

Round 5 (C, D, C) (C, D, C) (D, D, D) (D, D, C) (D, D, D) (D, D, C) (D, D, D) (C, C, C) 

Round 6 (D, D, C) (D, D, C) (C, D, C) (D, D, D) (C, D, C) (D, D, D) (C, D, C) (C, C, C) 

Round 7 (D, D, D) (D, D, D) (D, D, C) (C, D, C) (D, D, C) (C, D, C) (D, D, C) (C, C, C) 

Round 8 … … … … … … … … 
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During our work, we follow the direct approach in [15]. The run of the above eight cases 

produces two conceivable regimes, say Rg1 and Rg2. Exceptional perturbation in Rg1 gives rise to 

probability (3/30) R to Rg1, and probability (9K+9L+9P)/30 to Rg2.  

Therefore, the transition matrix becomes  , and the stationary distribution vector equals 

( ). 

In general, for all possible combinations, there are 643 payoff values for the three strategies Si, 

Sj, Sk of players I, II, III where, i, j, k = 0 ... 63. 

2.2. REINFORCEMENT LEARNING  

Artificial Intelligent (AI) is a computer science field that enables computer machines to simulate 

human processes intelligently. Machine learning is a subfield of AI that can be defined as general 

purpose techniques to learn functional relationships from data without being explicitly 

programmed. In the AI-literature, there are three different machine learning types: Reinforcement 

Learning (RL), supervised learning and unsupervised learning. In RL, algorithms learn to act in an 

anonymous environment for maximizing some cumulative scalar payoff. One popular type of RL 

is the Temporal-Difference (TD) learning, where an agent makes the adjustment after each action 

based on an estimated expected payoff. TD-learning employs either Q-Learning or SARSA-

Learning. In Q-Learning, the algorithm executes an action according to his strategy for the current 

state and receives the resulting payoff, then, the agent chooses the most promising action from the 

successor state. While in SARSA-Learning, the agent sticks to his strategy when calculating his 

next action. RL approach have been employed in the game theoretic literature since 1993. Recently, 

machine learning has been paid notable attention in algorithmic game theory field. Quite a number 

of important contributions about different types of learning in games have been introduced by 

researchers [20, 21]. 
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3. MOODY PLAYERS’ DETECTION  

In the competition of artificial intelligence algorithms, the TFT model was the optimum solution 

for the prisoners’ dilemma for many decades. Its main idea is to select the strategy of the next 

round depending on the basis of the selection from the previous round [22]. In this section, we 

concentrate our study on specific strategies picked depending on their behavior. The state machine 

diagram of every studied strategy is given in Fig. 1, classified into two groups. In our studies we 

also use two strategies S63 and S0 to compute the selected strategies. 

3.1. TEMPERED PLAYERS 

In this subsection, we select strategies: S32, S33, S36 and S38 in regard to TFT for tempered players. 

Our selection is based on their attitude that we observe during tracing the game in Fig. 1A. We 

study their choices and perceive the following: 

1. S32:  Fast tempered and Intolerant, it still plays C only if it’s two opponents Play C together, 

otherwise, it plays D forever. 

2. S33:  Fast tempered and Jade, it still plays C only if it’s two opponents plays C or D, otherwise, 

it moves from the state C to state D. 

3. S36: Fast tempered and Tolerant, it still plays C only if its two opponents play C, unlike that it 

moves from the state C to the state D if at least one of the other opponents plays D. 

4. S38: Fast tempered and Quick tolerant, it plays C if the two opponents play C, while it moves 

from state C to state D if at least one of them plays D. In addition, it plays D if the two 

opponents play D otherwise it moves to state C.   

 

3.2. NATURAL-TEMPERED PLAYERS 

In this subsection, we pick out strategies: S48, S49, S52 and S54 in regard to TFT for natural 

tempered players. we choose these strategies precisely depending on what we notice throughout 

running the game in Fig. 1B. We study their moves and recognize the following: 
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1. S48:  Fast tempered and Natural-tempered, it still plays C only if it’s two opponents Play C 

together or one of them plays C and the other plays D, otherwise, that it plays D forever. 

2. S49:  Natural anger and Jade, it still plays C only if it’s two opponents plays C or D, in addition 

one of them plays C and the other plays D, otherwise, that it moves from the state C to state D. 

3. S52:  Natural tempered and Tolerant, it still plays C  only if its two opponents play C, in addition 

one of them plays C and the other plays D, while it moves from the state C to the state D if two 

opponents play D. 

4. S54: Natural anger and Quick tolerant, it plays D if the two opponents play D, unlike that he 

plays C forever. 

 

4. PROPOSED PREDICTION ALGORITHM 

Our objective was to design strategic algorithm by interacting computer science with game 

theory, guided by algorithmic game theory of the previous work. We propose an intelligent 

algorithm to predict who shall win the game by which selected strategy according to its behavior. 

Our algorithm considers all possible scenarios and detect the most optimal strategy that fits the 

mood of participants. In the following explanation, the pseudocode of the proposed algorithm and 

the game simulator. 

Our Predict-Best proposed learning algorithm which predicts the strategy that is expected to 

invade others.  First, we declare the function Construct for constructing the stochastic vector X=

, for each distribution vector in the given set DV, guided by its corresponding 

regime in the set or regimes Rg. For invalid pays, Construct assigns the X coefficients to zeros. 

Second, we compute the average payoff values of the first agent against the third when fixing the 

second using equation (1) for the selected set of strategies Stg, and store them in a square two-

dimensional matrix P. 

           (1) 

Third, we compare the evaluated payoffs for detecting the maximum long term expected payoff 
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and return its strategy index as the best. If the two agents are equipollent, then the algorithm returns 

the value -1.  

Actually, we apply this algorithm on the different set of candidate strategies, presented above, 

chosen according to the agents’ mood, then we conclude invaded strategies between variant 

competitors for the rest of the game. 

Game-Sim algorithm , 3P-IPD as a multi-agent system, given the number 

of strategies, the number of rounds, the number of players, and the TFT learning matrix. We 

considered all N3 mutations for 3 participants’ strategies. We adapt the BCD representation when 

referring to each strategy index. We also define a mapping between the decimal index of the round 

and the players’ choices taken of the next round. For each three players’ strategies p1, p2, p3, we 

inspect the players’ choices for R rounds using the TFT learning mapping, calculate the P probable 

payoff vectors, identify the regimes Reg, deduce the transition matrix, and produce the final payoff 

distribution vector DVec p1, p2, p3. To simplify the pseudocode, we defined the following functions. 

 

 

S32 

 

S33 

 

S36 

 

S38 

(A) 

 

 

S48 

 

S49 

 

S52 

 

S54 

(B)  

Figure 1.  The state machine diagram of the studied strategies 
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Algorithm Predict-Best:  

Input: Set of selected strategies Stg, Set of the distribution vectors DV, Set of the regimes Rg   

Output: The invading strategy for each combination Best 

Initialization: Best ← -1 , Pays ← [ 1 , 5 , 9 , 0 , 3 , 7 ] 

 

1: for i from 0 to 3 do 

2:     set Xi ← Construct (Rgi, DVi) ; 

3:      set Yi ← 0 ; 

4:      set Zi ← 0 ; 

5:      for j from 0 to 5 do 

6:            set Yi ← Yi + Xi [j] * pays [j] ; 

7:            set Zi ← Zi + Xi [j] ; 

8:       end for ; 

9:       if i < 2 then 

10:             set P [0, i ] ← Yi / Zi ; 

11:            else set P [1, i mod 2] ← Yi / Zi ; 

12: end for ; 

13: if (P [0,0] > P [1,0]   && P [0,1] > P [1,1]) || (P [0,0] > P [0,1]   && P [1,0] > P [1,1]) then 

14:     set Best ← Stg [0] 

15:       else if (P [1,0] > P [0,0]   && P [1,1] > P [0,1]) || (P [0,1] > P [0,0]   && P [1,1] > P [1,0]) then 

16:                set Best ← Stg [1] 

17:        end if ; 

18: end if ; 

19: return Best ; 
 

- BCD: takes the decimal index of each strategy and coded it to its binary representation, 

- Start: assign the start round’s choices for agents by mapping the given index to its 

corresponding combination of C and D, 

- Decide: takes the round’s number and the strategies’ indices then makes the next round 

intelligent moves prescribed by TFT determined strategies. That is, it chooses the best response 

to the history up until current round to maximize the long-term profits,  

- Pay: takes the moves of all rounds and computes the payoff vector for each probability by 

matching the BCD value of each round with its corresponding index at the Poff vector, 

- Identify: takes the payoff vectors and recognize the regime of every one by distinguishing the 

most stable attitude, that is, the most repeated subsequence of payoff values, 
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- Transmit: takes the set of regimes then construct the transition matrix regarding the current 

strategies by testing the perturbation of each agent and identifying all probabilities of changing 

the regime, 

- ComputeDV: takes the transition matrix as the coefficients of a liner system of equations and 

solve it to get the final distribution vector for each three agents.  

 

Algorithm Game-Sim:  

Input: Number of strategies N, Number of rounds R, Number of players P, Learning matrix TFT 

Output: The distribution vectors for all possible combinations of three players’ strategies:  

                DVec 0, 0, 0 , … , DVec N-1, N-1, N-1 

Initialization: Stg ← {0,1, 2, … , N-1} , Poff ← [ 'P' ,  'L' , 'T' , 'S' , 'K' , 'R' ] , Pr ← {1, 2, … , 2P} ,  

                         Rs ← {1, 2, … , R} 

 

1: for each p1  Stg do 

2:      for each p2  Stg do 

3:           parallel for each p3  Stg do 

4:                  set all_stg ← [ BCD (p1) , BCD (p2) , BCD (p3) ] ;  

5:                       for each j  Pr do 

6:                    Start ( rounds j  [1]) ;   

7:                        for each k  Rs – {R} do 

8:                              set rounds j  [K+1] ← Decide ( TFT , all_stg , K ) ;  

9:                               end for ; 

10:                 parallel for each k  Rs do 

11:         set PV K  ← Pay ( rounds j , Poff , K ) ;  

12:                 end parallel for ; 

13:                 set Reg ← Identify ( PV ) ;    

14:                    end for ; 

15:               set TM ← Transmit (all_stg , Reg ) ;                   

16:               set DVec p1, p2, p3 ← ComputeDV (all_stg , TM) ;   

17:        end parallel for ; 

18:     end for ; 

19: end for ; 

20: return DVec ; 
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5. EXPERIMENTAL RESULTS 

Our work has been coded and experimentally tested using MATLAB (matrix laboratory). We 

choose MATLAB because it is an excellent multi-paradigm numerical computing environment 

and proprietary programming language for our problem, especially when dealing with matrices. 

For-loop iterations were implemented in parallel to improve the execution time. 

For testing, we develop the whole game system which creates individual players as intelligent 

agents artificially. We consider all possible combinations of probabilistic TFT computer strategies. 

Each three strategies were competed for 1000 round (interaction game session) because the game 

yields stable income results in the long-term. The system evaluates the transition matrix and the 

payoff vector for the 262144 simulations. For each agent, the sequences of last choices and targets 

from the previous session were kept as experience to serve as initials in the following session. Also, 

payoffs were saved to help in determining the regimes.  

 In the experiment, the parameters compensated by 𝑆=0, P=1, k=3, L=5, R=7, T=9, satisfying 

the condition S<P<K<L<R<T. Each strategy has been mapped to the binary code of its index. The 

following tables present our results. Each tuple (x0, x1, x2, x3, x4, x5) is the stochastic vector for the 

first player asserting that he/she will get a payoff value below, such that each row denotes the first 

player strategy, and each column denotes the third player strategy. 

    (2) 

The strategies outcompeted Si every column except the first column in the Table 13 and Table 

14 refers to the strategies competed the strategies in the first column. Each pure strategy invaded 

the other strategies.  Sj invaded Si if we calculated the payoff for each player in matrix by Nash 

equilibrium as equation (2). 

CONCLUSION AND FUTURE WORK  

In this paper, we studied the behavior of the strategies in three prisoner’s dilemmas. we studied 

the outcompeting between the players. In Table 13, we conclude that the jade (  and quick 

tolerant players (  outcompeted the largest number of strategy when the second players are 
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intolerant (  and ( . The intolerant, the jade and ( can’t be invited by any player when the 

second player is the jade ( . The tolerant and ( can’t be invited by any player when the second 

player is (  .  In Table 14, we conclude that the jade player (  outcompeted at least three 

players. The jade player was outcompeted by (  when the second player (  and 

outcompeted by when the second player ( . We notice that S33 and S49 are the best player 

against Tit-for-Tat in many cases. 

Table 1.  The payoffs for player I when player II is using S32 

 

 

Table 2. The payoffs for player I when player II is using S33 
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Table 3. The payoffs for player I when player II is using S36 

 

 

Table 4. The payoffs for player I when player II is using S38 

 

 

Table 5. The payoffs for player I when player II is using S63 
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Table 6. The payoffs for player I when player II is using S0 

 

 

Table 7. The payoffs for player I when player II is using S48 

 

 

Table 8. The payoffs for player I when player II is using S49 
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Table 9. The payoffs for player I when player II is using S52 

 

 

Table 10. The payoffs for player I when player II is using S54 

 

 

Table 11. The payoffs for player I when player II is using the strategy S63 
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Table 12. The payoffs for player I when player II is using S0 

 

 

Table 13. List of invading strategies for tempered players 

 

 

Table 14. List of invading strategies for natural-tempered players 
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