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Abstract. In this paper, the authors introduce lattice valued neutrosophic sets and study their properties. A

decomposition theorem for lattice valued neutrosophic sets is obtained. Lattice valued neutrosophic mappings are

defined and verified that its properties are consistent with their crisp counterparts. Finally, a topology of lattice

valued neutrosophic sets is introduced.
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1. INTRODUCTION

Zadeh’s[24](1965) fuzzy set theory and fuzzy logic brought wide applications in the domain

of uncertainities. Fuzzy sets successfully handled cases where an element partially belongs to

a set. But fuzzy sets could not handle those cases where uncertainities arose due to incomplete

data. Such a scenario inspired the introduction of intuitionistic fuzzy sets by Atanassov[1].

Though intuitionistic fuzzy set theory was efficient in modeling incomplete information, it could

not handle indeterminate and inconsistent data.
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In 1998, Smarandache[19] proposed the concept of neutrosophic sets, which generalizes

fuzzy sets, interval valued fuzzy sets, intuitionistic fuzzy sets and interval valued intuitionis-

tic fuzzy sets. In addition to the truth-membership and the falsity-membership, an indepen-

dent indeterminancy membership function defines a neutrosophic set. Several extensions of

neutrosophic sets such as interval valued neutrosophic sets[21], bipolar neutrosophic sets[4],

neutrosophic soft sets[15] etc, were studied by researchers to deal with a variety of problems.

Neutrosophic set theory proved to have wide applications in decision making problems[16] and

medical image processing[12]. Single valued neutrosophic sets were introduced by Wang et

al.[20]. It became a hot area of research due to its applicability to practical problems[9, 2]. Sin-

gle valued neutrosophic relations were studied by Kim et al[10]. In 2005, Smarandache defined

various notions of neutrosophic topologies[18]. Kim, J. et al[11] studied ordinary single valued

neutrosophic topologies. M. EL-Gayyar[5] introduced smooth neutrosophic topological spaces.

Chang’s[3] introduction of fuzzy set theory into topology initiated extensive research in fuzzy

set theory. Goguen[7] replaced the unit interval in a fuzzy set by a lattice to define L-fuzzy

sets and subsequently introduced L-fuzzy topology[8](known as the Chang-Goguen L-fuzzy

topology). Later, several authors looked into the interaction between lattice theory and topology

in different directions.

In this paper, we introduce lattice valued neutrosophic sets and evaluate its basic properties.

We show that a lattice valued neutrosophic set can be decomposed into level subsets. Lattice

valued neutrosophic mappings and inverse lattice valued neutrosophic mappings are defined

to connect different lattice valued neutrosophic sets. In the final section, a topology of lattice

valued neutrosophic sets is introduced.

2. PRELIMINARIES

In this section, a brief overview of neutrosophic set theory is provided. Essential concepts

and results from lattice theory are also discussed.

2.1. Neutrosophic Set Theory. Since the introduction of neutrosophic sets by

Smarandache[19], various authors introduced different types of operations on neutro-

sophic sets and studied their properties.
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In this paper, we choose only the most naturally defined types of operations, which agrees with

human intuition.

Definition 2.1. [19](Neutrosophic set) Let X be a set, with a generic element in X denoted by x.

A neutrosophic set A in X is characterized by three membership functions: a truth membership

function TA, an indeterminancy membership function IA and a falsity membership function FA,

where ∀x ∈ X, TA(x), IA(x) and FA(x) are real standard or non-standard subsets of ]0−,1+[.

There is no restriction on the sum of TA(x), IA(x) and FA(x).

Definition 2.2. [20](Single Valued Neutrosophic set) A neutrosophic set A is said to be a single

valued neutrosophic set(SVN Set) if ∀x ∈ X, TA(x), IA(x),FA(x) ∈ [0,1].

Definition 2.3. [23](Inclusion) A single valued neutrosophic set A is contained in another single

valued neutrosophic set B, or say A⊆ B if and only if ∀x ∈ X

TA(x)≤ TB(x), IA(x)≥ IB(x), FA(x)≥ FB(x)

Two SVN Sets are said to be equal if and only if A⊆ B and A⊇ B.

Definition 2.4. [20](Complement) Let A be a SVN set in X. The complement of A is denoted Ac,

where ∀x ∈ X

TAC(x) = FA(x), IAC(x) = 1− IA(x), FAC(x) = TA(x)

Definition 2.5. [17] Let A and B be two SVN sets in X.

(1) The union of A and B is a SVN set C, denoted C = A∪B, where ∀x ∈ X

TC(x) = max{TA(x),TB(x)}, IC(x) = min{IA(x), IB(x)}, FC(x) = min{FA(x),FB(x)}

(2) The intersection of A and B is a SVN set D, denoted D = A∩B, where ∀x ∈ X

TD(x) = min{TA(x),TB(x)}, ID(x) = max{IA(x), IB(x)}, FD(x) = max{FA(x),FB(x)}



4698 JOSE JAMES, SUNIL C. MATHEW

2.2. Lattice Theory. Here we recall a few of the fundamental definitions and results from

lattice theory.

Definition 2.6. [13](Lattice) Let L be a poset. L is called a lattice if any two of its elements a

and b have a greatest lower bound (”meet”) denoted by a∧b and a least upper bound (”join”)

denoted by a∨ b. A lattice L is said to be complete when each of its subsets has an l.u.b and

g.l.b in L. In particular, the smallest element 0L and the greatest element 1L will exist in L as

the join of the empty set and the meet of the empty set respectively. Therefore, all lattices we

consider in this paper are assumed to contain atleast 0L and 1L.

Definition 2.7. [13] A lattice L is said to be distributive if ∀x,y,z∈ L, x∧(y∨z)= (x∧y)∨(x∧z)

and x∨ (y∧ z) = (x∨ y)∧ (x∨ z).

Definition 2.8. [13] Let L be a complete lattice. L is said to be infinitely distributive if L satisfies

the following conditions:

(1) ∀a ∈ L and ∀ B⊆ L, a∧
∨

B =
∨

b∈B
(a∧b)(First infinite distributive law)

(2) ∀a ∈ L and ∀ B⊆ L, a∨
∧

B =
∧

b∈B
(a∨b)(Second infinite distributive law)

Theorem 2.9. [13] Let L be a complete lattice and A, B ⊆ L.

(1) L satisfies the first infinite distributive law iff
∨

A∧
∨

B =
∨

a∈A b∈B
(a∧b)

(2) L satisfies the second infinite distributive law iff
∧

A∨
∧

B =
∧

a∈A b∈B
(a∨b)

Definition 2.10. [13] Let L be a complete Lattice. L is called completely distributive, if

∀{{ai, j : j ∈ Ji} : i ∈ I} ⊆P(L)\{φ} the following equalities hold:

(1) ∧
i∈I
( ∨

j∈Ji
ai, j) = ∨

φ∈∏i∈I Ji
(∧

i∈I
ai,φ(i))

(2) ∨
i∈I
( ∧

j∈Ji
ai, j) = ∧

φ∈∏i∈I Ji
(∨

i∈I
ai,φ(i)).

The following notions are from [6]. An element l ∈ L\{0L} is called a co-prime element if,

for any finite subset K ⊂ L satisfying l ≤
∨

K, ∃ k ∈ K such that l ≤ k. The set of all co-prime

elements of L will be denoted by c(L). An element l ∈ L \ {1L} is called a prime element if

it’s a co-prime element of Lop. The set of all prime elements of L will be denoted by p(L).

There exists a stronger form of inequality in a lattice, known as ’way below relation’. A point
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a ∈ L is said to be ’way below’ b ∈ L, denoted a� b, if for every directed set D⊂ L,
∨

D≥ b

implies a ≤ d for some d ∈ D. The relation � is stronger than ≤ in the sense- ∀a,b ∈ L

a� b =⇒ a≤ b.

Theorem 2.11. [6] If L is completely distributive, then c(L) is a join-generating set of L and

p(L) is a meet-generating set of L. i.e., every element in L is the supremum of all the co-primes

way below it and the dual statement also holds.

Definition 2.12. [13] A mapping ′ : L→ L is called order-reversing involution, if ∀a,b ∈ L,

(a′)′ = a and a≤ b =⇒ a′ ≥ b′.

3. LATTICE VALUED NEUTROSOPHIC SETS

In this section we introduce the concept of Lattice Valued Neutrosophic (LVN) set. Basic

operations on LVN sets are defined and their respective properties are investigated. The intro-

duced operations behave analogous to their crisp counterparts. All lattices considered in the

following sections are assumed to be complete and infinitely distributive.

Definition 3.1. Let X be a set and (L,≤) a nontrivial complete and distributive lattice. A lattice

valued neutrosophic set A is characterized by three membership functions: a truth membership

function TA, an indeterminancy membership function IA and a falsity membership function FA,

where ∀x ∈ X, TA(x), IA(x) and FA(x) ∈ L.

LVNS(X) will denote the set of all lattice valued neutrosophic sets on X. Let A ∈ LV NS(X),

then A may be represented for convenience as {< x,TA(x), IA(x),FA(x)> |x ∈ X}.

Remark 3.2. In the case L = ([0,1],≤), the given definition reduces to the definition of a SVN

set. It’s an obvious observation that the crisp sets, fuzzy sets, L-Fuzzy sets, intuitionistic fuzzy

sets and intuitionistic L-Fuzzy sets are all special cases of an LVN set.

Example 3.3. Take X = {a,b,c} and the lattice L as in the following figure.

A = {< a,q,r, t >,< b,1,0, t >,< c,1,0,s >} is an LVN set on X.
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Definition 3.4. (Inclusion) A lattice valued neutrosophic set A is contained in another lattice

valued neutrosophic set B, or say A⊆ B if and only if ∀x ∈ X,

TA(x)≤ TB(x), IA(x)≥ IB(x), FA(x)≥ FB(x).

Two LVN sets are said to be equal if and only if A⊆ B and A⊇ B.

The assumption of an order reversing involution enables us, first of all, to give a reasonable

definition for closedness and some related notions.

Definition 3.5. Let A be an LVN set in X. The complement of A is denoted by Ac, where ∀x ∈ X,

TAC(x) = FA(x), IAC(x) = (IA(x))′, FAC(x) = TA(x).

Definition 3.6. Let A and B be two LVN sets in X.

(1) The union of A and B is a LVN set C, denoted C = A∪B, where ∀x ∈ X ,

TC(x) = TA(x)∨TB(x), IC(x) = IA(x)∧ IB(x), FC(x) = FA(x)∧FB(x).

(2) The inersection of A and B is a LVN set D, denoted D = A∩B, where ∀x ∈ X ,

TD(x) = TA(x)∧TB(x), ID(x) = IA(x)∨ IB(x), FD(x) = FA(x)∨FB(x).

The lattice L being infinitely distributive, arbitrary union and arbitrary intersection can be

defined in the obvious way.

Theorem 3.7. The following properties hold when A,B,C ∈ LV NS(X).

(1) A∪B = B∪A (Commutativity)

(2) A∪ (B∪C) = (A∪B)∪C and A∩ (B∩C) = (A∩B)∩C (Associativity)
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(3) A∪ (B∩C) = (A∪B)∩ (A∪C) and A∩ (B∪C) = (A∩B)∪ (A∩C)(Distributivity)

(4) A∪A = A and A∩A = A(Idempotency)

(5) A∪ (A∩B) = A and A∩ (A∪B) = A (Absorption)

Definition 3.8. The empty LVN set and full LVN set are defined respectively as

(0L,1L,1L) = {< x,0L,1L,1L > |x ∈ X} and (1L,0L,0L) = {< x,1L,0L,0L > |x ∈ X}.

Theorem 3.9. The neutrosophic empty set and full set satisfies the following equalities:

(1) (0L,1L,1L)∪ (1L,0L,0L) = (1L,0L,0L), (0L,1L,1L)∩ (1L,0L,0L) = (0L,1L,1L),

(1L,0L,0L)∪ (1L,0L,0L) = (1L,0L,0L) and (1L,0L,0L)∩ (1L,0L,0L) = (1L,0L,0L).

(2) A∩ (0L,1L,1L) = (0L,1L,1L), A∪ (0L,1L,1L) = A, A∩ (1L,0L,0L) = A and

A∪ (1L,0L,0L) = (1L,0L,0L).

Remark 3.10. The equalities A∪AC = (1L,0L,0L) and A∩AC = (0L,1L,1L) need not hold in

LVNS(X).

Theorem 3.11. Let A and B be two LVN sets in X, the following results hold:

(1) A,B⊆ A∪B

(2) A∩B⊆ A,B

(3) (Ac)c = A

(4) (A∪B)c = Ac∩Bc and (A∩B)c = Ac∪Bc (Demorgan Laws)

Some of the lattice theoretic properties of L carries over to LVNS(X), as stated in the follow-

ing theorem:

Theorem 3.12. Consider LVNS(X) and define ∀A,B ∈ LV NS(X) A≤ B iff A⊆ B, A∨B = A∪B

and A∧B = A∩B then, (LV NS(X),≤) is a complete lattice. Moreover,

(1) L is infinitely distributive iff LVNS(X) is infinitely distributive.

(2) L is completely distributive iff LVNS(X) is completely distributive.

Definition 3.13. Let A ∈ LV NS(X) and d,e, f ∈ L. Define a LVN set (d,e, f )A by

(d,e, f )A = {< x,d∧TA(x),e∨ IA(x), f ∨FA(x)> |x ∈ X}.

The set (d,e, f )A will be called the (d,e,f)-layer of A.
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Definition 3.14. Let A ∈ LV NS(X) and d,e, f ∈ L. Define the (a,b,c)-level of A as the crisp set

Aa,b,c = {x ∈ X |TA(x)≥ a, IA(x)≤ b,FA(x)≤ c}.

Definition 3.15. Suppose we are given a crisp set A, we can convert A into a LVN set N(A) as

follows:

TN(A)(x) =


1L if x ∈ A

0L otherwise
, IN(A)(x) =


0L if x ∈ A

1L otherwise
, FN(A)(x) =


0L if x ∈ A

1L otherwise

In particular, for a given (a,b,c)-level Aa,b,c of a LVN set A, N(Aa,b,c) is as follows:

TN(Aa,b,c)(x) =


1L if x ∈ Aa,b,c

0L otherwise
, IN(Aa,b,c)(x) =


0L if x ∈ Aa,b,c

1L otherwise
,

FN(Aa,b,c)(x) =


0L if x ∈ Aa,b,c

1L otherwise

Thus, the LVN set (a,b,c)N(Aa,b,c) will have the following truth, indeterminancy and falsity

values:

T(a,b,c)N(Aa,b,c)(x) =


a if x ∈ Aa,b,c

0L otherwise
, I(a,b,c)N(Aa,b,c)(x) =


b if x ∈ Aa,b,c

1L otherwise
,

F(a,b,c)N(Aa,b,c)(x) =


c if x ∈ Aa,b,c

1L otherwise

Theorem 3.16. (Decomposition theorem for LVN sets) Let A be a LVN set on X, then

∪
a,b,c∈L

(a,b,c)N(Aa,b,c) = A

Proof:

For convenience sake, denote ∪
a,b,c∈L

(a,b,c)N(Aa,b,c) by dec(A).

Let x ∈ X and (TA(x), IA(x),FA(x)) = (α1,α2,α3).

We will prove (Tdec(A)(x), Idec(A)(x),F(dec(A)(x)) = (α1,α2,α3).

Tdec(A)(x) =
∨

a,b,c∈L

T(a,b,c)N(Aa,b,c)(x) =
∨

a≤α1,b≥α2,c≥α3

a = α1
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Idec(A)(x) =
∧

a,b,c∈L

I(a,b,c)N(Aa,b,c)(x) =
∧

a≤α1,b≥α2,c≥α3

b = α2

Fdec(A)(x) =
∧

a,b,c∈L

F(a,b,c)N(Aa,b,c)(x) =
∧

a≤α1,b≥α2,c≥α3

c = α3

We can do better if we assume that L is completely distributive, in that case, since c(L) is a join

generating set and p(L) is a meet generating set, the following statement holds:

Theorem 3.17. Let L be a completely distributive lattice and for a ∈ c(L) and b,c ∈ p(L) take

Ã(a,b,c) = {x ∈ X |TA(x)� a, IA(x)� b,FA(x)� c}. Then,

∪
a∈c(L), b,c∈p(L)

(a,b,c)N(Ãa,b,c) = A

4. LATTICE VALUED NEUTROSOPHIC MAPPINGS

In this section, we define the concept of lattice valued neutrosophic mappings(LVN map-

pings) and inverse lattice valued neutrosophic mappings. Some of their properties are also

investigated.

Definition 4.1. Let A ∈ LV NS(X), B ∈ LV NS(Y ) and f be a mapping from X to Y.

(1) Define f→ as a LVN mapping from LVNS(X) to LVNS(Y) induced by f as

f→(A) = {< y,Tf→(A)(y), I f→(A)(y),Ff→(A)(y)> |y ∈ Y}, where

Tf→(A)(y) = ∨
x∈ f−1(y)

{TA(x)}, I f→(A)(y) = ∧
x∈ f−1(y)

{IA(x)}, Ff→(A)(y) = ∧
x∈ f−1(y)

{FA(x)}

(2) Define f← as a inverse LVN mapping from LVNS(Y) to LVNS(X) induced by f as

f←(B) = {< x,Tf←(B)(x), I f←(B)(x),Ff←(B)(x)> |x ∈ X}

= {< x,TB( f (x)), IB( f (x)),FB( f (x))> |x ∈ X}

It’s easy to observe that the notion of LVN mappings is a generalization of SVNR mappings

introduced by Yang[22]

Theorem 4.2. Let A1,A2 ∈ LV NS(X), B1,B2 ∈ LV NS(Y ) and f be a function from X to Y. The

following properties are true:

(1) f→(A1∪A2) = f→(A1)∪ f→(A2)

(2) f←(B1∪B2) = f←(B1)∪ f←(B2) and f←(B1∩B2) = f←(B1)∩ f←(B2)
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(3) B1 ⊆ B2 =⇒ f←(B1)⊆ f←(B2) and A1 ⊆ A2 =⇒ f→(A1)⊆ f→(A2)

Theorem 4.3. Let A ∈ LV NS(X), B ∈ LV NS(Y ) and f be a function from X to Y. The following

hold:

(1) f→( f←(B))⊆ B, equality holds if f is a surjection.

(2) f←( f→(A))⊇ A, equality holds if f is an injection.

Proof:

(1) Take B = {< y,TB(y), IB(y),FB(y)> |y ∈ Y}

f→( f←(B)) = f→({< x,TB( f (x)), IB( f (x)),FB( f (x))> |x ∈ X})

= {< y, ∨
x∈ f−1(y)

{TB( f (x))}, ∧
x∈ f−1(y)

{IB( f (x))}, ∧
x∈ f−1(y)

{FB( f (x))}> |y ∈ Y}

Thus, f→( f←(B))⊆ B.

(2) Take A = {< x,TA(x), IA(x),FA(x)> |x ∈ X}

f←( f→(A)) = f←({< y, ∨
z∈ f−1(y)

{TA(z)}, ∧
z∈ f−1(y)

{IA(z)}, ∧
z∈ f−1(y)

{FA(z)}> |y ∈ Y})

= {< x, ∨
z∈ f−1( f (x))

{TA(z)}, ∧
z∈ f−1( f (x))

{IA(z)}, ∧
z∈ f−1( f (x))

{FA(z)}> |x ∈ X}

Thus, f←( f→(A))⊇ A.

Theorem 4.4. If L is infinitely distributive, then f→(A1 ∩A2) ⊆ f→(A1)∩ f→(A2). Equality

holds if f is injective.

Proof:

For x ∈ X and y ∈ Y ,

A1∩A2 = {< x,TA1(x)∧TA2(x), IA1(x)∨ IA2(x),FA1(x)∨FA2(x)> |x ∈ X}

f→(A1∩A2)(y) =< y, ∨
x∈ f−1(y)

{TA1(x)∧TA2(x)}, ∧
x∈ f−1(y)

{IA1(x)∨ IA2(x)}, ∧
x∈ f−1(y)

{FA1(x)∨FA2(x)}>

f→(A1)(y) =< y, ∨
x∈ f−1(y)

{TA1(x)}, ∧
x∈ f−1(y)

{IA1(x)}, ∧
x∈ f−1(y)

{FA1(x)}>

f→(A2)(y) =< y, ∨
x∈ f−1(y)

{TA2(x)}, ∧
x∈ f−1(y)

{IA2(x)}, ∧
x∈ f−1(y)

{FA2(x)}>
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f→(A1)∩ f→(A2)(y) =< y, ∨
x∈ f−1(y)

{TA1(x)}∧ ∨
x∈ f−1(y)

{TA2(x)},

∧
x∈ f−1(y)

{IA1(x)}∨ ∧
x∈ f−1(y)

{IA2(x)}, ∧
x∈ f−1(y)

{FA1(x)}∨ ∧
x∈ f−1(y)

{FA2(x)}>

=< y, ∨
x∈ f−1(y),x∈ f−1(y)

{TA1(x)∧TA2(x)},

∧
x∈ f−1(y),x∈ f−1(y)

{IA1(x)∨ IA2(x)}, ∧
x∈ f−1(y),x∈ f−1(y)

{FA1(x)∨FA2(x)}>

=⇒ f→(A1∩A2)⊆ f→(A1)∩ f→(A2).

Theorem 4.5. Let f : X→Y be a function and f→ : LV NS(X)→ LV NS(Y ) be an LVN mapping.

The following results hold:

(1) f→ is injective iff f is injective

(2) f→ is surjective iff f is surjective

(3) f→ is bijective iff f is bijective

(4) f→ is injective iff f← ◦ f→ = I, the identity function on LVNS(X).

Theorem 4.6. Let f : X → Y and g : Y → Z be ordinary functions. Then

(1) g→◦ f→ = (g f )→

(2) f← ◦g← = (g f )←

Definition 4.7. An LVN Point on X is an LVN set x(a,b,c) ∈ LV NS(X) defined by

Tx(a,b,c)(z) =


a if z = x

0L otherwise
, Ix(a,b,c)(z) =


b if z = x

1L otherwise
, Fx(a,b,c)(z) =


c if z = x

1L otherwise

The tuple (a,b,c) is called the height of the LVN point x(a,b,c).

One can easily observe that any given LVN set can be written as the union of LVN points

contained in it.

Theorem 4.8. An LVN mapping preserves LVN points with height, i.e., f→(x(a,b,c)) =

( f (x))(a,b,c).

Theorem 4.9. Let F : LV NS(X)→ LV NS(Y ) be an ordinary mapping. If
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(1) F preserves arbitrary unions

(2) F preserves LVN points with height,

then, there exists a unique mapping f : X → Y such that F = f→.

Proof:

We will first show that there exists a function f : X → Y such that F(x(a,b,c)) = ( f (x))(a,b,c),

∀(a,b,c) ∈ L\{0L}×L\{1L}×L\{1L}.

Since F preserves LVN points, ∀x ∈ X and ∀(a,b,c) ∈ L\{0L}×L\{1L}×L\{1L},

∃ fa,b,c(x) ∈ Y such that F(x(a,b,c)) = ( f(a,b,c)(x))(a,b,c).

Fix an LVN point x(a,b,c),

( fa,b,c(x))a,b,c ⊆
⋃

(d,e, f )∈L\{0L}×L\{1L}×L\{1L}
{( fd,e, f (x))d,e, f }

=
⋃

(d,e, f )∈L\{0L}×L\{1L}×L\{1L}
{F(x(d,e, f ))}

= F
( ⋃
(d,e, f )∈L\{0L}×L\{1L}×L\{1L}

{x(d,e, f )}
)

= F(x(1L,0L,0L))

Since ( f(a,b,c)(x))(a,b,c) ⊆ ( f(1L,0L,0L))(1L,0L,0L) ∀a,b,c ∈ L, define f (x) = f(1L,0L,0L)(x)∀x ∈ X .

Thus we have obtained an ordinary function f : X → Y such that

F(x(a,b,c)) = ( f (x))(a,b,c)∀x ∈ X and ∀(a,b,c) ∈ L\{0L}×L\{1L}×L\{1L}.

Now to show that F = f→, let A ∈ LV NS(X). It’s easy to verify that A = ∪
x∈X
{x(TA(x),IA(x),FA(x))}

F(A) = F( ∪
x∈X
{x(TA(x),IA(x),FA(x))}) = ∪x∈X

( f (x))(TA(x),IA(x),FA(x))

Therefore, ∀y ∈ Y , TF(A)(y) = ∨
f (z)=y

TA(z), IF(A)(y) = ∧
f (z)=y

IA(z) and FF(A)(y) = ∧
f (z)=y

FA(z).

Thus, F(A) = f→(A). The uniqueness of f is clear.

5. LATTICE VALUED NEUTROSOPHIC TOPOLOGY

In this section, we define a new topological structure which is a generalization of the sin-

gle valued neutrosophic topology. The lattice valued neutrosophic counterpart of the interior

operator and closure operator are introduced and their basic properties are listed.
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Definition 5.1. A family τ of LVN subsets of a non-empty set X is said to be a Lattice valued

neutrosophic topology(LVN topology) if the following conditions hold:

(1) (0L,1L,1L), (1L,0L,0L) ∈ τ

(2) A1∩A2 ∈ τ for A1,A2 ∈ τ

(3) ∪Ai ∈ τ for {Ai} ⊆ τ .

The pair (X ,τ) is called a LVN topological space and any LVN set in τ is known as a LVN

open set in X. A LVN set B is said to be closed if and only if Bc is LVN open. Base and subbase

for an LVN topology can be defined analogous to the base and subbase in crisp topology.

Remark 5.2. A LVN topological space is a generalization of fuzzy toplogical spaces, L-Fuzzy

topological spaces and single valued neutrosophic topological spaces. Lupianez[14] has al-

ready proved that an intuitionistic fuzzy topological space need not be a single valued neutro-

sophic topological space, and thus, an intuitionistic fuzzy topological space need not be a LVN

topological space.

Theorem 5.3. Let A ⊆ LV NS(X) be a subcollection of LVN sets. Then,

(1) A is a base of a unique LVN topology iff ∪
A∈A

A = (1L,0L,0L) and

A,B ∈A =⇒ A∩B ∈A

(2) A is a subbase of a unique LVN topology on X iff ∪
A∈A

A = (1L,0L,0L).

Proof:

(1) First we prove the necessity part. Let τ be the unique topology generated by A . Then,

the necessity part follows since A is a subset of a topology. Conversely, take τ = {∪C :

C ⊆ A }. Since (1L,0L,0L) = ∪
A∈A

A, (1L,0L,0L) ∈ τ. The empty LVN set belongs to

τ as the union of empty class from A . By definition, τ is closed under arbitrary union.

By 3.12, LVNS(X) is infinitely distributive. Thus, for ∪
c∈C

c, ∪
d∈D

d ∈A , ∪
c∈C

c∩ ∪
d∈D

d =

∪
c∈C ,d∈D

(c∩d), belongs to τ.

(2) Follows from (1).

Definition 5.4. Let (X ,τ) be a LVN topological space and A ∈ LV NS(X).

(1) The LVN interior of A is defined as LNint(A) = ∪{Ai : Ai ∈ τ,Ai ⊆ A}
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(2) The LVN closure of A is defined as LNcl(A) = ∩{Ai : Ac
i ∈ τ,Ai ⊇ A}

Theorem 5.5. Let (X ,τ) be a lattice valued neutrosophic topological space and A,B ∈

LV NS(X). The following properties hold:

(1) LNint(LNint(A)) = LNint(A)

(2) LNcl(LNcl(A)) = LNcl(A)

(3) LNint(A∩B) = LNint(A)∩LNint(B) and LNint(A∪B)⊇ LNint(A)∪LNint(B)

(4) LNcl(A∪B) = LNcl(A)∪LNcl(B) and LNcl(A∩B) = LNcl(A)∩LNcl(B)

(5) A⊆ B =⇒ LNint(A)⊆ LNint(B) and LNcl(A)⊆ LNcl(B)

Definition 5.6. Let (X ,τ) and (Y,δ ) be two LVN topolgical spaces and f : X → Y a function.

We define f to be continuous from (X ,τ) to (Y,δ ) if the inverse mapping f← : LV NS(Y )→

LV NS(X) maps each set in δ to a set in τ.

Remark 5.7. Similar to the deviation of Chang Goguen L-fuzzy topological spaces from crisp

topology, constant mappings in LVN topological spaces need not be continuous. Consider the

following example:

Example 5.8. Let X = R and f : R → R be a constant function. Take τ1 =

{(0L,1L,1L),(1L,0L,0L)} and τ2 = {(0L,1L,1L),(1L,0L,0L),(a,1L,1L)} where a 6= 0L. It is an

easy observation that the constant function f is not a continuous function from (X ,τ1) to (X ,τ2).

6. CONCLUSION

The study have introduced a generalization of single valued neutrosophic sets and a corre-

sponding topological structure. Various properties of the introduced concepts were found to be

in consistent with their conventional counterparts.

Investigating the neighbourhood structures of LVN topological spaces forms part of our fu-

ture study. The relations of the generalized structures with their special cases will be examined

in the light of category theory. Having defined the category of lattice valued neutrosophic sets,

its relation with various subcategories can be investigated and a similar investigation for the

category of LVN topological spaces can also be undertaken.
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