

*Corresponding author

E-mail address: shwetamittal019@gmail.com

Received April 26, 2021

5267

 Available online at http://scik.org

 J. Math. Comput. Sci. 11 (2021), No. 5, 5267-5277

https://doi.org/10.28919/jmcs/5931

ISSN: 1927-5307

IMPLEMENTING MACHINE LEARNING ALGORITHMS ON SPARK

SHWETA MITTAL*, OM PRAKASH SANGWAN

Department of Computer Science, Guru Jambeshwar University of Science & Technology, Hisar, Haryana, India

Abstract: Massive amount of data is being generated from the number of sources on day to day basis. Spark is a

very popular open source platform available freely on web to store and process big databases. For training the

machines to learn hidden patterns/information from these huge raw databases, machine learning algorithm needs to

be implemented. ML and MLLib are two machine learning libraries to implement machine learning algorithms in

Spark. In this paper, Decision Trees, Random Forests and Gradient Boosted Trees have been implemented by using

Cardiac and Telecom dataset on local PC as well as Google Colab and it was concluded that Gradient Boosted Trees

performed better than Decision Trees and Random Forests in terms of accuracy but took longer time to execute.

Further, it has been also observed that algorithms took less time to run on Colab GPU as compared to local PC.

Keywords: machine learning; spark; MLLib; decision trees; big data.

2010 AMS Subject Classification: 68W40.

1. INTRODUCTION

Tremendous amount of data is being generated via number of domains i.e. Health Sector,

Banking, Educational Institutions, Social Media etc. on day-to-day basis. Spark is open source

platforms developed by Apache to store and process such big databases which can support data

in form of text as well as images. The fundamental data structure of Spark is RDD i.e. Resilient

5268

SHWETA MITTAL, OM PRKASH SANGWAN

Distributed Dataset which is read-only dataset distributed over numerous nodes. In Spark, there

is one master node to control the entire process of resource allocation, job scheduling, task

management etc. and several worker nodes to perform the job. Spark performs in-memory

computing, thus is faster than Hadoop and supports iterative algorithms. Various platforms to

implement Spark cluster are as follows: Azure Databricks (built on the top of AWS, Amazon

Web Services), Amazon Elastic Map Reduce, Google Cloud, Dockers etc.

Machine learning is a technique to train the system to learn from the data and to make

predictions from it. There are 2 libraries available in Spark i.e. ML and MLLib to implement

machine learning algorithms. MLLib is a primary API for Spark and is built on the top of RDDs

(Resilient Distributed Datasets) whereas ML library is built on the top of Dataframes. Logistic

Regression, Decision Trees, Random Forest, Gradient Trees, Multi-Layer Perceptron, Naïve

Bayes, SVM are some of the machine learning techniques supported by Spark (as shown in

Figure 1).

Fig. 1: Machine Learning Algorithms in Spark

5269

IMPLEMENTING MACHINE LEARNING ALGORITHMS ON SPARK

2. LITERATURE REVIEW

Work done by various researchers to implement Machine Learning Techniques on Spark

platform has been studied in this section. P. Hung et al. implemented Decision Tree algorithm

using Pyspark ML and MLLib libraries on Breast Cancer dataset and the model provided the

accuracy rate of 71% and 83 % respectively [1]. F Alarsan et al. implemented Random Forest

and Gradient Boosted Trees on MIT BIH Arrhythmia dataset containing 205,146 records using

MLLib and Scala language on local host and it was found that Random Forest performed

superior over Gradient Boosted Trees [2]. W. Etaiwi et al. evaluated Naïve Bayes and Support

Vector Machines on the dataset of Satindar Bank of Spain containing more than 14 million

records using MLLib library and it was analyzed that Naïve Bayes overcomes Support Vector

Machines in terms of precision, recall and F-Measure [3].

H. Sayed et al. compared performance of Decision Trees on both ML and MLLib package for

Bank customer’s dataset and it was found that in terms of testing time and accuracy, ML

performed better while in terms of data transformations, MLLib took lesser time [4]. M.

Kadampur and S. Riyaee introduced a tool named DLS Studio for applying deep learning model

in cloud to classify image dataset and achieved ROC value of 99.77% [5]. K. Li et al. presented

CMS, a container based continuous machine learning platform which simplified model training

and deployment process with minimal human interference [6].

T. Craneiro et al. compared the performance of Deep learning applications on Google Colab,

Distributed Hardware and Mainstream Wokstations and it was concluded that Colab performed

equivalent to dedicated hardware [7]. A framework has been presented by C. Tianshi et al. by

integrating Jupyter notebook with Spark for scalable big data mining [8]. P. Gupta et al.

evaluated 2 serverless variants: one with mapper and the other one with both mappers and

reducers and the results proved that execution time of machine is sub-linear to the number of

reducers called [9]. S. Santana et al. too deployed a scalable environment for data analysis task

using Dockers [10].

Authors have also implemented LSTM i.e. Long-Short Term Memory Networks on Spark and

5270

SHWETA MITTAL, OM PRKASH SANGWAN

the results proved to be satisfactory. J. Zhang et al. implemented LSTM on cluster of 9

workstations and as per results, Cluster-Based LSTM performed superior over ordinary LSTM in

terms of RMSE [11].O. Aydin et al. implemented LSTM on Spark using Keras and Elephas

library for distributed computing and the resulting model proved to be reliable [12]. S. Kumar et

al. implemented LSTM and GRU upto 3 hidden layers for energy load forecasting using cluster

of 7 machines and it was concluded that GRU performed better than LSTM [13]. It was also

concluded that with the use of cluster, training time is 6 times faster. E. Huh et al. analyzed the

performance of LSTM on containers and host environment with respect to CPU and GPU and as

per results, training time of docker is less than local host [14].

From the review of work done by various researchers, it can be concluded that Spark performed

satisfactory for implementing machine learning algorithms and execution time is considerably

reduced for big databases. Machine Learning algorithms implemented by various researchers in

Spark performed well in terms of both accuracy and training time.

3. EXPERIMENTAL SETUP

As discussed earlier in the previous section, Spark is a popular and efficient platform to perform

learning from big data. Environment for spark can be setup via number of ways i.e. Azure

Databricks, Amazon Elastic Map Reduce, Google Cloud, Dockers etc. In this section, Spark

environment has been set up on local PC and on Google Colaboratory to implement Machine

Learning algorithms.

Spark can be implemented on local machine by installing Java, Python, Winutils, Spark and

Anaconda distribution (which uses IPython kernel at its backend) available freely on web.

Python, Java and Scala are the programming languages used for Spark. Anaconda is a

distribution of python and R languages which simplifies the task of package management and its

deployment. Jupyter Notebook is a web application which supports Julia, Python and R

programming language and allows user to create and share documents.

Google Colaboratory is an interactive environment developed by Google for writing and

5271

IMPLEMENTING MACHINE LEARNING ALGORITHMS ON SPARK

executing python codes and can be run on CPU, GPU or TPU. Data from local PC can be

uploaded to Google Drive and can then be used in Google Colab notebooks. Spark can also be

run on Google Colab by installing all the necessary spark dependencies in Colab environment as

shown in Figure 2. The major limitation of Colab is that it is available for only 12 hours per

session.

Fig. 2: Python code for creating SparkContext on Google Colab

4. IMPLEMENTATION

After setting up spark environment as specified in above section, the next step is to implement

Machine Learning algorithms. Decision Trees, Random Forests and Gradient Boosted Trees have

been implemented via Jupyter notebook on local PC (16GB RAM, 1TB of memory and 1.8 Ghz

processing speed) and on Google Colaboratory and their relative performance in terms of

accuracy and training time has been observed.

Heart Disease and Telecom Churn dataset containing 70,000 and 3,333 records respectively

(available freely on Kaggle.com) has been used for implementation purpose [16, 17]. Input

attributes for heart disease dataset i.e. Dataset1 are Age, Gender, Height, Weight, Cholesterol,

High Blood Pressure, Low Blood Pressure, Cholesterol, Diabetes, whether a person

smokes/drink and output is to classify whether a person is suffering from cardiac disease. For

dataset 2 i.e. Telecom Churn dataset, input attributes are State, Account length, Area code,

5272

SHWETA MITTAL, OM PRKASH SANGWAN

International plan, Voice mail plan, Number of voice mail messages, Total day minutes, Total day

calls, Total day charge, Total evening minutes, Total evening calls, Total eve charge, Total night

minutes, Total night call etc. and output is to classify whether the customer will Churn or not.

Algorithms have been implemented on spark using Spark’s ML library which has number of

in-built functions to ease the task of implementation. To implement the algorithm, Transformer

(accepts a dataframe as input and generates new dataframe by appending one or more column),

Estimator (algorithm for training dataframe to create a model) and Pipelines (sequence of stages

where each stage is either a transformer or estimator) are some basic concepts used.

A. DATA PREPARATION:

Input dataset contains a mix of numerical and categorical columns which needs to be handled

cautiously while implementation so that categorical attributes may not be miss-treated as

numerical ones. The categorical string values present in the input dataset first needs to be

converted into an integer label via StringIndexer class which also stores the metadata of

attributes. String values can too be retrieved back from the generated integer labels via

IndexToString class. As there is no ordinal relation among these newly generated integer labels ,

One Hot Encoding of attributes via OneHotEncoder class is performed which converts the

integer labels into binary vector as shown in Figure 3.

Fig. 3: Python code for StringIndexer and OneHotEncoder

ML algorithm accepts input data in the form of a vector. So, the next step is to assemble

all the input attributes i.e. numerical and the output of One Hot Encoder in a single vector

column via VectorAssembler class (as shown in Figure 4). VectorAssembler class provides

sparse vector as its output i.e. vector with huge number of zeroes as its output while ML

algorithm accepts dense vector (as shown in Figure 6). Thus, sparse vector needs to be converted

into dense vector which is then given as input to VectorIndexer class. VectorIndexer distinguish

5273

IMPLEMENTING MACHINE LEARNING ALGORITHMS ON SPARK

between continuous and categorical values and also assign index to categorical values.

Fig. 4: Python code for VectorAssembler class

B. MODEL TRAINING AND EVALUATION

The output given by VectorIndexer class is then given as input to machine learning algorithm. As

shown in Figure 5, ‘indexedatafeatures’, output column of VectorIndexer class is given as input

to Decision Tree algorithm. For training the model, training and testing data is split in the ratio of

70:30 respectively. Fit function has been used to train the model on dataframe and to generate the

prediction from the dataset transform function has been used.

Fig. 5: Input to ML algorithm

5274

SHWETA MITTAL, OM PRKASH SANGWAN

Fig. 6: Implementation of Decision Tree Classifier

After training the data, MultiClassClassificationEvaluator (as shown in Figure 7) has been used

to evaluate the accuracy of the model. Parameters of algorithm can then be fine-tuned to achieve

maximum accuracy and minimum error.

Fig. 7: MultiClassClassificationEvaluator

5. EXPERIMENTAL RESULTS

Decision Trees, Random Forests and Gradient Boosted Trees have been implemented using

Spark’s ML library and performance of algorithm have been compared in terms of both accuracy

and runtime. For dataset 1, Gradient Boosted Trees provides the most accurate results i.e. 73.62%

while Decision Trees and Random Forests gave less accurate results i.e. 73.26% and 73.15%

respectively on local PC as referred in Table1. Similar results have been observed for dataset 2

on local PC with accuracy value of 92.98%, 88.17% and 93.46% on Decision Tree, Random

Forests and Gradient Boosted Trees respectively.

Table1: Comparison of ML algorithm on local host

Dataset1 Dataset2

Accuracy Runtime Accuracy Runtime

Decision Tree 73.2645 21.86758 92.9825 8.159213

Random Forest 73.1545 22.47601 88.168 11.37834

Gradient Boosted Trees 73.6278 25.01397 93.462 22.5124

5275

IMPLEMENTING MACHINE LEARNING ALGORITHMS ON SPARK

Table2: Comparison of ML algorithm on Google Colab

Colab GPU

Dataset1 Dataset2

Accuracy Runtime Accuracy Runtime

Decision Tree 72.5648 15.69723 92.0202 3.295617

Random Forest 71.9994 13.78304 89.9798 2.896695

Gradient Boosted Trees 72.7996 20.54381 95.0939 8.328558

On local PC, Decision Trees and Random Forests took lesser training time while Gradient

Boosted Tree took the maximum training time on both the datasets. The experiments are then

repeated on Google Colaboratory and similar results have been achieved in terms of accuracy of

models while in terms of training time, algorithms took much lesser time on Colab GPU as

mentioned in Table 2.

6. CONCLUSION AND FUTURE WORK

Apace Spark is the most popular framework to process big databases which has ML and MLLib

library to implement machine learning algorithms. In this research work, Decision Trees,

Random Forests and Gradient Boosted Trees have been implemented on Spark using ML Library

it can be concluded that Gradient Boosted Tree is slowest among Decision Tree and Random

Forest but provides the most accurate results. Algorithms have also been implemented on Google

Colaboratory as well by selecting the GPU runtime and from the results it can be inferred that

results are similar to the algorithms run on local machine in terms of accuracy but the run time of

algorithm is considerably reduced on Google Colab.

In future, other machine learning algorithms can also be implemented using Spark’s ML library

and much bigger databases can be considered while implementation. Transfer learning and Deep

Learning algorithms can also be implemented to further improve the accuracy of the model.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

5276

SHWETA MITTAL, OM PRKASH SANGWAN

REFERENCES

[1] P.D. Hung, T.D. Hanh, V.T. Diep, Breast cancer prediction using spark MLlib and ML packages, in:

Proceedings of the 2018 5th International Conference on Bioinformatics Research and Applications, ACM,

Hong Kong, 2018: pp. 52–59.

[2] F.I. Alarsan, M. Younes, Analysis and classification of heart diseases using heartbeat features and machine

learning algorithms, J. Big Data. 6 (2019), 81.

[3] W. Etaiwi, M. Biltawi, G. Naymat, Evaluation of classification algorithms for banking customer’s behavior

under apache spark data processing system, Procedia Computer Sci. 113 (2017), 559–564.

[4] H. Sayed, M. Abdel-Fattah, S. Kholief, Predicting potential banking customer churn using apache spark ml and

MLlib packages: a comparative study, Int. J. Adv. Computer Sci. Appl. 9 (2018), 674- 677.

[5] M.A. Kadampur, S. Al Riyaee, Skin cancer detection: Applying a deep learning based model driven

architecture in the cloud for classifying dermal cell images, Inform. Med. Unlocked. 18 (2020), 100282.

[6] K. Li, N. Gui, CMS: A continuous machine-learning and serving platform for industrial big data, Future

Internet. 12 (2020), 102.

[7] T. Carneiro, R.V. Medeiros Da Nobrega, T. Nepomuceno, et al. Performance analysis of google colaboratory

as a tool for accelerating deep learning applications, IEEE Access. 6 (2018), 61677–61685.

[8] C. Tianshi, J. Wei, Scalable and cooperative big data mining platform design for smart grid, in: 2016 China

International Conference on Electricity Distribution (CICED), IEEE, Xi’an, China, 2016: pp. 1–5.

[9] P. Gupta, S. Addala, Experimental evaluation of serverless functions,

https://g31pranjal.github.io/assets/serverless-report.pdf.

[10] S. Martín-Santana, C.J. Pérez-González, M. Colebrook, J.L. Roda-García, P. González-Yanes, Deploying a

scalable data science environment using docker, in: F.P. García Márquez, B. Lev (Eds.), Data Science and

Digital Business, Springer International Publishing, Cham, 2019: pp. 121–146.

[11] J. Zhang, F. Chen, Q. Shen, Cluster-based LSTM network for short-term passenger flow forecasting in urban

rail transit, IEEE Access. 7 (2019), 147653–147671.

[12] O. Aydin, S. Guldamlasioglu, Using LSTM networks to predict engine condition on large scale data processing

framework, in: 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), IEEE,

5277

IMPLEMENTING MACHINE LEARNING ALGORITHMS ON SPARK

Ankara, Turkey, 2017: pp. 281–285.

[13] S. Kumar, L. Hussain, S. Banarjee, M. Reza, Energy load forecasting using deep learning approach-LSTM and

GRU in spark cluster, in: 2018 Fifth International Conference on Emerging Applications of Information

Technology (EAIT), IEEE, Kolkata, 2018: pp. 1–4.

[14] T.D.T. Nguyen, E.-N. Huh, J.H. Park, et al. Performance analysis of data parallelism technique in machine

learning for human activity recognition using LSTM, in: 2019 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), IEEE, Sydney, Australia, 2019: pp. 387–391.

[15] Kaggle, Cardiovascular Classification, https://www.kaggle.com/sulianova/cardiovascular-disease-dataset,

accessed January 1, 2019.

[16] Kaggle, mlcourse.ai, Open Machine Learning Course by OpenDataScience,

https://www.kaggle.com/kashnitsky/mlcourse?select=telecom_churn.csv, accessed June 18, 2018.

