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Abstract. Due to its simple form, linear regression is the most commonly used model when dealing with a

predictive model. However, there are some limitations to the model, such as the constraint of only being able to

model variables that have a linear relationship, the assumption of normality on its error, and the multi-collinearity

between independent variables which should not occur. One of the alternative models that is free from these

limitations is the copula-based regression model defined by the conditional expectation formula of copulas. Leong

and Valdez [Claims prediction using copula models, Insurance Math. Econom., 2005] [15] developed a conditional

expectation formula of copulas for higher dimensions in the implicit form with bivariate case examples. Crane and

Hoek [Conditional expectation formulae for copulas, Aust. N.Z.J. Stat, 2008] [5] provided conditional expectation

formula of copulas explicitly for two dimensions with its examples. However, in practice, a predictive model often

involves more than two variables, i.e. one dependent variable with more than one independent variable, including

a copula-based regression model. With regard to these problems and the limitations of dimension in previous

studies, our contribution in this study is extending the copula-based regression model for higher dimensions for

class of Farlie-Gumbel-Morgenstern, elliptical, and Archimedean copula. We obtain a closed-form of conditional

expectation formula of Farlie-Gumbel-Morgenstern, Gaussian, Student-t, and Clayton copula for n dimensions

and provide the formula for Gumbel copula up to four dimensions. We apply our extended formula to estimate
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KRW/USD currency based on its association with CNY/USD and JPY/USD, and found that the extended function

can be used quite accurately.

Keywords: archimedean; conditional expectation; copula; elliptical; Farlie-Gumbel-Morgenstern; higher dimen-

sion.
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1. INTRODUCTION

One of the simplest and most widely used predictive models is a linear regression model. It is

used to predict the data that have a linear relationship pattern. In addition, there are assumptions

of normality that must be met and multi-collinearity that must be avoided. Meanwhile, there

exist a possibility that there is a non-linear relationship between independent variables and

the dependent variable. Besides, the distribution of the data is not always normal. In such

cases, the linear regression model cannot be used. There is a function that can describe the

relationship between some variables both linear and non-linear, namely copula function, first

introduced by Abe Sklar in 1959. It is widely used to model the dependency structure between

some variables with any non-linear relationship. The function’s advantage lies in its ability

to identify any structure of dependency, as well as there are no certain assumptions that the

marginal distribution of the variables whose dependencies will be tested must satisfy.

The copula function is developed as an alternative predictive model for the linear regression

model. Some studies mention that copula-based regression model can generally be written as a

function of independent variables, where the model is defined as the conditional expectation of

the dependent variable given by the independent variables [15, 5, 9, 11, 8, 6].

(1) E(Y |X) = h(X)

The main idea of the construction of a simple copula-based regression model using con-

ditional expectation formula was introduced by Leong and Valdez [15] and Crane and Hoek

[5]. Leong and Valdez [15] found the predictive claim in the form of a conditional expecta-

tion formula of copulas. They provided some formulas for multivariate copulas implicitly with

the examples for bivariate cases. Crane and Hoek [5] derived conditional expectation formula

for Farlie-Gumbel-Morgenstern (FGM), Iterated FGM, Gaussian, and Archimedean copula for
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two and three-dimensional cases. The formula for the two dimensions model has been applied

to several examples such as exchange-rate data, male waist size given by male forearm size,

and male chest size given by male waist size. Kolev and Paiva [9] discussed the copula-based

regression model for Gaussian copula, transitional regression model, longitudinal model, and

Archimedean copula up to three dimensions cases. Parsa and Klugman [11] presented the for-

mulas and algorithms necessary for conducting the Normal copula-based regression model and

provided the examples for three-dimensional cases. The simulations describe that copula re-

gression provides a good alternative to OLS and GLM. Noh et al. [8] studied the estimator

for different copula-based regression models which are asymptotically normally distributed.

Masarotto and Varin [6] made a package in R to implement the Gaussian copula-based regres-

sion model.

Based on the previous researches, the copula-based regression model gives more flexible re-

sult compared to the linear regression model because it can accommodate possible non-linear

relationship that cannot be captured by the linear regression model. The basic foundation of the

copula-based regression model is the conditional expectation formula of the dependent variable

given by the independent variables. However, in the studies mentioned earlier, the copula-based

regression model used is still focused on two-dimensional cases. Therefore, in this paper, our

contribution is on the extension of the conditional expectation formula discussed by Leong and

Valdez [15] and Crane and Hoek [5] to the higher dimensions for FGM, elliptical, consists

of Gaussian and Student-t, and Archimedean copulas, consists of Clayton and Gumbel cop-

ula. This is interesting because in many cases, the predictive model is widely used to solve

problems related to many independent variables. We obtain a closed-form of conditional expec-

tation formula of FGM, Gaussian, Student-t, and Clayton copula for n dimensions and provide

the formula for Gumbel copula up to four dimensions. To obtain a better understanding regard-

ing the extended formula of the conditional expectation of copulas for higher dimensions, we

provide an application on the financial case. We apply the three-dimensional conditional expec-

tation of copula to estimate KRW/USD currency based on its association with CNY/USD and

JPY/USD. For visualization purpose, we plot the estimation results against the original data in

a three-dimensional plot.
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The rest of this paper is organized as follows. In Section 2, we discuss the conditional expec-

tation formula for multivariate copula and provide general functions for FGM, elliptical, and

Archimedean copulas. In Section 3 we explain the estimation procedures for marginal and cop-

ula modeling. In Section 4, we apply the three-dimensional conditional expectation formula of

copula to estimate KRW/USD currency based on its association with CNY/USD and JPY/USD.

We also provide the three-dimensional plot of the estimation results for visualization purpose.

The last Section provide the conclusion of our research.

2. CONDITIONAL EXPECTATION FORMULA FOR MULTIVARIATE COPULA

Suppose that Y is a random variable which represent the dependent variable and the sequence

{X1,X2, . . . ,Xn} are random variables which represent the independent variables, the conditional

expectation of Y given by {X1,X2, . . . ,Xn} defined by [5].

(2) E(Y |X1,X2, . . . ,Xn) =
∫

R
y

∂

∂y
P(Y ≤ y|X1,X2, . . . ,Xn)dy

For bivariate cases, suppose that X represents the independent variable and Y represents the

dependent variable. Suppose that u = FY (y) and v = GX(x), H is the joint distribution function

of X and Y , then

(3) H(F−1(u),G−1(v)) =C(u,v)

and the conditional distribution function is [14]

P(Y ≤ y|X = x) = lim
∆x→0

P(Y ≤ y|x < X ≤ x+∆x)

= lim
∆x→0

P(Y ≤ y,x < X ≤ x+∆x)
P(x < X ≤ x+∆x)

= lim
∆x→0

HY X(y,x+∆x)−HY X(y,x)
GX(x+∆x)−GX(x)

= lim
∆x→0

C(FY (y),GX(x+∆x))−C(FY (y),GX(x))
GX(x+∆x)−GX(x)

= C2(FY (y),GX(x))(4)

The index 2 in Eq.(4) represents the partial derivative for the second variable, that is the

independent variable.
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Furthermore, for the three-dimensional cases, suppose that Y is the dependent variable and

X1 and X2 are the independent variables with u1 = F(y), u2 = G1(x1), and u3 = G2(x2) (see the

illustration in Figure 1).

Figure 1. Definition Area for Three-Dimensional Cases

The multivariate distribution function of P1,P2, . . . ,P8 can be expressed as the copula function

as follows

(i) P1(Y ≤ y,X1 ≤ x1 +∆x1,X2 ≤ x2 +∆x2) =C1(F(y),G1(x1 +∆x1),G2(x2 +∆x2))

(ii) P2(Y ≤ y,X1 ≤ x1 +∆x1,X2 ≤ x2) =C2(F(y),G1(x1 +∆x1),G2(x2))

(iii) P3(Y ≤ y,X1 ≤ x1,X2 ≤ x2 +∆x2) =C3(F(y),G1(x1),G2(x2 +∆x2))

(iv) P4(Y ≤ y,X1 ≤ x1,X2 ≤ x2) =C4(F(y),G1(x1),G2(x2))

(v) P5(X1 ≤ x1 +∆x1,X2 ≤ x2 +∆x2) =C5(1,G1(x1 +∆x1),G2(x2 +∆x2))

(vi) P6(X1 ≤ x1 +∆x1,X2 ≤ x2) =C6(1,G1(x1 +∆x1),G2(x2))

(vii) P7(X1 ≤ x1,X2 ≤ x2 +∆x2) =C7(1,G1(x1),G2(x2 +∆x2))

(viii) P8(X1 ≤ x1,X2 ≤ x2) =C8(1,G1(x1),G2(x2))

Based on the definition area for the three-dimensional cases in Figure 1 and the relationship

between multivariate distribution function and copula function, then the conditional distribution

function of Y given by X1 = x1 and X2 = x2 can be derived as follows [5]

P(Y ≤ y|X1 = x1,X2 = x2)
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= lim
(∆x1,∆x2)→(0+,0+)

P(Y ≤ y|x1 < X1 ≤ x1 +∆x1,x2 < X2 ≤ x2 +∆x2)

= lim
(∆x1,∆x2)→(0+,0+)

P(Y ≤ y,x1 < X1 ≤ x1 +∆x1,x2 < X2 ≤ x2 +∆x2)

P(x1 < X1 ≤ x1 +∆x1,x2 < X2 ≤ x2 +∆x2)

= lim
(∆x1,∆x2)→(0+,0+)

P1−P2−P3 +P4

P5−P6−P7 +P8

= lim
(∆x1,∆x2)→(0+,0+)

C1−C2−C3 +C4

C5−C6−C7 +C8

= lim
(∆x1,∆x2)→(0+,0+)

C1−C2−C3 +C4

{G1(x1 +∆x1)−G1(x1)}{G2(x2 +∆x2)−G2(x2)}

:
C5−C6−C7 +C8

{G1(x1 +∆x1)−G1(x1)}{G2(x2 +∆x2)−G2(x2)}

=
C23(F(y),G1(x1),G2(x2))

C23(1,G1(x1),G2(x2))
(5)

Generally, for n independent variables, suppose that u1 = F(y),u2 = G1(x1),u3 =

G2(x2), . . . ,un+1 = Gn(xn), where its multivariate distribution function can be expressed in the

copula form below

(6) H(F−1(u1),G−1
1 (u2),G−1

2 (u3), . . . ,G−1
n (un+1)) =C(u1,u2, . . . ,un+1)

Then the conditional distribution function can be expressed as [5]

(7) P(Y ≤ y|X1 = x1, . . . ,Xn = xn) =
C23...n(n+1)(F(y),G1(x1), . . . ,Gn(xn))

C23...n(n+1)(1,G1(x1), . . . ,Gn(xn))

Therefore, the conditional expectation formula for multivariate cases is defined by [5]

E(Y |X1 = x1, . . . ,Xn = xn) =
∫

R
y

∂

∂y
P(Y ≤ y|X1 = x1, . . . ,Xn = xn)dy

=
∫

R
y

∂

∂y
C23...n(n+1)(F(y),G1(x1), . . . ,Gn(xn))

C23...n(n+1)(1,G1(x1), . . . ,Gn(xn))
dy

=
∫

R
y
C123...n(n+1)(F(y),G1(x1), . . . ,Gn(xn))

C23...n(n+1)(1,G1(x1), . . . ,Gn(xn))
F ′(y)dy(8)

2.1. Multivariate Farlie-Gumbel-Morgenstern Copula. Farlie-Gumbel-Morgenstern

(FGM) copula is one of the parametric copulas which is widely used because of its simple

form. Multivariate FGM copula is defined by [13, 7]

C(u1,u2, . . . ,ud) =
d

∏
k=1

uk

(
1+

d

∑
k=2

∑
1≤ j1<...< jk≤d

θ j1 j2... jk

k

∏
i=1

(1−u ji)

)
,θ ∈ [−1,1](9)
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Based on [7], multivariate FGM copula has 2d−d−1 parameters.

By doing an algebraic derivation according to Eq.(8) using FGM d-copula from Eq.(9), we

obtain the following theorem.

Theorem 2.1. Suppose that Y represents a dependent variable and a sequence {X1,X2, . . . ,Xn}

represent the independent variables, with u1 = F(y) and u2 = G1(x1),u3 = G2(x2), . . . ,un+1 =

Gn(xn), then the conditional expectation of Y given by {X1,X2, . . . ,Xn} for multivariate FGM

copula is defined by

(10) E(Y |X1 = x1, . . . ,Xn = xn) = E(Y )+η(x1, . . . ,xn)
∫

R
y(1−2F(y))F ′(y)dy

with

η(x1, . . . ,xn) =
∑

n
k=1 ∑2≤ j1< j2<...< jk≤n+1 θ1 j1 j2... jk ∏

k
i=1(1−2u ji)

1+∑
n
k=2 ∑2≤ j1< j2<...< jk≤n+1 θ j1 j2... jk ∏

k
i=1(1−2u ji)

and

u ji = Gk(xk), ji = 2,3, . . . ,n+1, i = 1,2, . . . ,k, k = 1,2, . . . ,n

Proof. Based on Eq.(9), we have (n+1) variables consist of Y and {X1, . . . ,Xn} with u1 = F(y)

and u2 = G1(x1),u3 = G2(x2), . . . ,un+1 = Gn(xn), therefore we have the following equations

(11) C(u1,u2, . . . ,un+1) =
n+1

∏
k=1

uk +
n+1

∏
k=1

uk

n+1

∑
k=2

∑
1≤ j1<...< jk≤n+1

θ j1 j2... jk

k

∏
i=1

(1−u ji)

and

(12) C(1,u2, . . . ,un+1) =
n+1

∏
k=2

uk +
n+1

∏
k=2

uk

n

∑
k=2

∑
2≤ j1<...< jk≤n+1

θ j1 j2... jk

k

∏
i=1

(1−u ji)

Using Eq.(8), we have to derive Eq.(11) and (12) partially to (n+1) and n-th order as follows

C123...n(n+1)(u1,u2, . . . ,un+1) =
∂ n+1

∂u1 . . .∂un+1
C(u1,u2, . . . ,un+1)

= 1+
n+1

∑
k=2

∑
1≤ j1<...< jk≤n+1

θ j1 j2... jk

k

∏
i=1

(1−2u ji)(13)

C23...n(n+1)(1,u2, . . . ,un+1) =
∂ n

∂u2 . . .∂un+1
C(1,u2, . . . ,un+1)

= 1+
n

∑
k=2

∑
2≤ j1<...< jk≤n+1

θ j1 j2... jk

k

∏
i=1

(1−2u ji)(14)
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Substitute Eq.(13) and (14) into Eq.(8), we obtain

E(Y |X1 = x1, . . . ,Xn = xn)

=
∫

R
y
C123...n(n+1)(F(y),G1(x1), . . . ,Gn(xn))

C23...n(n+1)(1,G1(x1), . . . ,Gn(xn))
F ′(y)dy

=
∫

R
y
C123...n(n+1)(u1,u2, . . . ,un+1)

C23...n(n+1)(1,u2, . . . ,un+1)
F ′(y)dy

=
∫

R
y

1+∑
n+1
k=2 ∑1≤ j1<...< jk≤n+1 θ j1 j2... jk ∏

k
i=1(1−2u ji)

1+∑
n
k=2 ∑2≤ j1<...< jk≤n+1 θ j1 j2... jk ∏

k
i=1(1−2u ji)

F ′(y)dy

=
∫

R
y

(
1+∑

n
k=2 ∑2≤ j1<...< jk≤n+1 θ j1 j2... jk ∏

k
i=1(1−2u ji)

1+∑
n
k=2 ∑2≤ j1<...< jk≤n+1 θ j1 j2... jk ∏

k
i=1(1−2u ji)

)
F ′(y)dy+

∫
R

y

(
∑

n
k=1 ∑2≤ j1< j2<...< jk≤n+1 θ1 j1 j2... jk ∏

k
i=1(1−2u ji)

1+∑
n
k=2 ∑2≤ j1<...< jk≤n+1 θ j1 j2... jk ∏

k
i=1(1−2u ji)

)
(1−2u1)F ′(y)dy

= E(Y )+η(x1, . . . ,xn)
∫

R
y(1−2F(y))F ′(y)dy

with

η(x1, . . . ,xn) =
∑

n
k=1 ∑2≤ j1< j2<...< jk≤n+1 θ1 j1 j2... jk ∏

k
i=1(1−2u ji)

1+∑
n
k=2 ∑2≤ j1<...< jk≤n+1 θ j1 j2... jk ∏

k
i=1(1−2u ji)

and

u ji = Gk(xk), ji = 2,3, . . . ,n+1, i = 1,2, . . . ,k, k = 1,2, . . . ,n

�

Example 2.2. For two-dimensional case, the conditional expectation of Y given by X = x for

bivariate FGM copula is

(15) E(Y |X = x) = E(Y )+θ(1−2G(x))
∫

R
y(1−2F(y))F ′(y)dy

Example 2.3. For three-dimensional case, suppose that there are three variables; Y that repre-

sents the dependent variable and X1 and X2 represent the independent variables, with u1 = F(y),

u2 =G1(x1), and u3 =G2(x2), then the FGM 3-copula has 23−3−1= 4 parameters and defined

by

C(u1,u2,u3) = u1u2u3[1+θ12(1−u1)(1−u2)+θ13(1−u1)(1−u3)
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+θ23(1−u2)(1−u3)+θ123(1−u1)(1−u2)(1−u3)](16)

The conditional expectation of Y given by X1 = x1 and X2 = x2 by using Theorem 2.1 is

(17) E(Y |X1 = x1,X2 = x2) = E(Y )+η(x1,x2)
∫

R
y(1−2F(y))F ′(y)dy

with

η(x1,x2) =

θ12(1−2G1(x1))+θ13(1−2G2(x2))+θ123(1−2G1(x1))(1−2G2(x2))

1+θ23(1−2G1(x1))(1−2G2(x2))

Example 2.4. This example provides the conditional expectation formula for four-dimensional

FGM copula. Suppose that Y represents the dependent variable and X1, X2, and X3 are inde-

pendent variables with u1 = F(y), u2 = G1(x1), u3 = G2(x2), and u4 = G3(x3), then the FGM

4-copula has 24−4−1 = 11 parameters and defined by

C(u1, . . . ,u4) = u1u2u3u4[1+θ12(1−u1)(1−u2)+θ13(1−u1)(1−u3)

+ θ14(1−u1)(1−u4)+θ23(1−u2)(1−u3)

+ θ24(1−u2)(1−u4)+θ34(1−u3)(1−u4)

+ θ123(1−u1)(1−u2)(1−u3)+θ124(1−u1)(1−u2)(1−u4)

+ θ134(1−u1)(1−u3)(1−u4)+θ234(1−u2)(1−u3)(1−u4)

+ θ1234(1−u1)(1−u2)(1−u3)(1−u4)](18)

Conditional expectation formula for FGM 4-copula is defined by

E(Y |X1 = x1,X2 = x2,X3 = x3) = E(Y )+η(x1,x2,x3)
∫

R
y(1−2F(y))F ′(y)dy(19)

with

η(x1,x2,x3) =
a(x1,x2,x3)

b(x1,x2,x3)

a(x1,x2,x3) = θ12(1−2G1(x1))+θ13(1−2G2(x2))+θ14(1−2G3(x3))

+ θ123(1−2G1(x1))(1−2G2(x2))

+ θ124(1−2G1(x1))(1−2G3(x3))



4886 A. AHDIKA, D. ROSADI, A.R. EFFENDIE, GUNARDI

+ θ134(1−2G2(x2))(1−2G3(x3))

+ θ1234(1−2G1(x1))(1−2G2(x2))(1−2G3(x3))

b(x1,x2,x3) = 1+θ23(1−2G1(x1))(1−2G2(x2))

+ θ24(1−2G1(x1))(1−2G3(x3))

+ θ34(1−2G2(x2))(1−2G3(x3))

+ θ234(1−2G1(x1))(1−2G2(x2))(1−2G3(x3))

Proposition 2.5. If θ j1 j2... jk = θ ∀ ji, i = 1,2, . . . ,n+1, then θ has a unique range of parameter,

given by

(20) θ ∈
[
− 1

2d−d−1
,

1
d−1

]
for d-dimensions, where d = n+1.

Proof. The proof is the extension of Johnson and Kott’s work [10]. Suppose we have n+ 1

variables consist of Y,X1, . . . ,Xn with u1 = F(y),u2 = G1(x1), . . . , un+1 = Gn(xn), the joint

probability density function of Y,X1, . . . ,Xn is

h(y,x1, . . . ,xn) =
∂ n+1

∂y∂x1∂x2 . . .∂xn
H(y,x1,x2, . . . ,xn)

=
∂ n+1

∂y∂x1∂x2 . . .∂xn
C(F(y),G1(x1),G2(x2), . . . ,Gn(xn))

=

(
1+

n+1

∑
k=2

∑
1≤ j1<...< jk≤n+1

θ j1 j2... jk(1−2F(y))
k

∏
i=2

(1−2u ji)

)

× f (y)
n

∏
i=2

g(xi)

=

(
1+

n+1

∑
k=2

∑
1≤ j1<...< jk≤n+1

θ j1 j2... jk

k

∏
i=1

c ji

)
× f (y)

n

∏
i=2

g(xi)

=

(
1+θ

n+1

∑
k=2

∑
1≤ j1<...< jk≤n+1

k

∏
i=1

c ji

)
× f (y)

n

∏
i=2

g(xi)(21)

where θ j1 j2... jk = θ ∀ ji, i = 1,2, . . . ,n+ 1, c j1 = (1− 2F(y)), and c ji = (1− 2Gi−1(xi−1)) for

i = 2,3, . . . ,n+ 1. Because both 0 ≤ F(y) ≤ 1 and 0 ≤ Gi(xi) ≤ 1, then the possible value of
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c ji is −1 ≤ c ji ≤ 1. Eq.(21) is said to be a probability density function if the value of h ≥ 0, it

means that the value in the bracket should be greater than or equal to zero.

(22)

(
1+θ

n+1

∑
k=2

∑
1≤ j1<...< jk≤n+1

k

∏
i=1

c ji

)
≥ 0

For two dimensions (d = 2), the result is quite obvious. We can refer to the case of bivariat

FGM copula, and we obtain the range of parameter, i.e. θ ∈ [−1,1].

For three dimensions consists of Y , X1, and X2, we have

1+θ
(
c j1c j2 + c j1c j3 + c j2c j3 + c j1c j2c j3

)
≥ 0

The possible values of θ are

(i) 1+4θ ≥ 0 (c j1 = c j2 = c j3 = 1)

(ii) 1+2θ ≥ 0 (c j1 = c j2 = c j3 =−1)

(iii) 1−2θ ≥ 0 (c j1 =−1;c j2 = c j3 = 1 and 2 other similar conditions)

and trivial solution for the case c j1 = 1;c j2 = c j3 = −1 and two other similar conditions. By

completing the three inequalities, we have the range of parameter of θ for three dimensions that

is θ ∈
[
−1

4 ,
1
2

]
.

For four dimensions consists of Y , X1, X2, and X3, we have

1+θ
(
c j1c j2 + c j1c j3 + c j1c j4 + c j2c j3 + c j2c j4 + c j3c j4

+c j1c j2c j3 + c j1c j2c j4 + c j1c j3c j4 + c j2c j3c j4 + c j1c j2c j3c j4
)
≥ 0

Using similar way, we have possible values for θ that are

(i) 1+11θ ≥ 0 (c j1 = c j2 = c j3 = c j4 = 1)

(ii) 1+3θ ≥ 0 (c j1 = c j2 = c j3 = c j4 =−1)

(iii) 1−3θ ≥ 0 (c j1 =−1;c j2 = c j3 = c j4 = 1 and 3 other similar conditions)

(iv) 1+θ ≥ 0 (c j1 = 1;c j2 = c j3 = c j4 =−1 and 3 other similar conditions)

(v) 1−θ ≥ 0
(
c j1 = c j2 =−1;c j3 = c j4 = 1 and 2 other similar conditions

)
Solution set for the five inequalities is θ ∈

[
− 1

11 ,
1
3

]
.
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This method can be expanded into d dimensions, and the general solution is

θ ∈
[
− 1

2d−d−1
,

1
d−1

]
�

2.2. Multivariate Elliptical Copula. In class of elliptical copula, two popular copulas are

often to be used, that are Gaussian and Student-t copula. Multivariate copula for this class is

defined by

(23) C(u1, . . . ,un) =


Φn(Φ

−1(u1), . . . ,Φ
−1(un)), Gaussian copula

tn(t−1(u1), . . . , t−1(un)), Student-t copula

where Φn(·) and tn(·) are the joint distribution functions of standard normal and Student-t,

respectively.

We obtain the conditional expectation formula for multivariate elliptical copula as follows.

Theorem 2.6. Suppose that Y is a random variable represents a dependent variable and

a sequence {X1,X2, . . . ,Xn} represent the independent variables, with u1 = F(y), and u2 =

G1(x1),u3 = G2(x2), . . . ,un+1 = Gn(xn), then the conditional expectation of Y given by

{X1,X2, . . . ,Xn} for multivariate elliptical copula is defined by

E(Y |X1 = x1, . . . ,Xn = xn)

=
∫

R
y

ψn+1(Ψ
−1(F(y)),Ψ−1(G1(x1)), . . . ,Ψ

−1(Gn(xn)))

ψn(Ψ−1(G1(x1)) . . .Ψ−1(Gn(xn)))
dy(24)

where Ψn(·) dan ψn(·) are the joint distribution and density functions of the elliptical distribu-

tion with

Ψn(·) =


Φn(·), joint distribution function of standard normal

tn(·), joint distribution function of Student-t
(25)

ψn(·) =


φn(·), joint density function of standard normal

ft,n(·), joint density function of Student-t
(26)
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Proof. Suppose that u1 = F(y) and u2 = G1(x1),u3 = G2(x2), . . . ,un+1 = Gn(xn), then

(27) C(u1,u2, . . . ,un+1) = Ψn+1(Ψ
−1(u1),Ψ

−1(u2), . . . ,Ψ
−1(un+1))

and

C(1,u2, . . . ,un+1) = Ψn+1(Ψ
−1(1),Ψ−1(u2), . . . ,Ψ

−1(un+1))

= Ψn+1(∞,Ψ−1(u2), . . . ,Ψ
−1(un+1))

= Ψn(Ψ
−1(u2), . . . ,Ψ

−1(un+1))(28)

Furthermore, Eq. (27) and (28) is derived partially to n+1 and n-th order such that

C123...n(n+1)(u1, . . . ,un+1) =
∂ n+1

∂u1 . . .∂un+1
C(u1,u2, . . . ,un+1)

=
∂ n+1

∂u1 . . .∂un+1
Ψn+1(Ψ

−1(u1),Ψ
−1(u2), . . . ,Ψ

−1(un+1))

=
ψn+1(Ψ

−1(u1),Ψ
−1(u2), . . . ,Ψ

−1(un+1))

ψ(Ψ−1(u1))ψ(Ψ−1(u2)) . . .ψ(Ψ−1(un+1))
(29)

and

C23...n(n+1)(1,u2, . . . ,un+1) =
∂ n

∂u2 . . .∂un+1
C(1,u2, . . . ,un+1)

=
∂ n

∂u2 . . .∂un+1
Ψn(Ψ

−1(u2), . . . ,Ψ
−1(un+1))

=
ψn(Ψ

−1(u2), . . . ,Ψ
−1(un+1))

ψ(Ψ−1(u2)) . . .ψ(Ψ−1(un+1))
(30)

Finally, substitute Eq. (29) and (30) into Eq. (8) so that we obtain

E(Y |X1 = x1, . . . ,Xn = xn)

=
∫

R
y
C123...n(n+1)(F(y),G1(x1), . . . ,Gn(xn))

C23...n(n+1)(1,G1(x1), . . . ,Gn(xn))
F ′(y)dy

=
∫

R
y
C123...n(n+1)(u1,u2, . . . ,un+1)

C23...n(n+1)(1,u2, . . . ,un+1)
F ′(y)dy

=
∫

R
y

ψn+1(Ψ
−1(u1),Ψ

−1(u2),...,Ψ
−1(un+1))

ψ(Ψ−1(u1))ψ(Ψ−1(u2))...ψ(Ψ−1(un+1))

ψn(Ψ−1(u2),...,Ψ−1(un+1))
ψ(Ψ−1(u2))...ψ(Ψ−1(un+1))

ψ(Ψ−1(u1))dy

=
∫

R
y

ψn+1(Ψ
−1(u1),Ψ

−1(u2), . . . ,Ψ
−1(un+1))

ψ(Ψ−1(u1))ψn(Ψ−1(u2) . . .Ψ−1(un+1))
ψ(Ψ−1(u1))dy
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=
∫

R
y

ψn+1(Ψ
−1(u1),Ψ

−1(u2), . . . ,Ψ
−1(un+1))

ψn(Ψ−1(u2) . . .Ψ−1(un+1))
dy

=
∫

R
y

ψn+1(Ψ
−1(F(y)),Ψ−1(G1(x1)), . . . ,Ψ

−1(Gn(xn)))

ψn(Ψ−1(G1(x1)) . . .Ψ−1(Gn(xn)))
dy

�

2.2.1. Gaussian Copula. We provide the two and three dimensional examples of conditional

expectation formula for Gaussian copula.

Example 2.7. For two-dimensional case, the conditional expectation formula of Y given by

X = x, where u1 = F(y) and u2 = G(x), for Gaussian copula is

E(Y |X = x)

=
∫

R
y

φ2(Φ
−1(F(y)),Φ−1(G(x)))
φ(Φ−1(G(x)))

dy

=
∫

R
y

1
2π

√
1−ρ2

exp
{
− (Φ−1(F(y)))2−2ρΦ−1(F(y))Φ−1(G(x))+(Φ−1(G(x)))2

2(1−ρ2)

}
1√
2π

exp
{
−1

2(Φ
−1(G(x)))2

} dy

=
∫

R
y

1√
2π(1−ρ2)

exp
{

2ρΦ−1(F(y))Φ−1(G(x))− (Φ−1(F(y)))2−ρ2(Φ−1(G(x)))2

2(1−ρ2)

}
dy

=
1√

1−ρ2

∫
R

yφ

(
Φ−1(F(y))−ρΦ−1(G(x))√

1−ρ2

)
dy

(31)

Example 2.8. For three-dimensional case, the conditional expectation formula of Y given by

X1 = x1 dan X2 = x2, where u1 = F(y), u2 = G1(x1), and u3 = G2(x2), for Gaussian copula is

E(Y |X1 = x1,X2 = x2)

=
∫

R
y

φ3(Φ
−1(F(y)),Φ−1(G1(x1)),Φ

−1(G2(x2)))

φ2(Φ−1(G1(x1)),Φ−1(G2(x2)))
dy

=
∫

R
y

(2π)−
3
2√

1−(ρ2
12+ρ2

13+ρ2
23)+2ρ12ρ13ρ23

exp
{
− w1

2(ρ2
12+ρ2

13+ρ2
23−2ρ12ρ13ρ23−1)

}
(2π)−1√

1−ρ2
23

exp
{
− w2

2(1−ρ2
23)

} dy

=
∫

R
y

√
1−ρ2

23√
2π(1− (ρ2

12 +ρ2
13 +ρ2

23)+2ρ12ρ13ρ23)
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exp
{
−w1(1−ρ2

23)+w2(ρ
2
12 +ρ2

13 +ρ2
23−2ρ12ρ13ρ23−1)

2(1−ρ2
23)(ρ

2
12 +ρ2

13 +ρ2
23−2ρ12ρ13ρ23−1)

}
dy(32)

with

w1 = (Φ−1(F(y)))2(ρ2
23−1)+(Φ−1(G1(x1))(ρ

2
13−1)+(Φ−1(G2(x2)))

2(ρ2
12−1)

+ 2
[
Φ
−1(F(y))Φ−1(G1(x1))(ρ12−ρ13ρ23)+Φ

−1(F(y))Φ−1(G2(x2))(ρ13−ρ12ρ23)

+ Φ
−1(G1(x1))Φ

−1(G2(x2))(ρ23−ρ12ρ13)
]

w2 = (Φ−1(G1(x1)))
2−2ρ23Φ

−1(G1(x1))Φ
−1(G2(x2))+(Φ−1(G2(x2)))

2

2.2.2. Student-t Copula. We also provide two and three-dimensional example of conditional

expectation formula of Student-t copula.

Example 2.9. For two-dimensional case, conditional expectation of Y given by X = x, where

u1 = F(y) and u2 = G(x), for Student-t copula is

E(Y |X = x)

=
∫

R
y

ft,2(t−1(F(y)), t−1(G(x)))
ft(t−1(G(x)))

dy

=
∫

R
y

Γ( ν+2
2 )

νπΓ( ν

2 )
√

1−ρ2

(
1+ t−1(F(y))2+t−1(G(x))2−2ρt−1(F(y))t−1(G(x))

ν(1−ρ2)

)− ν+2
2

Γ( ν+1
2 )√

νπΓ( ν

2 )

(
1+ t−1(G(x))2

ν

)− ν+1
2

dy

=
Γ
(

ν+2
2

)
√

νπΓ
(

ν+1
2

)√
1−ρ2

∫
R

y

(
1+ t−1(F(y))2+t−1(G(x))2−2ρt−1(F(y))t−1(G(x))

ν(1−ρ2)

)− ν+2
2

(
1+ t−1(G(x))2

ν

)− ν+1
2

dy

(33)

Example 2.10. For three-dimensional case, conditional expectation of Y given by X1 = x1 and

X2 = x2, where u1 = F(y), u2 = G1(x1), and u3 = G2(x2) is

E(Y |X1 = x1,X2 = x2)

=
∫

R
y

ft,3(t−1(F(y)), t−1(G1(x1)), t−1(G2(x2)))

ft,2(t−1(G1(x1)), t−1(G2(x2)))
dy
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=
∫

R
y

Γ( ν+3
2 )

ν
3
2 π

3
2 Γ( ν

2 )
√

1−(ρ2
12+ρ2

13+ρ2
23)+2ρ12ρ13ρ23

(
1+ s1

ν(ρ2
12+ρ2

13+ρ2
23−2ρ12ρ13ρ23−1)

)− ν+3
2

Γ( ν+2
2 )

νπΓ

(
ν

2

√
1−ρ2

23

) (1+ s2
ν(1−ρ2

23)

)− ν+2
2

dy

=
Γ
(

ν+3
2

)√
1−ρ2

23
√

νπΓ
(

ν+2
2

)√
1− (ρ2

12ρ2
13 +ρ2

23)+2ρ12ρ13ρ23

∫
R

y

(
1+ s1

ν(ρ2
12+ρ2

13+ρ2
23−2ρ12ρ13ρ23−1)

)− ν+3
2

(
1+ s2

ν(1−ρ2
23)

)− ν+2
2

dy

(34)

with

s1 = (t−1(F(y)))2(ρ2
23−1)+(t−1(G1(x1))(ρ

2
13−1)+(t−1(G2(x2)))

2(ρ2
12−1)

+ 2
[
t−1(F(y))t−1(G1(x1))(ρ12−ρ13ρ23)+ t−1(F(y))t−1(G2(x2))(ρ13−ρ12ρ23)

+ t−1(G1(x1))Φ
−1(G2(x2))(ρ23−ρ12ρ13)

]
s2 = (t−1(G1(x1)))

2−2ρ23t−1(G1(x1))t−1(G2(x2))+(t−1(G2(x2)))
2

2.3. Multivariate Archimedean Copula. Another popular type of copula is Archimedean

copula which is defined by [12]

(35) C(u1,u2, . . . ,ud) = φ
−1(φ(u1)+φ(u2)+ . . .+φ(ud))

where φ(·) is generator function of Archimedean copula consists of Clayton and Gumbel. Gen-

erator functions of Archimedean copula with the range of parameter which satisfy the com-

pletely monotonic properties for d-copula in [0,∞) are shown in Table 1 [3, 12]

Table 1. Generator Function of Archimedean Copula

Copula Generator Function Range of Parameter∗

Clayton 1
uθ −1 θ > 0

Gumbel (− lnu)θ θ ≥ 1
∗ Monotonic for d-copula

2.3.1. Clayton Copula. Based on Table 1, multivariate Clayton copula is defined by

(36) C(u1,u2, . . . ,ud) = (u−θ

1 +u−θ

2 + . . .+u−θ
n −d +1)−

1
θ
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Theorem 2.11. Suppose that Y represents a dependent variable and a sequence {X1,X2, . . . ,Xn}

represents the independent variables, with u1 = F(y) and u2 = G1(x1),u3 = G2(x2), . . . ,un+1 =

Gn(xn), then the conditional expectation of Y given by {X1,X2, . . . ,Xn} of multivariate Clayton

copula is defined by

E(Y |X1 = x1, . . . ,Xn = xn)

= (1+nθ)γ(x1, . . . ,xn)
−(1+nθ)

∫
R

yF(y)−(1+θ)
β (y,x1, . . . ,xn)

(1+(n+1)θ)F ′(y)dy(37)

with

γ(x1, . . . ,xn) = C(1,G1(x1), . . . ,Gn(xn))

= (G1(x1)
−θ +G2(x2)

−θ + . . .+Gn(xn)
−θ −n+1)−

1
θ

β (y,x1, . . . ,xn) = C(F(y),G1(x1), . . . ,Gn(xn))

= (F(y)−θ +G1(x1)
−θ + . . .+Gn(xn)

−θ − (n+1)+1)−
1
θ

Proof. We have (n+ 1) variables consist of Y and {X1,X2, . . . ,Xn} with u1 = F(y) and u2 =

G1(x1),u3 = G2(x2), . . . ,un+1 = Gn(xn), therefore, based on Eq.(36) we have the following

equations

(38) C(u1,u2, . . . ,un+1) = (u−θ

1 +u−θ

2 + . . .+u−θ

n+1− (n+1)+1)−
1
θ

and

C(1,u2, . . . ,un+1) = (u−θ

2 + . . .+u−θ

n+1−n+1)−
1
θ(39)

Using Eq.(8), we have to derive Eq.(38) and (39) partially to (n+ 1) and n-th order and we

obtain

C123...n(n+1)(u1,u2, . . . ,un+1)

=
n+1

∏
k=1

(1+(k−1)θ)u−(1+θ)
k {C(u1,u2, . . . ,un+1)}(1+(n+1)θ)(40)

and

C23...n(n+1)(1,u2, . . . ,un+1)
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=
n

∏
k=1

(1+(k−1)θ)u−(1+θ)
k+1 {C(1,u2, . . . ,un+1)}(1+nθ)(41)

Then, substitute Eq.(40) and (41) to Eq.(8) and we obtain

E(Y |X1 = x1, . . . ,Xn = xn)

=
∫

R
y
C123...n(n+1)(F(y),G1(x1), . . . ,Gn(xn))

C23...n(n+1)(1,G1(x1), . . . ,Gn(xn))
F ′(y)dy

=
∫

R
y
C123...n(n+1)(u1,u2, . . . ,un+1)

C23...n(n+1)(1,u2, . . . ,un+1)
F ′(y)dy

=
∫

R
y

∏
n+1
k=1(1+(k−1)θ)u−(1+θ)

k {C(u1,u2, . . . ,un+1)}(1+(n+1)θ)

∏
n
k=1(1+(k−1)θ)u−(1+θ)

k+1 {C(1,u2, . . . ,un+1)}(1+nθ)
F ′(y)dy

=
∫

R
y(1+(n+1−1)θ)u−(1+θ)

1
{C(u1,u2, . . . ,un+1)}(1+(n+1)θ)

{C(1,u2, . . . ,un+1)}(1+nθ)
F ′(y)dy

= (1+nθ){C(1,u2, . . . ,un+1)}−(1+nθ)
∫

R
yu−(1+θ)

1 {C(u1, . . . ,un+1)}(1+(n+1)θ)

F ′(y)dy

= (1+nθ)γ(x1, . . . ,xn)
−(1+nθ)

∫
R

yF(y)−(1+θ)
β (y,x1, . . . ,xn)

(1+(n+1)θ)F ′(y)dy

with

γ(x1, . . . ,xn) = C(1,G1(x1), . . . ,Gn(xn))

= (G1(x1)
−θ +G2(x2)

−θ + . . .+Gn(xn)
−θ −n+1)−

1
θ

β (y,x1, . . . ,xn) = C(F(y),G1(x1), . . . ,Gn(xn))

= (F(y)−θ +G1(x1)
−θ + . . .+Gn(xn)

−θ − (n+1)+1)−
1
θ

�

Example 2.12. Using the formula of conditional expectation of Clayton in Theorem 2.11, for

two-dimensional case we obtain
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E(Y |X = x)

= (1+θ)G(x)−(1+θ)
∫

R
yF(y)−(1+θ)(F(y)−θ +G(x)−θ −1)−(

1+2θ

θ
)F ′(y)dy(42)

Eq. (42) is as the same as provided by [5].

Example 2.13. Suppose that there are three variables; Y that represents a dependent vari-

able and {X1,X2} that represent independent variables, with u1 = F(y), u2 = G1(x1), and

u3 = G2(x2). The Clayton 3-copula is defined by

(43) C(u1,u2,u3) = (u−θ

1 +u−θ

2 +u−θ

3 −2)−
1
θ

By using Theorem 2.11, the conditional expectation of Y given by X1 = x1 and X2 = x2 given

by

E(Y |X1 = x1,X2 = x2)

= (1+2θ)γ(x1,x2)
−(1+2θ)

∫
R

yF(y)−(1+θ)
β (y,x1,x2)

(1+3θ)F ′(y)dy(44)

with

γ(x1,x2) = (G1(x1)
−θ +G2(x2)

−θ −1)−
1
θ

β (y,x1,x2) = (F(y)−θ +G1(x1)
−θ +G2(x2)

−θ −2)−
1
θ

Example 2.14. For four-dimensional case, suppose that Y represents a dependent variable and a

set of {X1,X2,X3} represents independent variables, with u1 = F(y),u2 = G1(x1),u3 = G2(x2),

and u4 = G3(x3), then the Clayton 4-copula is defined by

(45) C(u1,u2,u3,u4) = (u−θ

1 +u−θ

2 +u−θ

3 +uθ
4 −3)−

1
θ

The conditional expectation of Y given by X1 = x1,X2 = x2, and X3 = x3 given by

E(Y |X1 = x2,X2 = x2,X3 = x3)

= (1+3θ)γ(x1,x2,x3)
−(1+3θ)

∫
R

yF(y)−(1+θ)
β (y,x1,x2,x3)

(1+4θ)F ′(y)dy(46)
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with

γ(x1,x2,x3) = (G1(x1)
−θ +G2(x2)

−θ +G3(x3)
−θ −2)−

1
θ

β (y,x1,x2,x3) = (F(y)−θ +G1(x1)
−θ +G2(x2)

−θ +G3(x3)
−θ −3)−

1
θ

2.3.2. Gumbel Copula. Multivariate Gumbel copula is defined by

(47) C(u1,u2, . . . ,ud) = exp
(
−
[
(− lnu1)

θ +(− lnu2)
θ + . . .+(− lnud)

θ

] 1
θ

)
Suppose that Y represents a dependent variable and a sequence of {X1, . . . ,Xn} represent the

independent variables, with u1 = F(y) and u2 = G1(x1),u3 = G2(x2), . . . ,un+1 = Gn(xn), then

the conditional expectation of Y given by {X1,X2, . . . ,Xn} of multivariate Gumbel copula is

defined by

E(Y |X1 = x1, . . . ,Xn = xn)

= α1(θ)α2(x1, . . . ,xn)
∫

R
y(F(y))−1(− lnF(y))θ−1

α3(y,x1, . . . ,xn)F ′(y)dy(48)

with

α2(x1, . . . ,xn)

=

[
(− lnG1(x1))

θ + . . .+(lnGn(xn))
θ
] n

θ

exp
(
−
[
(− lnG1(x1))θ + . . .+(− lnGn(xn))θ

] 1
θ

)
α3(y,x1, . . . ,xn)

=

exp
(
−
[
(− lnF(y))θ +(− lnG1(x1))

θ + . . .+(− lnGn(xn))
θ
] 1

θ

)
[
(− lnF(y))θ +(− lnG1(x1))θ + . . .+(lnGn(xn))θ

] n+1
θ

There is no closed form for α1(θ). However we provide some extensions of conditional ex-

pectation formula of Gumbel copula up to four dimensions, i.e. α1(θ) = 1, α1(θ) =
2θ 2−4θ+1
(θ−1)2 ,

and α1(θ) =
6θ 3−18θ 2+12θ+1
(θ−1)2(2θ 2−4θ+1) , each for two, three, and four dimensions, respectively.

Example 2.15. Conditional expectation of Y given by X = x for two-dimensional case of Gum-

bel copula is as the same as provided by [5], i.e.

E(Y |X = x)
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=
− lnG(x)

G(x)

∫
R

y(F(y))−1(− lnF(y))θ−1
exp
(
−
[
(− lnF(y))θ +(− lnG(x))θ

] 1
θ

)
[
(− lnF(y))θ +(− lnG(x))θ

] 2
θ

(49)

Example 2.16. For three-dimensional case, the Gumbel 3-copula is defined by

(50) C(u1,u2,u3) = exp{−[(− lnu1)
θ +(− lnu2)

θ +(− lnu3)
θ ]

1
θ }

Suppose that u1 = F(y), u2 = G1(x1), and u3 = G2(x2), then the conditional expectation of

Y given by X1 and X2 is

E(Y |X1 = x1,X2 = x2)

=
2θ 2−4θ +1
(θ −1)2 α2(x1,x2)

∫
R

y(F(y))−1(− lnF(y))θ−1
α3(y,x1,x2)F ′(y)dy(51)

with

α2(x1,x2) =

[
(− lnG1(x1))

θ +(lnG2(x2))
θ
] 2

θ

exp
(
−
[
(− lnG1(x1))θ +(− lnG2(x2))θ

] 1
θ

)

α3(y,x1,x2) =

exp
(
−
[
(− lnF(y))θ +(− lnG1(x1))

θ +(− lnG2(x2))
θ
] 1

θ

)
[
(− lnF(y))θ +(− lnG1(x1))θ +(lnG2(x2))θ

] 3
θ

3. ESTIMATION PROCEDURES

Suppose that a joint distribution function of the marginal variables {X1, . . . ,Xn} with the

parameter spaces of {Ω1, . . . ,Ωn} is written by

(52) H(x1, . . . ,xn;Θ) =C(FX1(x1;Ω1), . . . ,FXn(xn;Ωn);Θ)

where C(·) is the copula function and Θ = {θ FGM,ρGa,{ρ t ,ν t},θCl,θ Gb} is a set of parameter

of copula function.

Parameter estimation of the marginal variables and the copula function can be solved by

the maximum likelihood estimation (MLE) method. The log-likelihood function of the copula

model is given by

L (Ω1, . . . ,Ωn,Θ)
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= log

(
m

∏
i=1

h(x1i, . . . ,xni;Θ)

)

= log

(
m

∏
i=1

∂ nH(x1i, . . . ,xni;Θ)

∂x1 . . .∂xn

)

= log

(
m

∏
i=1

∂ nC(FX1(x1i;Ω1), . . . ,FXn(xni;Ωn);Θ)

∂x1 . . .∂xn

)

= log

(
m

∏
i=1

[ fX1(x1i;Ω1) · . . . · fXn(xni;Ωn) · c(FX1(x1i;Ω1), . . . ,FXn(xni;Ωn);Θ)]

)

=
m

∑
i=1

(log fX1(x1i,Ω1)+ . . .+ log fXn(xni;Ωn))

+
m

∑
i=1

logc(FX1(x1i;Ω1), . . . ,FXn(xni;Ωn);Θ)

=
m

∑
i=1

log fX1(x1i,Ω1)+ . . .+
m

∑
i=1

log fXn(xni;Ωn)

+
m

∑
i=1

logc(FX1(x1i;Ω1), . . . ,FXn(xni;Ωn);Θ)(53)

By considering the complexity of parameter estimation using the maximum likelihood

method directly due to the number of unknown parameters, the estimation procedure can be

carried out in two steps procedure [2, 4, 1]. First, estimate the marginal variable parameter

(Ω1, . . . ,Ωn) and then estimate the parameter of the copula function Θ. Therefore, Eq. (53) can

be written as

(54) L (Ω1, . . . ,Ωn,Θ) =
n

∑
j=1

L f j(Ω j)+LcΘ
(Θ)

where L f j(Ω j), j = 1, . . . ,n is the log-likelihood function of the marginal variables and LcΘ
(Θ)

is the log-likelihood function of the copula.

The last, the copula parameter Θ can be estimated by maximizing LcΘ
(Θ) and select the best

copula by choosing the smallest AIC value.

(55) Θ̂ = argmax
Θ

LcΘ
(Θ)
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4. APPLICATION

In this section, we apply the general formula of the conditional expectation of copulas for

higher dimensions to estimate the exchange rate value. We use KRW/USD, CNY/USD, and

JPY/USD from 1st January, 2018 to 11th December, 2020. We gather the data from Yahoo

Finance. First, we conduct a distribution fitting for the marginal variables. We then estimate the

parameter of the copula for FGM, Gaussian, Student-t, Clayton, and Gumbel and select the best

copula which describe the relationship between the three marginal variables by selecting the

smallest AIC value. The last, we use the formula of conditional expectation of copula for three-

dimensional case to estimate the value of KRW/USD based on its association with CNY/USD

and JPY/USD.

KRW/USD

CNY/USD JPY/USD

May-18 Nov-18 May-19 Nov-19 May-20 Nov-20

May-18 Nov-18 May-19 Nov-19 May-20 Nov-20 May-18 Nov-18 May-19 Nov-19 May-20 Nov-20

0.00875

0.00900

0.00925

0.00950

0.140

0.145

0.150

0.155

0.160

0.00080

0.00085

0.00090

0.00095

Time
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Figure 2. Exchange Rate Data

Figure 2 shows the original data of the exchange rates of KRW, CNY, and JPY against US

Dollar. In general, CNY/USD and KRW/USD experience a decreasing trend, while JPY/USD

experiences an increasing trend at the period of observations. Table 2 provides the parameter

estimates of the marginal distribution of each exchange rate.
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Table 2. Parameter Estimates of Marginal Variables

CNY/USD

Distribution Parameter Estimates LL AIC BIC

Normal µ̂ 0.1470 2925.6590 -5847.3180 -5838.0250

σ̂ 0.0054

Log-Normal µ̂ 0.1469 2938.0190 -5872.0380 -5862.7460

σ̂ 1.0370

Exponential λ̂ 6.8040 706.4881 -1410.9760 -1406.3300

Gamma α̂ 752.1571 2934.0100 -5864.0200 -5854.7270

β̂ 5117.6646

Weibull k̂ 25.0876 2811.8860 -5619.7710 -5610.4790

λ̂ 0.1498

JPY/USD

Distribution Parameter Estimates LL AIC BIC

Normal µ̂ - - - -

σ̂ -

Log-Normal µ̂ 0.0092 5448.0980 -10892.2000 -10882.9000

σ̂ 1.0225

Exponential λ̂ 108.7794 2840.7780 -5679.5550 -5674.9090

Gamma α̂ 2016.9440 5448.0440 -10892.0900 -10882.8000

β̂ 219401.8300

Weibull k̂ 47.4976 5407.0210 -10810.0400 -10800.7500

λ̂ 0.0093

KRW/USD

Distribution Parameter Estimates LL AIC BIC

Normal µ̂ - - - -

σ̂ -

Log-Normal µ̂ 0.0009 6777.1450 -13550.2900 -13541.0000

σ̂ 1.0427

Exponential λ̂ 1146.2570 4654.0780 -9306.1560 -9301.5090

Gamma α̂ 571.7798 6776.1160 -13548.2300 -13538.9400

β̂ 655419.9853

Weibull k̂ - - - -

λ̂ -
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Based on Table 2, the best distribution for each marginal variable is log-normal distribution.

The next step is to identify the structure of dependence of the three marginal variables using

copula modeling. Table 3 provides the parameter estimates of the copula functions.

Table 3. Parameter Estimates of Copula Functions

Copula Parameter Estimates LL AIC

FGM θ̂12 - - -

θ̂13 -

θ̂23 -

Gaussian ρ̂12 -0.04691 559.9 -1113.8

ρ̂13 0.8593

ρ̂23 -0.21537

Student-t θ̂12 -0.0471 559.7 -1111.4

θ̂13 0.8593

θ̂23 -0.2157

ν̂ 769.0019

Clayton θ̂ 0.14 11.65 -21.3

Gumbel θ̂ 1.134 47.62 -93.24

Parameter estimation for FGM copula cannot be done because the value of θ12, θ13, and/or

θ23 may be out of the range parameter determined based on Proposition 2.5, i.e. θ ∈
[
−1

4 ,
1
2

]
.

Based on AIC value, Gaussian copula is the best copula to model the three-dimensional ex-

change rate data. The parameter estimates of ρ12, ρ13, and ρ23 describe the relationship be-

tween CNY/USD-JPY/USD, CNY/USD-KRW/USD, and JPY/USD-KRW/USD, respectively.

The negative and positive value of ρ shows that it is in line with the trend of each exchange

rate data showed by Figure 2. For example, the value of ρ12 is negative because CNY/USD and

JPY/USD have different trend direction.

According to the best copula selected, i.e. Gaussian copula, we estimate the value of

KRW/USD based on its association with CNY/USD and JPY/USD using Eq. (32). The es-

timation value of KRW/USD which can be determined by calculating E(Y |X1 = x1,X2 = x2)
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where Y represents KRW/USD, while X1 and X2 represent CNY/USD and JPY/USD, respec-

tively, is provided in Figure 3.

Figure 3. KRW/USD Estimates based on Its Association with CNY/USD and JPY/USD

Gray and black dots in Figure 3 represent the original data and the estimation value of the

(CNY/USD,JPY/USD,KRW/USD) pairs, respectively. Distribution value of the estimates are

quite close with the original data. It is also indicated by the value of the mean absolute percent-

age error (MAPE) of the original and estimated data which has a value of 0.0476%. Therefore,

we can say that the general formula of the conditional expectation of copulas for higher dimen-

sions can be used for estimation procedure of more than two-dimensional cases.

5. CONCLUSION

We have extended some general formula of conditional expectation of copulas for higher di-

mensions as the definition of copula-based regression model and its basic properties stretched

from Crane and Hoek’s work [5]. We obtained the closed-form of the conditional expectation

formula for higher dimensions of Farlie-Gumbel-Morgenstren, Gaussian, Student-t, and Clay-

ton copula, and provided some examples of Gumbel copula.
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We have also employed the conditional expectation formula of copula for three-dimensional

case to estimate the value of KRW/USD exchange rate based on its association with CNY/USD

and JPY/USD. The result gives a quite small MAPE of 0.0476%. The estimation results show

that the conditional expectation formula of copula for higher dimension can be used to estimate

more than two-dimensional case quite accurately. In addition, the visualization shows that the

estimation results are distributed around the actual value.
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