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1. INTRODUCTION 

The generalized calculus literature is as ancient as classical calculus. The concepts of fractional 

differential equations (FDEs) are utilized in modeling distinct phenomenon of mechanics, 

dynamics and drug therapy in biological systems. It is also used to study new age advance 

problems in neurons network, image processing, geology and hydrology. Podlubny [1], Oldham 
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[2] and Debnath [3] illustrated the content on fractional order calculus. They provided Grunwald, 

Caputo and Riemann-Liuovili (RL) fractional derivatives and integrals definition along with 

their physical and geometrical interpretations in real modeling. 

The schemed study of Lie symmetry and their application has been derived by Olver [4]. 

Bakkayaraj and Sehdaven [5] provoked about the group formalism of geometrical transforms in 

this technique. Biswas et al.[6, 7]  suggested the dual dispersion and non-linearity laws with the 

exclusive use of infinitesimals in symmetry reduction. Invariance criterion of some fractional 

PDEs, Hirota nonlinear, Hirota-Satsoma systems has been studied by Singla et al. [8]. Sneddon 

[9] used the concept of E-K operators and remarked that the system of FPDEs can be reduced to 

FODEs with the efficient use of these operators. The symmetry properties and exact solution of 

real time fractional KdV of third, fourth, fifth and generalized order compiled by Zhang [10], 

Wang et al. [17] and Gandhi [25, 26]. Kaur et al. [11-15] has been implemented Painlike and Lie 

symmetry to Einstein vacuum field equation, Complex Hirota forms in multiple real and 

complex solutions. Huang [16] provided the total solutions of time fractional Harry-Dym 

equation with R-L fractional derivatives approach. Garrido et al. [19] prompted on travelling 

wave generalized solution of Driffield-Sokolov system and Arora et al. [20] found solitary wave 

solutions of modified equal width wave equations by Lie infinitesimals. The unremarkable 

criterion of solitary waves of equal width and regularized long wave equation has been solved by 

Gardner et al. [21, 22] in late 20th century. The physical phenomenon, scattering of regular long 

solitary wave has been studied by Morison et al. [23]. Rudin [24] attempted the implicit function 

theorem in principal of mathematical analysis, which has been used for convergence of power 

series solution by [10, 17, 25-26]. 

In recent times, mathematicians have devoted lot of efforts to analyze the explicit and 

exact solutions of linear and nonlinear PDEs. It’s difficult to obtain the exact solution of 

nonlinear differential equation as compared to linear differential equation. Therefore, some 

researchers have used numerical methods. It is always challenging task to find the exact or 

analytic solutions for nonlinear equations, and finding such solutions is even more difficult for 

fractional nonlinear equations. Hence, we are accepting the challenge and in this paper, we will 
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try to find the explicit solution of a nonlinear time fractional equation.  

The MEWWE occurring from the nonlinear media with dispersion process has been paid 

special concentration in the past decades. Our motivation is to generate mathematical 

formulation of the infinitesimals and investigate the symmetry reduction with power series 

solution of generalized TFMEWW equation with one parameter ‘  ’
 

    0,10;03 2 =−+ 
xxtxt uuuu             (1) 

and (x,t) is space-time coordinate and u(x, t) is amplitude of wave for the one dimensional wave-

propagation in nonlinear media with dispersion phenomenon. Time fractional MEWW nonlinear 

model is based on the EW equation. Morrison [23] established this model as modified regular 

long wave equation and modified KdV equation in fluid mechanics. 

We proposed definition and terminology in section 2; in section 3, Lie symmetry 

approach has been discussed. The application of series solution with its convergence to MEWW 

model described in sections 4 and 5. Finally, the remarks and conclusions established. 

 

2. PRELIMINARIES 

In this section, we would like to present the needful definitions and terminology related to 

fractional calculus. 

In the first two definitions, let )(th be an integrable function on ( )t,0 and for 0g assume that )(th is 

g-times differentiable on ( )t,0 except for a set of measure zero. 
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2.3 R-L PARTIAL DERIVATIVE OF GENERALIZED ORDER '' FOR THE FUNCTION ),( txv

W.R.T. T 

This R-L definition holds for the function of two variables and  is order of fractional derivative. 
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2.4 THE LEIBNITZ RULE FOR R-L FRACTIONAL DERIVATIVES: 

Leibnitz rule is defined for the product of two functions. Hence, below is the definition of 

Leibnitz rule for fractional derivative of the product of two functions. ),( txv and ),( txw are function 

of two variable such that they are differentiable and integrable.  is order of fractional derivative. 
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2.5  FRACTIONAL DERIVATIVES OF A CONSTANT IS ZERO AND FOR A FUNCTION ),(. pxwc   
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2.6 DEFINITION OF A E-K FRACTIONAL DIFFERENTIAL AND INTEGRAL OPERATOR

 
( ) )(,  GP r

 and ( ) )(,  HK r

 are left hand sided Erdelyi-Kober Fractional differential operator and 

Erdelyi-Kober Fractional integral operator respectively. 
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3. LIE SYMMETRY ANALYSIS 

There are several semi-analytic and analytic techniques to obtain exact and approximate 

solutions of FPDEs but we imposed Lie approach to address the infinitesimal symmetries of 

generalized differential equations; as conversion of FPDEs into FODEs is major task and it is 

feasible after the prolongation technique explained under: 

Suppose a general fractional PDE with space-time variables and ).,( pxvv =  

,10;0,........),,,,,,( =+  wherevvvvvxpFv xxpxxpxp            (8) 

Lie group of transformations with parameter  is taken as 
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Associated lie algebra of )9( is generated by vectors fields 
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By preserving the operator Xpr )3,( takes the form below: 
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Here, we use essential terms only which are usable in this paper and  and, are infinitesimals 

and xxpx  , are extended infinitesimals of order 1 and 3 respectively and p, is an extended time 
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Now generalized Leibnitz Rule is 
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We obtain expressions 
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Generalized chain rule for composition of mappings is defined as  
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Using generalized Leibnitz rule, we have 
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After using (12) and (8), substitute (13-21) and comparing the coefficients of vx, vxx and solve the 

set of obtained PDEs and FDEs. 

 

3.1 FRACTIONAL EQUAL WIDTH WAVE EQUATION 

Application of equation (12) to equation (1), we get 

036 2, =−++ xxtx

x

t uuu             (22) 
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Substituting (13-21) in (22) 
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Solving (23-29), infinitesimals with constants p, q and r found to be 
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Corresponding to 1T , simple characteristic equation is  
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And, its invariant solution is obtained as )(, TFutT ==  

By putting in equation (1), it reduced to FODE. 
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On solving; explicit solution is obtained as 



5038 

HARISH KUMAR, DIMPLE SINGH, AMIT TOMAR 

2
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By putting in equation (1) along with the use of theorem explained below, it reduced to FODE 

given by (37) 
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fractional MEWW (1) to nonlinear FODE depends on ‘z’ as 

0
2

1

4

53
3)( 2

,
4

53

1

2 =






 −
+







 −
−+













 −

−

ZZZZZZ zFFFFzFP









         (37) 

Where Erdelyi-Kober fractional differ-integral operators have been explained in (7) 
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Repeating process (g-1) times, we find 
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At last, we obtain 
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4. EXPLICIT POWER SERIES SOLUTION 

To execute the solution of obtained FODE (46), we would like to pursue power series solution to 

obtain explicit solution of generalized MEWW equation 
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After rearranging the terms, we obtain: 
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Comparing the powers of ‘z’ on both sides, 
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Hence, power series solution of the equation (46) is given below: 
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Where, the explicit power series solution for time fractional modified equal width wave equation 
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is provided below: 
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4.1 CONVERGENCE OF THE SERIES SOLUTION OF TFMEWW EQUATION 
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Now, consider the implicit functional equation, 

( )
( ) ])(3

2[

)(),(

3

000

3

22

011

2

100

2

210

YrMrMrM

YrrrMrMrrMNYrYrrM

YRMMYH

−−+

+−−+−−−−−=

−=

        (58) 

Here, H is analytic function in ),( MY plane and 01),0(,0),0( 0

'

0 == rHrH M  

Therefore, )(YRM = has positive radius of convergence and is analytic in the vicinity of the ),0(
0

r . 

Hence, series solution (54) of equation (1) is convergent in the vicinity of the point ),0( 0r and can 

be verified by implicit function theorem [24]. 

Thus, solution of equation (46) in power series is as: 
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Therefore, power series solution of equation (1) is 
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 and are the arbitrary constants and  is a positive parameter. 

 

CONCLUSIONS 

In present work, the time fractional MEWW equation with one parameter analyzed by means of 

Lie symmetry analysis in the sense of RL derivative. We have obtained the infinitesimal 

generators along with explicit similarity transformations by invariance analysis of the problem. 
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In addition, with the help of the similarity variables, FPDE are converted into nonlinear FODE 

by making use of EK differ-integral operators. Power series method is implemented to the FODE. 

In last, convergence of the power series solution is proved. Overall, we conclude that the 

mathematical solution with use of dual techniques Lie symmetry analysis along with power 

series solution is reliable and efficient tool in obtaining the solution of such kind of linear and 

nonlinear time fractional wave models. 
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