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Abstract. The article presents a three-dimensional mathematical model and numerical calculation algorithm based

on the method of coordinate splitting for analysis and forecasting the process of gas filtration in porous media. The

use of the method of coordinate splitting made it possible to reduce the original problem to three locally one-

dimensional problems and to reduce the computation time by reducing the number of computational operations.

Developed mathematical apparatus can be successfully used to solve design problems or refinement of design

solutions of gas fields, as well as production forecasting process.
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1. INTRODUCTION

It is known that the basis of the real sector of the economy of any country in the world is the

fuel and energy complex. The level of its development, among other things, is determined by

the development index of a particular state in the world community.
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The increasing volumes of consumption and consumption of fuel and energy resources can

be covered not only through the development and design of new oil and gas fields, but also

through the rational operation and effective management of existing fields.

Despite the fact that to date, significant theoretical and applied results have been obtained

in the field of hydrodynamic studies of processes occurring in porous reservoir media, and

the influence of various factors on them (filtration coefficient, porosity and thickness of the

reservoir, oil and gas recovery coefficient, viscosity, etc.), this scientific direction still has many

unsolved problems.

In particular, the paper [1] investigates a system of partial differential equations describing a

two-phase flow in a porous medium and consisting of hyperbolic terms for advective transport,

parabolic terms for dissipative effects, and relaxation nonequilibrium equations. The authors

found that for several dissipative and nonequilibrium systems, the use of the stream function

as a free variable instead of time divides the general system (n+1)× (n+1) into an auxiliary

n×n system and one scalar lift equation. In many cases, when the auxiliary system admits an

exact solution, the general flow problem is reduced to the numerical or semi-analytical solution

of one lifting equation.

A similar technique is used in [2], where the division of the mathematical model of the

enhanced oil recovery (EOR) method into thermodynamic and hydrodynamic parts is discussed.

The n×n conservation law model for two-phase flows is transformed into an (n−1)× (n−1)

auxiliary system containing only thermodynamic variables and one lifting equation containing

only hydrodynamic parameters. The authors show that splitting makes it possible to prove

the independence of phase transitions that occur during a shift of phase relative permeabilities

and viscosities. Consequently, the minimum miscibility pressure of the gas flooding providing

insulation surfactant from produced water, can be calculated using condensed auxiliary system.

Moreover, the very fact of reducing the number of equations allows the generation of new

analytical model for EOR.

The authors of [3] consider the construction and analysis of algorithms for splitting operators

with a large time step for the numerical simulation of multiphase flows in heterogeneous porous
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media. The authors present some results of solving quasilinear degenerate parabolic equa-

tions on two-dimensional and three-dimensional numerical test examples. The main conclusion

drawn from numerical experiments is that the operator separation algorithms do demonstrate the

property of accurate resolution of inner layers with steep gradients, give very little numerical

diffusion, and, at the same time, allow the use of large time steps. In addition, these algo-

rithms seem to cover all possible combinations of convective and diffusion forces, ranging from

convection-dominated problems (including the purely hyperbolic case) to diffusion-dominated

problems.

The study [4] addresses three types of two-level agreed splitting algorithms for nonstation-

ary Navier-Stokes equations. The basic technique is to first solve the nonlinear problem in the

subspace coarse level and then solve the linear equation in a subspace of a shallow level. The

authors conclude that two-level methods can save time for solving problems and the number

of computational operations in comparison with single-level methods. The stability and con-

vergence of the schemes show that two-level methods can achieve optimal accuracy with the

correct choice of coarse and fine mesh scales. Numerical examples show that Stokes’ correction

is the simplest, Newton’s correction has the best accuracy, and Oseen’s correction is preferable

for problems with a large Reynolds number and simulation for a long time among the three

methods.

The applied problems of oil and gas production are numerically investigated in [5] using

mathematical models of the flow of multiphase fluids in porous media. The basic model includes

continuity equations and Darcy’s laws for each phase, as well as an algebraic expression for the

sum of saturations. The authors highlight the main properties of the pressure problem and

discuss the need for their implementation at a discrete level. The resulting elliptic problem for

the pressure equation is characterized by a non-self-adjoint operator. This problem is solved

by the authors approximately using iterative methods. Particular attention is paid to numerical

algorithms for calculating pressure on parallel computers.

On the basis of additive schemes, effective numerical algorithms for the approximate solution

of initial-boundary value problems for systems of nonstationary partial differential equations are
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constructed in [6]. The authors note that usually additive operator-difference schemes for sys-

tems of evolutionary equations are constructed for operators that are connected in space. There-

fore, the authors focused on the study of more general problems in which there is a connection

between the time derivatives for the components of the solution vector. The splitting schemes

proposed in this paper are based on a triangular two-component representation of operators.

The authors of [7] describe a method based on splitting into physical processes rather than the

dimensionality of the problem in the form of a nonlinear system of partial differential equations,

which simulates a three-phase flow through heterogeneous porous media. In the numerical al-

gorithm for solving the problem of convective transfer of liquid phases, a conservative central

difference scheme of the second order of accuracy is used. This scheme is combined with locally

conservative mixed finite elements to numerically solve parabolic and elliptic problems related

to diffusion transfer of liquid phases and the pressure-velocity problem. The authors numeri-

cally investigated the existence and stability of nonclassical shock waves in two-dimensional

inhomogeneous flows. The results of numerical experiments show that the proposed operator

splitting technique provides computational efficiency and accuracy.

2. STATEMENT OF THE PROBLEM

In order to investigate and more adequately describe the process of gas filtration in porous

media as well as determine the main indicators used in the development of oil and gas fields,

we introduce a 3D mathematical model described by the equation

(1)
∂

∂x
(νxρ)+

∂

∂y
(νyρ)+

∂

∂ z
(νzρ) =−

∂

∂ t
(ρm),

and in special nodes (wells)

(2)
∂

∂x
(νxρ)+

∂

∂y
(νyρ)+

∂

∂ z
(νzρ) =−

∂

∂ t
(mρ)−FQ .

In the equations (1) - (2)

(3) νx =−
K
µ

∂P
∂x

; νy =−
K
µ

∂P
∂y

; νz =−
Kz

µ

∂P
∂ z

.
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Substituting equation (3) in (2) and taking into account the variability of the capacity of the

reservoir we will get [8, 9, 10, 11, 12, 13, 14]:

(4)
∂

∂x

(
K
µ

bρ
∂P
∂x

)
+

∂

∂y

(
K
µ

bρ
∂P
∂y

)
+

∂

∂ z

(
Kz

µ
bρ

∂P
∂ z

)
=

∂

∂ t
(mρ)b̃−FQ,

where

FQ =
ρQPat

P∆z∆x∆y
· 2µ

b ·K
δ (x,y,z), δ (x,y,z) =

 1 at (x,y,z) ∈ γν ;

0 at (x,y,z) /∈ γν .

Here Q – volumetric flow rate (at atmospheric pressure) in the wells, Qρ – mass flow, P –

pressure; Pat – atmospheric pressure, ρ – density, b – power of the stratum, b̃ – the average

power value in the grid ”square”, ∆x, ∆y,∆z – steps by x, y and z coordinates; m – reservoir

porosity; K,µ – respectively the filtration coefficient and viscosity of the gas, Kz = f (m,g),γν

– the set of points of the region G, in which wells may be present.

Let’s assume that the gas is ideal and ρ = const ·P . Then we obtain

(5)
∂

∂x

(
K
µ

bP
∂P
∂x

)
+

∂

∂y

(
K
µ

bP
∂P
∂y

)
+

∂

∂ z

(
Kz

µ
bP

∂P
∂ z

)
=

∂

∂ t
(mp)b̃−Fq.

Equation (5) is valid for any law of filtration and any dependence on the density of the pres-

sure.

If in the equation (5) all coefficients are constant, i.e., K = Kz = µ = b = m = const, then we

get

(6)
∂ 2P2

∂x2 +
∂ 2P2

∂y2 +
∂ 2P2

∂ z2 =
2mµ

K
∂P
∂ t
− QPat

∆x∆y∆z
· 2µ

b ·K
δ (x,y,z)

with the corresponding boundary conditions:

(7) P(x,y,z, t)|t=0 = P0;

(8)
∂P
∂n

∣∣∣∣
Γ

= 0;
∮ K

µ
b · ∂P

∂n
ds = cQν ;

(9)
∂P
∂ z

∣∣∣∣
z=0

= 0;
∂P
∂ z

∣∣∣∣
z=H

= 0.

As a result, the final form of the equation was obtained which gives us possibility to study

the filtration process of any considered component in porous medium in order to determine the

main parameters of the development and design of oil and gas fields.
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3. SOLUTION OF THE PROBLEM

To solve problem (6) - (9), using the relations

x = x∗L; y = y∗L; z = z∗H; P = P∗P0;

Q∗ =
2µ Pat

bK P2
0

Q; ∆t∗ =
KP0

2mµL2 ∆t ,

we bring equation (6) to a dimensionless form:

(10)
∂ 2P2

∂x2 +
∂ 2P2

∂y2 +
∂ 2P2

∂ z2 =
1

2P̃
∂P2

∂ t
−Fq ,

where

Fq = δ (x,y,z)Q
1

∆x∆y∆z
.

To linearize equation (10) using the expression P2 = 2P · P̃−
(
P̃
)2
, we get

(11)
∂ 2P
∂x2 +

∂ 2P
∂y2 +

∂ 2P
∂ z2 =

1
2P̃

∂P
∂ t
− δ (x,y,z)Q

2P̃∆x∆y∆z
.

Since the problem (7) - (10) is described by nonlinear partial differential equation with the

corresponding internal and boundary conditions, it is complicated to obtain an analytical solu-

tion.

To solve equation (11) is necessary to set an effective approximation of the boundary condi-

tion in the well. Of great practical interest is the case when the boundary conditions are set with

a known gas production at the well. To find the gas-dynamic pressure field, it is necessary to set

the well radius equal to R = Rc +W.

Here W -– is determined from the relation ln W
∆x = const, where const = 1.57.

Thus, the resulting pressure field corresponds to the operation of large wells with a radius of

Ro = Rc +0.208∆x at an appropriate flow rate.

It should be noted that the flow rate of a well with a radius is unknown, therefore, for each

moment in time, it is determined in the process of solving the problem of unsteady gas filtration

to an actual well with a radius of Rc.

Since movement in the bottomhole formation zone occurs with violation of Darcy’s filtration

law, the drag law, which generalizes the linear filtration law, can be taken in the form

∂P
∂x

=−µ

K
ω +β

∗
ρω

2,
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∂P
∂y

=−µ

K
u+β

∗
ρu2,

∂P
∂ z

=−µ

K
w+β

∗
ρw2.

Here ω, u, w — components of the filtration speed in the direction of the x, y, z axes; ρ —

gas density; β ∗ -– coefficient that is introduced when describing the two-term filtration law.

When solving the problem of gas filtration in a porous medium, the main problem arises

in the course of approximating the boundary conditions at wells by finite-difference relations.

To do this, select a volume with an axis of symmetry passing through a fictitious point well.

Consider the balance equation for this volume, the horizontal projection of which is a square

with side ∆x = ∆y = ∆z = const. The summation of the amount of flow through the side faces

in the direction of the ∆x, ∆y and ∆z axes is calculated using the expression

(12)

bi−0.5, j,k (ρω)i−0.5, j,k ∆x−bi+0.5, j,k (ρω)i+0.5, j,k ∆x+

+bi, j−0.5,k (ρu)i, j−0.5,k ∆y−bi, j+0.5,k (ρu)i, j+0.5,k ∆y+

+bi, j,k−0.5 (ρw)i, j,k−0.5 ∆z−bi, j,k+0.5 (ρw)i, j,k+0.5 ∆z.

Expression (12) for an ordinary node should be equal to

−∆ρ

∆t
b∆x∆y∆z,

where ρ and b— mean values of the function in the area xi−0.5 ≤ x ≤ xi+0.5; y j−0.5 ≤ y ≤

y j+0.5; zk−0.5 ≤ z≤ zk+0.5.

For a special node, this value is added to the production at the well with the contour Γκ , equal

to (Qκ ρ), and Qk is determined by the formula∫
γk

Kb
µ

∂P
∂n

P
Pat

ds = Qκ(t).

Here n -– intrinsic normal to the y curve γk; ds -– an arc element of a given curve.

The finite difference equation approximating the boundary condition for a special mesh node

with mass flow rate Qκ ρ has the form

V̄x(bρv)i, j,k ∆x∆t +V̄y(bρv)i, j,k ∆y∆t +V̄z(bρv)i, j,k ∆z∆t =

=−∆ρ

∆t b∆x∆y∆zm∆t +Qκρ ∆t Pat
P
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or

(13) V̄x(bρv)i, j,k +V̄y(bρv)i, j,k +V̄z(bρv)i, j,k = V̄t ρbm+
Qκρ

∆x∆y∆z
Pat

P
.

Now dividing both sides of equation (13) by b, and assuming that gas filtration in a porous

medium obeys Darcy’s law, we obtain

(14)
1
bV̄x

(
bρ

K
µ

V̄xP
)

i, j,k
+ 1

bV̄y

(
bρ

K
µ

V̄yP
)

i, j,k
+ 1

bV̄z

(
bρ

K
µ

V̄zP
)

i, j,k
=

= mV̄t ρ + Qκ ρPat
∆x∆y∆zbP .

From equation (14) it follows that the expression Qκ

∆x∆y∆zb - is the gas flow rate per unit vol-

ume.

For effective numerical integration of the problem on a computer, we split it in the given

variables (x,y,z) and obtain three problems:

The first task, where gas filtration is considered along the OX axis:

(15)
∂ 2P1

∂x2 =
1

2P̃1

∂P1

∂ t/3
− δ (x,y,z)Q

6P̃1∆x∆y∆z
;

(16) P1,0 = Pn+1
3 ;

∂P1

∂x

∣∣∣∣
x=0

= 0;
∂P1

∂x

∣∣∣∣
x=1

= 0;
∮ K

µ
b · ∂P1

∂n
ds = cQν .

where the initial calculation time P1,0 = P0, Pn+1
3 in time is determined at the next stages of

the problem. Solving this problem, we find P1,0 = Pn+1
3 .

The second task in the direction of the OY axis:

(17)
∂ 2P2

∂y2 =
1

2P̃2

∂P2

∂ t/3
− δ (x,y,z)Q

6P̃2∆x∆y∆z
;

(18) P2,0 = P
n+ 1

3
1 ;

∂P2

∂y

∣∣∣∣
y=0

= 0;
∂P2

∂y

∣∣∣∣
y=1

= 0;
∮ K

µ
b · ∂P2

∂n
ds = cQν .

The third task in the direction of the OZ axis:

(19)
∂ 2P3

∂ z2 =
1

2P̃3

∂P3

∂ t/3
− δ (x,y,z)Q

6P̃3∆x∆y∆z
;

(20) P3,0 = P
n+ 2

3
2 ;

∂P3

∂ z

∣∣∣∣
z=0

= 0;
∂P3

∂ z

∣∣∣∣
z=H

= 0;
∮ K

µ
b · ∂P3

∂n
ds = cQν .

It should be emphasized here that the solution obtained as a result of integrating the first

problem is used as an initial condition for solving the second problem, and the solution of the
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second problem, respectively, is used as an initial condition for solving the third problem, the

obtained solution of the third problem is used as an initial condition for the first problem for

integration at the next time level.

To solve problem (15) - (20), using the finite-difference method, we replace the differential

operators with the finite-difference ones, we get:

First task: We approximate (15) by a finite-difference scheme in Ox, we obtain [8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20]:

(21)

(P1)
n+ 1

3
i+1, j,k−2(P1)

n+ 1
3

i, j,k +(P1)
n+ 1

3
i−1, j,k

∆x2 =

= 1
2(P̃1)i, j,k

(P1)
n+ 1

3
i, j,k −(P1)

n
i, j,k

∆t/3 − Qδi, j,k

6(P̃1)i, j,k∆x∆y∆z
.

We transform equation (21) to the following form:

(22)
1

∆x2 (P1)
n+ 1

3
i+1, j,k−

2
∆x2 (P1)

n+ 1
3

i, j,k +
1

∆x2 (P1)
n+ 1

3
i−1, j,k =

= 3
2(P̃1)i, j,k∆t

(P1)
n+ 1

3
i, j,k −

3
2(P̃1)i, j,k∆t

(P1)
n
i, j,k−

Qδi, j,k

6(P̃1)i, j,k∆x∆y∆z
,

then grouping similar terms, equation (22) is present in the form of a system of algebraic equa-

tions:

(23) ai, j,k (P1)
n+ 1

3
i−1, j,k−bi, j,k (P1)

n+ 1
3

i, j,k + ci, j,k (P1)
n+ 1

3
i+1, j,k =−di, j,k,

here

ai, j,k =
1

∆x2 ; bi, j,k =
2

∆x2 +
3

2(P̃1)i, j,k∆t
; ci, j,k =

1
∆x2 ;

di, j,k =
3

2(P̃1)i, j,k∆t
(P1)

n
i, j,k +

Qδi, j,k

6(P̃1)i, j,k∆x∆y∆z
.

Replacing the boundary condition

∂P1

∂x

∣∣∣∣
x=0

= 0

for finite difference we get

(P1)
n+ 1

3
1, j,k− (P1)

n+ 1
3

0, j,k−0,5
(
(P1)

n+ 1
3

2, j,k−2(P1)
n+ 1

3
1, j,k +(P1)

n+ 1
3

0, j,k

)
2∆x

= 0

or

(24) 3(P1)
n+ 1

3
0, j,k−4(P1)

n+ 1
3

1, j,k +(P1)
n+ 1

3
2, j,k = 0.
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To solve the system of equations (23), we use the sweep method. To do this, we present the

following recurrence relation:

(25) (P1)
n+ 1

3
i, j,k = αi, j,k (P1)

n+ 1
3

i+1, j,k +βi, j,k,

where αi, j,k, βi, j,k - sweep coefficients.

αi, j,k =
ci, j,k

bi, j,k−ai, j,kαi−1, j,k
; βi, j,k =

ai, j,kβi−1, j,k +di, j,k

bi, j,k−ai, j,kαi−1, j,k
;

Substituting i≈ i−1 in (25), we get

(26) (P1)
n+ 1

3
i−1, j,k = αi−1, j,k (P1)

n+ 1
3

i, j,k +βi−1, j,k.

For i = 1, comparing equations (23), (26) and (24), we find the sweep coefficients

α0, j,k =
4c1, j,k−b1, j,k

3c1, j,k−a1, j,k
; β0, j,k =

d1, j,k

3c1, j,k−a1, j,k
.

Similarly, approximating the second boundary condition of the first problem, we obtain:

∂P1

∂x

∣∣∣∣
x=1

=
3(P1)

n+ 1
3

Nx−2, j,k−4(P1)
n+ 1

3
Nx−1, j,k +(P1)

n+ 1
3

Nx, j,k

∆x
= 0

or

(27) 3(P1)
n+ 1

3
Nx−2, j,k−4(P1)

n+ 1
3

Nx−1, j,k +(P1)
n+ 1

3
Nx, j,k = 0

For i = Nx, comparing equations (23), (26), and (24), we find the value on the boundary

(P1)
n+ 1

3
Nx, j,k =

4βNx−1, j,k−3αNx−2, j,kβNx−1, j,k−3βNx−2, j,k

3αNx−2, j,k−4αNx−1, j,k +1
.

Using recurrence relation (25), we find (P1)
n+ 1

3
Nx−1, j,k , ..., (P1)

n+ 1
3

1, j,k for the backward sweep.

Second task: We approximate (17) by a finite-difference scheme in Oy, we obtain [8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20]:

(28)

(P2)
n+ 2

3
i, j+1,k−2(P2)

n+ 2
3

i, j,k +(P2)
n+ 2

3
i, j−1,k

∆y2 =

= 1
2(P̃2)i, j,k

(P2)
n+ 2

3
i, j,k −(P2)

n+ 1
3

i, j,k
∆t/3 − Qδi, j,k

6(P̃2)i, j,k∆x∆y∆z
.
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We transform equation (28) to the following form:

(29)
1

∆y2 (P2)
n+ 2

3
i, j+1,k−

2
∆y2 (P2)

n+ 2
3

i, j,k +
1

∆y2 (P2)
n+ 2

3
i, j−1,k =

= 3
2(P̃2)i, j,k∆t

(P2)
n+ 2

3
i, j,k −

3
2(P̃2)i, j,k∆t

(P2)
n+ 1

3
i, j,k −

Qδi, j,k

6(P̃2)i, j,k∆x∆y∆z
,

then, grouping similar terms, equation (29) is reduced to a system of linear algebraic equations:

(30) āi, j,k (P2)
n+ 2

3
i, j−1,k− b̄i, j,k (P2)

n+ 2
3

i, j,k + c̄i, j,k (P2)
n+ 2

3
i, j+1,k =−d̄i, j,k,

where

āi, j,k =
1

∆y2 ; b̄i, j,k =
2

∆y2 +
3

2(P̃2)i, j,k∆t
; c̄i, j,k =

1
∆y2 ;

d̄i, j,k =
3

2(P̃2)i, j,k∆t
(P2)

n+ 1
3

i, j,k +
Qδi, j,k

6(P̃2)i, j,k∆x∆y∆z
.

Replacing the boundary condition

∂P2

∂y

∣∣∣∣
y=0

= 0

for finite difference we get

(P2)
n+ 2

3
i,1,k − (P2)

n+ 2
3

i,0,k −0,5
(
(P2)

n+ 2
3

i,2,k −2(P2)
n+ 2

3
i,1,k +(P2)

n+ 2
3

i,0,k

)
2∆y

= 0

or

(31) 3(P2)
n+ 2

3
i,0,k −4(P2)

n+ 2
3

i,1,k +(P2)
n+ 2

3
i,2,k = 0.

To solve the system of equations (30), we use the sweep method. To do this, we present the

following recurrence relation:

(32) (P2)
n+ 2

3
i, j,k = ᾱi, j,k (P2)

n+ 2
3

i, j+1,k + β̄i, j,k,

where ᾱi, j,k, β̄i, j,k - sweep coefficients.

ᾱi, j,k =
c̄i, j,k

b̄i, j,k− āi, j,kᾱi, j−1,k
; β̄i, j,k =

āi, j,kβ̄i, j−1,k + d̄i, j,k

b̄i, j,k− āi, j,kᾱi, j−1,k
.

Substituting j ≈ j−1 in (32), we get

(33) (P2)
n+ 2

3
i, j−1,k = ᾱi, j−1,k (P2)

n+ 2
3

i, j,k + β̄i, j−1,k.
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For j = 1, comparing equations (30), (33), and (31), we find the sweep coefficients

ᾱi,0,k =
4c̄i,1,k− b̄i,1,k

3c̄i,1,k− āi,1,k
; β̄0, j,k =

d̄i,1,k

3c̄i,1,k− āi,1,k
.

Similarly, approximating the second boundary condition of the first problem, we obtain:

∂P2

∂y

∣∣∣∣
y=1

=
3(P2)

n+ 2
3

i,Ny−2,k−4(P2)
n+ 2

3
i,Ny−1,k +(P2)

n+ 2
3

i,Ny,k

∆y
= 0

or

(34) 3(P2)
n+ 2

3
i,Ny−2,k−4(P2)

n+ 2
3

i,Ny−1,k +(P2)
n+ 2

3
i,Ny,k = 0.

For j = Ny, comparing equations (30), (33), and (31), we find the value on the boundary

(P2)
n+ 2

3
i,Ny,k =

4β̄i,Ny−1,k−3ᾱi,Ny−2,kβ̄i,Ny−1,k−3β̄i,Ny−2,k

3ᾱi,Ny−2,k−4ᾱi,Ny−1,k +1
.

Using recurrence relation (32), we find (P2)
n+ 2

3
i,Ny−1,k , ..., (P2)

n+ 2
3

i,1,k for the backward sweep.

Third task: We approximate (19) by a finite-difference scheme in Oz, we obtain [8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20]:

(35)

(P3)
n+1
i, j,k+1−2(P3)

n+1
i, j,k+(P3)

n+1
i, j,k−1

∆z2 =

= 1
2(P̃3)i, j,k

(P3)
n+1
i, j,k−(P3)

n+ 2
3

i, j,k
∆t/3 − Qδi, j,k

6(P̃3)i, j,k∆x∆y∆z
.

We transform equation (35) to the following form:

(36)
1

∆z2 (P3)
n+1
i, j,k+1− 2

∆z2 (P3)
n+1
i, j,k +

1
∆z2 (P3)

n+1
i, j,k−1 =

= 3
2(P̃3)i, j,k∆t

(P3)
n+1
i, j,k− 3

2(P̃3)i, j,k∆t
(P3)

n+ 2
3

i, j,k −
Qδi, j,k

6(P̃3)i, j,k∆x∆y∆z
.

Grouping similar terms, equation (36) is reduced to a system of linear algebraic equations:

(37) ¯̄ai, j,k (P3)
n+1
i, j,k−1− ¯̄bi, j,k (P3)

n+1
i, j,k + ¯̄ci, j,k (P3)

n+1
i, j,k+1 =− ¯̄di, j,k,

where
¯̄ai, j,k =

1
∆z2 ; ¯̄bi, j,k =

2
∆z2 +

3
2(P̃3)i, j,k∆t

; ¯̄ci, j,k =
1

∆z2 ;

¯̄di, j,k =
3

2(P̃3)i, j,k∆t
(P3)

n+ 2
3

i, j,k +
Qδi, j,k

6(P̃3)i, j,k∆x∆y∆z
.

Replacing the boundary condition

∂P3

∂ z

∣∣∣∣
z=0

= 0
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for finite difference we get

(P3)
n+1
i, j,1− (P3)

n+1
i, j,0−0,5

(
(P3)

n+1
i, j,2−2(P3)

n+1
i, j,1 +(P3)

n+1
i, j,0

)
2∆z

= 0

or

(38) 3(P3)
n+1
i, j,0−4(P3)

n+1
i, j,1 +(P3)

n+1
i, j,2 = 0.

To solve the system of equations (37), we use the sweep method. To do this, we present the

following recurrence relation:

(39) (P3)
n+1
i, j,k = ¯̄α i, j,k (P3)

n+1
i, j,k+1 +

¯̄
β i, j,k,

where ¯̄α i, j,k,
¯̄
β i, j,k - sweep coefficients.

¯̄α i, j,k =
¯̄ci, j,k

¯̄bi, j,k− ¯̄ai, j,k ¯̄α i, j,k−1
; ¯̄

β i, j,k =
¯̄ai, j,k

¯̄
β i, j,k−1 +

¯̄di, j,k

¯̄bi, j,k− ¯̄ai, j,k ¯̄α i, j,k−1
.

Substituting k ≈ k−1 in (35), we get

(40) (P3)
n+1
i, j,k−1 = ¯̄α i, j,k−1 (P3)

n+1
i, j,k +

¯̄
β i, j,k−1.

For k = 1, comparing equations (37), (40), and (38), we find the sweep coefficients

¯̄α i, j,0 =
4 ¯̄ci, j,1− ¯̄bi, j,1

3 ¯̄ci, j,1− ¯̄ai, j,1
; ¯̄

β i, j,0 =
¯̄di, j,1

3 ¯̄ci, j,1− ¯̄ai, j,1
.

Similarly, approximating the second boundary condition of the first problem, we obtain:

∂P3

∂ z

∣∣∣∣
z=1

=
3(P3)

n+1
i, j,Nz−2−4(P3)

n+1
i, j,Nz−1 +(P3)

n+1
i, j,Nz

∆z
= 0

or

(41) 3(P3)
n+1
i, j,Nz−2−4(P3)

n+1
i, j,Nz−1 +(P3)

n+1
i, j,Nz

= 0.

For k = Nz, comparing equations (37), (40), and (38), we find the value on the boundary

(P3)
n+1
i, j,Nz

=
4 ¯̄

β i, j,Nz−1−3 ¯̄α i, j,Nz−2
¯̄
β i, j,Nz−1−3 ¯̄

β i, j,Nz−2

3 ¯̄α i, j,Nz−2−4 ¯̄α i, j,Nz−1 +1
.

Using recurrence relation (39), we find (P3)
n+1
i, j,Nz−1 , ..., (P3)

n+1
i, j,1 for the backward sweep.
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Thus, a numerical algorithm has been obtained for solving the problem of gas filtration in

porous media, with the help of which it is possible to carry out computational experiments to

determine the main indicators of the development of gas fields.

4. RESULTS AND DISCUSSION

On the basis of the proposed mathematical apparatus, there was developed a software tool

for carrying out computational experiments. Then a series of calculations was carried out using

two numerical methods for different values of individual parameters of the object under study.

Based on obtained results for the coordinate splitting method based algorithm, the isobar

maps were compiled for years and arbitrary filtration area (Fig. 2, 4 and 6). Then they were

compared with the results of calculations using the method of alternating directions (Fig. 1, 3

and 5).

Computational experiments showed that the lower the value of the formation thickness, the

faster the pressure redistribution in the filtration area occurs (Fig. 1-6). As can be seen, the

results of the alternating direction method (Fig. 1, 3 and 5) and the coordinate splitting method

(Fig. 2, 4 and 6) are quite similar.

FIGURE 1. Change of the fil-

tration area in time using the

Alternating directions method

(b = 2300 cm, k = 0.4 Darcy,

t = 1825 days).

FIGURE 2. Change of the fil-

tration area in time using the

Coordinate splitting method (b

= 2300 cm, k = 0.4 Darcy, t =

1825 days).
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FIGURE 3. Change of the fil-

tration area in time using the

Alternating directions method

(b = 3300 cm, k = 0.4 Darcy,

t = 1825 days).

FIGURE 4. Change of the fil-

tration area in time using the

Coordinate splitting method (b

= 3300 cm, k = 0.4 Darcy, t =

1825 days).

FIGURE 5. Change of the fil-

tration area in time using the

Alternating directions method

(b = 4300 cm, k = 0.4 Darcy,

t = 1825 days).

FIGURE 6. Change of the fil-

tration area in time using the

Coordinate splitting method (b

= 4300 cm, k = 0.4 Darcy, t =

1825 days).

Although the difference between the results of these two methods is quite small, nevertheless,

the advantage of the coordinate splitting method is achieved by reducing the number of arrays

and reducing the computation time by up to 25% (Fig. 7).
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FIGURE 7. Comparison of the effectiveness of the two numerical methods.

5. CONCLUSION

A three-dimensional nonlinear mathematical model of the gas filtration process in a porous

medium has been developed. Also, an efficient numerical algorithm and software were de-

veloped for solving the problem of gas filtration in porous media by the method of coordinate

splitting. The developed computational algorithm and software provide the possibility of reduc-

ing the computation time by 25% in comparison with other computational methods by reducing

the number of cycles when calculating the gas filtration process.

The developed mathematical support of the process under consideration can be used to carry

out numerical calculations on a computer for the purpose of analysis, forecasting, making man-

agerial decisions on the development and design of oil and gas fields under various conditions

of impact on the reservoir, and making specific practical recommendations depending on hy-

drogeological and geophysical properties porous media.
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