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Abstract. Hybrid contraction of single and multi-valued fuzzy mappings in Hausdorff fuzzy metric space is

discussed in the present article. Here, we introduced the concept of α∗−η∗−ψ−hybrid contraction for single and

multi-valued fuzzy mappings and prove the common fixed point results in Hausdorff fuzzy metric space.
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1. INTRODUCTION

The existence of fixed points [FP] of set-valued contractions in metric spaces was initiated by

Nadler [28] and subsequently results in (see [27, 29, 31, 42]). Zadeh [45] was first to introduced

the notion of fuzzy set [FS] in 1965. After that a number of researchers work on FS and prove

fixed point theorems [FPT] with fuzzy mappings [FM]. For some results on FPT (see [3, 6, 7, 9,

16, 16, 25, 34, 44] and references therein). Kramosil and Michalek [20] first to introduced the

concept of fuzzy metric space [FMS], which was modified by George and Veeramani [10]. The

Banach [4] contractive FPT extended by Gregori and Sapenal [13] to fuzzy contractive mapping
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[FCM] of complete metric space. Recently more results in FMS (see [1, 8, 11, 15, 17, 18, 23,

24).

In nonlinear analysis the FPT play a key role. For the existing of FP in FMS, the contractive

conditions and implicit function play a key role (see[5, 30, 37]). Samet et al. [39] first intro-

duced the concept of admissible mapping [AM] for single valued mapping [SVM] and Asl et

al. [2] extended the concept of admissible for SVM to multi-valued mappings [MVM]. Latter,

Salimi et al. [38], defined an α-AM with respect to η on MS. Afterwards, a number of au-

thors investigated FPT for α∗ and η∗ type’s AM’s in FMS (see [32, 43]). Recently, Hong [19]

introduced the concept of α∗−η∗−admissible for set valued mappings in FMS. Motivated by

result of Phiangsungnoen [33] as some new fuzzy FPT’s for FCM’s in Hausdorff fuzzy metric

spaces [HFMS], we introduce the concept of α∗−η∗−ψ−hybrid contraction [HC] of SVM

and MVFM in HFMS. We also give illustrative examples to support our main results.

2. PRELIMINARIES

Recall that a continuous triangular norm (t-norm[40]) with unit 1 is an associative and

commutative binary operation � : [0,1]× [0,1]→ [0,1], if a� 1 = a and a ≤ c, b ≤ d then

a�b≤ c�d for all a,b,c,d ∈ [0,1]. The typical examples of continuous t-norm are a�b = ab

or a� b = min(a,b), and a� b = ab
max{a,b,λ} , for 0 < λ < 1. For Lukasievicz t-norm that is,

a�Lb = max{a+b−1}.

Definition 2.1. [10] For a non-empty set X and a continuous t-norm �, an ordered triple

(X ,M ,�) is called a FMS such that, M is a FS on X ×X × (0,∞) with conditions,

(G V1) M (Θ,Ξ, t)> 0, ∀ Θ,Ξ,Σ ∈X and t > 0,

(G V2) M (Θ,Θ, t) = 1, ∀ t > 0, and M (Θ,Ξ, t) = 1, f or some t > 0 ⇒Θ = Ξ,

(G V3) M (Θ,Ξ, t) = M (Ξ,Θ, t), ∀ t > 0,

(G V4) M (Θ,Ξ, t)�M (Ξ,Σ,s)≤M (Θ,Σ, t + s) ∀ s, t > 0,

(G V5) M (Θ,Ξ, .) : (0,∞)→ [0,1] is continuous.

According to Kramosil and Michalek [20], M is a fuzzy set on X ×X × (0,+∞) which

satisfies (G V3) and (G V4) while (G V1), (G V2) and (G V5) replaced by (K M1), (K M2) and

(K M5), as follows:



COMMON FIXED POINT RESULTS FOR HYBRID CONTRACTION 3

(K M1) M (Θ,Ξ,0) = 0,

(K M2) M (Θ,Ξ, t) = 1, ∀ t > 0, i f f Θ = Ξ,

(K M5) M (Θ,Ξ, .) = 0, : [0,∞)→ [0,1] is le f t continuous.

(K M6) lim
t→∞

M (Θ,Ξ, t) = 1,∀ Θ,Ξ ∈X .

Remark 2.1. [26] It is worth pointing out that 0 < M (Θ,Ξ, t)< 1,∀t > 0, provided Θ 6= Ξ.

Example 2.1. [10] Let (X ,d) be a metric space. Define a�b = ab or a�b = min(a,b),∀

a,b ∈ [0,1] and define Md : X ×X × [0,∞]→ [0,1] as Md(Θ,Ξ, t) = t/(t +d(Θ,Ξ) ), for all

Θ,Ξ ∈X and t > 0, then fuzzy metric Md induced by the metric d and (X ,Md,�) is called

a FMS

Example 2.2. [12] Let (X ,d) be a metric space. Define G : R+ → (k,∞) an increasing

continuous with d(Θ,Ξ) < k, ∀Θ,Ξ ∈ X and k is a fixed constant on (0,∞). Define Md :

X ×X × [0,∞]→ [0,1] as Md(Θ,Ξ, t) = 1− d(Θ,Ξ)
G (t) , ∀Θ,Ξ∈X and t > 0. Then (X ,Md,�)

is called a FMS on X wherein � is a Lukasievicz t-norm.

Song [41] gives two important facts that M (., ., t) is continuous function on X ×X f or t ∈

(0,∞) and M (Θ,Ξ, .) is non-decreasing for all ∀Θ,Ξ ∈X .

Definition 2.2. [10] Let (X ,M ,�) be a fuzzy metric space. Then

(a) If ∃n ∈ N, s.t. M (Θn,Θ, t)> 1− ε, ∀ n0 ∈ n ,ε > 0, t > 0 , then a sequence {Θn} in X is

said to be convergent at Θ in X .

(b) A sequence {Θn} in X , called Cauchy sequence if ∃n ∈ N, & ∀ε > 0, t > 0 s.t.

M (Θn,Θm, t)> 1− ε, ∀ n,m≥ n0 ∈ N.

(c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Lemma 2.1. [36] Let (X ,M ,�) be a fuzzy metric space and {Ξn} be a sequence in X with

(K M6). If ∃k ∈ (0,1) s.t. M (Ξn,Ξn+1,kt) > M (Ξn−1,Ξn, t), ∀ t > 0 and n ∈ N, then {Ξn}

is a Cauchy sequence in X .

Lemma 2.2. [35] Let (X ,M ,�) be a fuzzy metric space and {Ξn} be a sequence in X with

(K M6). If ∃k∈ (0,1) s.t. M (Θn+1,Θn+2,kt)≥M (Θn,Θn+1,kt), ∀ t > 0 and n= 0,1,2,3....,

then {Θn} is a Cauchy sequence in X .
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Lemma 2.3. Let (X ,M ,�) be a fuzzy metric space. Then M is said to be continuous func-

tion on X ×X × [0,∞), if lim
n→∞

M (Θn,Ξn, tn) = M (Θ,Ξ, t), whenever {(Θn,Ξn, tn)} is a

sequence in X ×X × [0,∞), which converges to a point (Θ,Ξ, t) ∈X ×X × [0,∞), i.e.

lim
n→∞

M (Θn,Θ, t) = M (Ξn,Ξ, t) = 1 and lim
n→∞

M (Θ,Θ, tn) = M (Ξ,Ξ, t) = 1.

Lemma 2.4. [35] If ∀ Θ,Ξ ∈ X , t > 0 and for a number k ∈ (0,1) in fuzzy metric space

(X ,M ,�) then M (Θ,Ξ,kt)≥M (Θ,Ξ, t) implies Θ = Ξ.

Definition 2.3. [41] Let X be a non-empty set and α,η : X ×X × (0,∞)→ [0,∞) be two

functions. A mapping and T : X → 2X is said to be α∗−η∗−admissible mapping if for

all Θ,Ξ ∈X we have α(Θ,Ξ, t)≤ η(Θ,Ξ, t)⇒ α∗(T Θ,T Ξ, t)≤ η∗(T Θ,T Ξ, t), ∀ Θ,Ξ ∈

X , t > 0, where

α∗(T Θ,T Ξ, t) = sup
Θ∈T Θ,Ξ∈T Ξ

α(Θ,Ξ, t) and η∗(T Θ,T Ξ, t) = in f
Θ∈T Θ,Ξ∈T Ξ

η(Θ,Ξ, t)

Let (X ,d) be metric space, a set E(Θ) : X → [0,1] is a fuzzy set. For any fuzzy set and

Θ ∈X , E(Θ) called the membership grade of E in X . The λ−cut of fuzzy set E represented

as Eλ = {Θ : E(Θ)≥ λ}i f λ ∈ (0,1] also E0 ={Θ : E(Θ) > 0}. Let F(X ) be the collection of

all fuzzy set in a metric space X . For all E,F ∈ F(X), E ⊂F ⇒ E(X ) ⊂F (X ). Let us

consider W (X ) be a compact sub-collection of all roughly value in X . A fuzzy set E in X is

said to be an roughly value iff Eλ is compact and convex in X ∀λ ∈ (0,1] and sup
Θ∈X

E(Θ) = 1.

Definition 2.4. Let (X ,M ,�) be a fuzzy metric space. Then

∀E,F ∈W (X ), HM (E,F , t) : W (X )×W (X )× (0,∞) is a HFM function defined as

(1) HM (E,F , t) = min
{

in f
Θ∈E

(
sup
Ξ∈F

M (Θ,Ξ, t)
)
, in f

Ξ∈F

(
sup
Θ∈E

M (Ξ,Θ, t)
)}

Lemma 2.5. [35] Let (X ,M ,�) be a fuzzy metric space. Then the 3- tuple (W (X ),HM ,�)

is a Hausdorff fuzzy metric space.

Throughout this paper, let (W (X ),HM ,�) be a compact HFMS and W (X ) be a compact

sub-collection of all roughly values. Then for all ∀E,F ∈W (X ), t > 0 and λ ∈ (0,1], we have



COMMON FIXED POINT RESULTS FOR HYBRID CONTRACTION 5

HM (pλ )
(E,F , t) =

t
t + pλ (E,F )

= sup
a∈Eλ ,b∈Fλ

{Md(a,b, t)}

HM (δλ )
(E,F , t) =

t
t +δλ (E,F )

= in f
a∈Eλ ,b∈Fλ

{Md(a,b, t)}

and

HM (Dλ )
(E,F , t) =

t
t +Dλ (E,F )

=
t

t +H (Eλ ,Fλ )

= min
a∈Eλ ,b∈Fλ

(
in f

b∈Fλ

{Mdα
(a,Fλ , t)} , in f

a∈Eλ

{
Mdλ

(Eλ ,b, t)
})

HM (p)(E,F , t) = in f
λ

{
HM (pλ )

(E,F , t)
}

HM (δ )(E,F , t) = in f
λ

{
HM (δλ )

(E,F , t)
}

HM (D)(E,F , t) = in f
λ

{
HM (Dλ )

(E,F , t)
}

It is noted that pλ is non–increasing function of λ and thus

HM (pλ )
(E,F , t) = HM (p1)

(E,F , t).

In particular if E = {Θ} then HM (p)({Θ},F , t) = HM (p1)
(Θ,F , t) = HM (d1)

(Θ,F , t). If E

is a singleton i.e. E = {a} we write

HM (p)({a},F , t) = HM (p1)
(a,F , t) = HM (d1)

(a,F , t).

If F is a singleton i.e. F = {b} we write

HM (p)(E,{b}, t) = HM (p1)
(E,b, t) = HM (d1)

(E,b, t).

It follows immediately from the definition that HM (δλ )
(E,F , t) = HM (δ )

(E,F , t).

HM (δ )
(E,F , t)≥HM (δ )

(E,G, t)+HM (δ )
(G,F , t).

HM (δ )
(E,F , t) = 1⇔ E = F = {a}.

HM (δ )
(E,F , t) = 1⇒ dim(E).
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Note that M (p) is a non-increasing function for p and HM (p) is a Hausdorff fuzzy metric

induced by fuzzy metric M on W (X ).

Definition 2.5. Let E,F ∈W (X ) and F includes E, then E ⊆F i f f E(Θ) ≤F (Θ),∀Θ ∈

X .

Lemma 2.6. [35] Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space and E ∈W (X ). a

set {Θ} denotes the membership grade of Θ ∈X , then {Θ} ⊂ E iff

HM (pλ )
(Θ,E, t) = 1,∀λ ∈ (0,1].

Lemma 2.7. Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space. Then for any Θ,Ξ ∈

X , t > 0, and F ∈W (X ).

HM (pλ )
(Θ,F , t)≥HM (pλ )

(Θ,Ξ, t)+HM (pλ )
(Ξ,F , t),∀λ ∈ [0,1]

Lemma 2.8. [33] Let (W (X ),HM ,�) be a HFMS and E ∈ W (X ). If Θ ∈X {Θ0} ⊂ E

then HM (pλ )
(Θ0,F , t)≥HM (Dλ )

(E,F , t) ∀F ∈W (X ), t > 0 and λ ∈ [0,1].

Proposition 2.1. Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space and F : X →

W (X ) be a fuzzy mapping and Θ0 ∈X . Then ∃ Θ1 ∈X s.t. {Θ1} ⊂F (Θ0).

Remark 2.2. Let (W (X ),HM ,�) be a HFMS and let J : X → X be a single valued

mapping and F : X →W (X ) a multi-valued mapping s.t. ∪{FX }
λ
⊆J (X ), ∀λ ∈ [0,1].

Suppose J (X ) is complete. By 2.1, ∃Θ1 ∈X for Θ0 ∈X s.t. {Θ1} ⊆F (Θ0).

Proposition 2.2. Let (W (X ),HM ,�) be a HFMS. If E,F ∈W (X ) and e∈ E then ∃ f ∈F ,

s.t.

Md(e, f , t)≥HM (D)
(E,F , t)

Lemma 2.9. [33] Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space. If E ∈W (X ) then

Θ ∈ E if and only if

HM (δ )(Θ,E, t) = 1, f or t > 0.
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3. IMPLICIT RELATIONS

Let ψ ∈Ψ(seto f allcontinuous f unctions) and ψ : [0,∞)5→ [0,∞) s.t.

(i) ψ is non-increasing in 2nd, 3rd, 4th and 5th variables.

(ii) If µ,ν ∈ [0,∞) are s.t. µ ≥ ψ(ν ,ν ,µ,µ +ν ,1) or µ ≥ ψ(ν ,µ,ν ,1,µ +ν), then µ ≥ hν ,

where 0 < h < 1, is a given constant.

(iii) If µ ∈ [0,∞) is such that µ ≥ ψ(µ,1,1,µ,µ) or µ ≥ ψ(1,µ,µ,1,1), then µ = 1.

4. MAIN RESULTS

Let T : X →W (X ) be a multi-valued mapping of Hausdorff fuzzy metric space (W (X ),

HM ,�) If Θ ∈T Θ then an element Θ ∈X is called a fixed point of T .

In this section, we introduced an α∗−η∗−ψ−hybrid contraction for single valued map-

ping’s and multi-valued mapping’s and proved the two results of fixed point theorem in HFMS

(W (X ),HM ,�)

Lemma 4.1. [32] Let (X ,M ,�) be a Hausdorff fuzzy metric space such that Θ,Ξ ∈X , t >

0 and s > 1

(2) lim
n→∞

∞

�
i=n

M (Ξ1,Ξ2, tsi) = 1.

Suppose {Ξn} is a sequence in X s.t. ∀n ∈ N,σ ∈ (0,1), M (Ξn,Ξn+1,σt)≥M (Ξn−1,Ξn, t),

then {Ξn} is CS.

Proof. : For all σ ∈ (0,1), k ∈ N∪{0}, and t > 0, we have

M (Ξk,Ξk+1, t)≥M (Ξk−1,Ξk,
t
σ
)≥M (Ξk−2,Ξk−1,

t
σ2 )≥ .....≥M (Ξ0,Ξ1,

t
σn−1 )

For each n ∈ N, we get, M (Ξk,Ξk+1, t) ≥M (Ξ0,Ξ1,
t

σn−1 ), ∀k ∈ N, and t > 0. Letting s > 1

and j = 1,2, ... s.t.

sσ < 1 ,∑
∞

i= j
1
si =

1
si

1− 1
s

< 1.
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Now ∀n > m,n,m ∈ N and t > 0, we get

M (Ξn,Ξm, t)≥M
(

Ξn,Ξm,
( t

σ j +
t

σ j+1 + ...+
t

σ j+m

))
≥M (yn,yn+1,

t
s j )�M (Ξn+1,Ξn+2,

t
s j+1 )� .....�M (Ξm−1,Ξm,

t
s j+m )

≥M (Ξ0,Ξ1,
t

(sσ)n−1 )�M (Ξ0,Ξ1,
t

(sσ)n )� .....�M (Ξ0,Ξ1,
t

(sσ)m−2 )

≥
∞

�
i=n

M (Ξ0,Ξ1,
t

(sσ)i−1 ).

Letting m,n→ ∞, we have

lim
m,n→∞

M (Ξn,Ξm, t)≥ lim
m,n→∞

∞

�
i=n

M (Ξ0,Ξ1,
t

(sσ)i−1 ) = 1.

Hence {Ξn} ∈X is a Cauchy sequence. �

Definition 4.1. Let X be a non empty set in a Hausdorf fuzzy metric space (W (X ),HM ,�)

and F1,F2 : X → W (X ) be two MVFM’s. Let α,η : X ×X × (0,∞)→ [0,∞) be two

functions. We say that F1andF2 are said to be α∗− η∗−admissible mapping’s if ∀Θ,Ξ ∈

X , t > 0, we have

α(Θ,Ξ, t)≤ η(Θ,Ξ, t)⇒ α
∗(F1Θ,F2Ξ, t)≤ η∗(F1Θ,F2Ξ, t),

where

α∗(F1Θ,F2Ξ, t) = sup
Θ∈F1Θ,Ξ∈F2Ξ

α(Θ,Ξ, t) and η∗(F1Θ,F2Ξ, t) = sup
Θ∈F1Θ,Ξ∈F2Ξ

η(Θ,Ξ, t).

Definition 4.2. Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space, ψ ∈ Ψ and I ,J :

X →X be self mappings. The multi-valued mapping’s F1,F2 : X →W (X ) are called α∗−

η∗−ψ−hybrid contraction with single valued mapping’s I ,J if the following implication

takes place:

(3) α(Θ,Ξ, t)≤ η(Θ,Ξ, t)⇒HM (F1Θ,F2Ξ,qt)≥HM (D)
(F1Θ,F2Ξ, t)≥ψ (m(Θ,Ξ, t))

∀Θ,Ξ ∈X , t > 0, where

m(Θ,Ξ, t)≥
(
HM d)(I Θ,J Ξ, t),HM (p)(I Θ,F1Θ, t),HM (p)(J Ξ,F2Ξ, t),HM (p)

(I Θ,F2Ξ, t),HM (p)(J Ξ,F1Θ, t)
)
.
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We prove the following theorem:

Theorem 4.2. Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space with a� b = ab and

ψ ∈ Ψ. Let I ,J : X →X be self mappings and F1,F2 : X → W (X ) are multi-valued

mapping’s. Suppose F1andF2 are α∗−η∗−ψ−hybrid contraction with single-valued map-

ping’s I ,J satisfying conditions (i)-(iii) of implicit relations and the following assertions:

(i) F1,F2 are α∗−η∗−admissible mapping’s,

(ii) (a) ∪{F1(X )}
λ
⊂J (X ) and (b) ∪{F2(X )}

λ
⊂I (X ) for each λ ∈ [0,1]

(iii) there is a ψ ∈Ψ s.t ∀Θ,Ξ ∈X , t > 0, then from (3)

HM (D)
(F1Θ,F2Ξ, t)≥

(
HM d)(I Θ,J Ξ, t),HM (p)(I Θ,F1Θ, t),

HM (p)(J Ξ,F2Ξ, t),HM (p)(I Θ,F2Ξ, t),HM (p)(J Ξ,F1Θ, t)
)

(iv) for any sequence {Ξn}inX , converging to Σ ∈X and α(Ξn,Ξn+1, t)≤ η(Ξn,Ξn+1, t) , we

have

α(Ξn,Σ, t)≤ η(Ξn,Σ, t)

∀n ∈ N∪{0},Σ ∈X andt > 0, s.t. I Σ⊆F1Σ and J Σ⊆F2Σ satisfy the condition (ii),

i.e. lim
n→∞

∞

�
i=n

M (Ξ1,Ξ2, tsi) = 1.

If I (X )orJ (X ) is complete, then Σ is a common fixed point of I ,J ,F1andF2.

Proof. : Let Θ0 ∈X and suppose that J (X ) is complete. Taking Ξ0 =I Θ0. Then by remark

2.1 and (ii)(a) ∃Θ1,Ξ1 ∈X s.t. {Ξ1}= {J Θ1} ⊆F1Θ0. Thus from the assumptions, for all

t > 0

α(Ξ0,Ξ1, t)≤ η(Ξ0,Ξ1, t).

Again by proposition 2.1, for the point Ξ1, ∃ Ξ2 = {F2Θ1}1. But, by (ii)(b), ∃Θ2 ∈X s.t.

{Ξ2} = {I Θ2} ⊆F2Θ1. Then α(Ξ1,Ξ2, t) ≤ η(Ξ1,Ξ2, t) for each t > 0. By using (iv) and

proposition 2.2, we obtain

M (Ξ2,Ξ3, t)≥M (Ξ1,Ξ2, t)≥HM (D1)(F1Θ1,F2Θ2, t)≥HM (D)
(F1Θ1,F2Θ2, t)≥

ψ (m(Θ1,Θ2, t))
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≥ ψ

HM d)(I Θ1,J Θ2, t),HM (p)(I Θ1,F1Θ1, t),HM (p)(J Θ2,F2Θ2, t),

HM (p)(I Θ1,F2Θ2, t),HM (p)(J Θ2,F1Θ1, t)



≥ψ
(
HM d)(Ξ1,{Ξ2}, t),HM d)(Ξ1,{Ξ2}, t),HM d)({Ξ2},{Ξ3}, t),HM d)(Ξ1,{Ξ3}, t),

HM d)({Ξ2},{Ξ2}, t)
)

≥ψ (M (Ξ1,Ξ2, t),M (Ξ1,Ξ2, t),M (Ξ2,Ξ3, t),M (Ξ1,Ξ2, t)+M (Ξ2,Ξ3, t),1)

which, by (ii) gives M (Ξ2,Ξ3, t)≥ h.M (Ξ1,Ξ2, t). By ongoing action and conditions of propo-

sition 2.2 and (a) & (b) of (ii), a sequence {Ξk} ∈X developed for each k = 0,1,2, ...... Thus

{Ξ2k+1}= {J Θ2k+1} ⊆F1(Θ2k) , {Ξ2k+2}= {I Θ2k+2} ⊆F2(Θ2k+1)

we get

M (Ξk+1,Ξk+2, t)≥ h.M (Ξk,Ξk+1, t)

and

α(Ξk+1,Ξk+2, t)≤ η(Ξk+1,Ξk+2, t)

From lemma 2.1, lim
n→∞

∞

�
i=n

M (Ξ1,Ξ2, tsi) = 1, implies that {Ξk} ∈X is a CS.

Now since J (X ) is complete. Then J Θ2k+1→ Σ = J v for some v ∈X .

M (I Θ2k,J v, t)≥M (I Θ2k,J Θ2k+1, t)+M (J Θ2k+1,J v, t)→ 1

, as k→ ∞.

Hence I Θ2k→J v, as k→ ∞. By condition (iv), lemma 2.7 and lemma 2.8, we have

α(I Θ2k,J v, t)≤ η(I Θ2k,J v, t),∀k ∈ N, t > 0.

also

HM (p)(Σ,F2v, t)≥HM (d)(Σ,J Θ2k+1, t)+HM (D)(F1Θ2k,F2v, t)
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≥HM (d)(Σ,J Θ2k+1, t)+ψ

(
HM (d)(I Θ2k,J v, t),HM (p)(I Θ2k,F1Θ2k, t),

HM (p)(J v,F2v, t),HM (p)(I Θ2k,F2v, t),HM (p)(J v,F1Θ2k, t)
)

≥HM (d)(Σ,J Θ2k+1, t)+ψ

(
HM (d)(I Θ2k,Σ, t),HM (p)(Ξ2k,Ξ2k+1, t),

HM (p)(Σ,F2v, t),HM (p)(I Θ2k,F2v, t),HM (p)(Σ,Ξ2k+1, t)
)

letting k→ ∞ it implies,

HM (p)(Σ,F2v, t)≥ ψ
(
1,1,HM (p)(Σ,F2v, t),HM (p)(Σ,F2v, t),1

)
which, by (iii), yields that HM (p)(Σ,F2v, t) = 1. So by lemma 2.6, we get Σ ⊆F v i.e. Jv∈

{F2v}1. Since by (ii)(b), {F2(X )}1⊆ I(X ) and J v∈ {F2v}1, therefore ∃u∈X , s.t.I u =

J vu = Σ ∈ {F2v}1.

To show that I u ∈ {F1u}1. By lemma 2.8 and condition (iv), we have

α(I u,F1u, t)≤ η(I u,F1u, t),∀u ∈X , t > 0.

Also

HM (p)(I u,F1u, t) =HM (p)(F1u,I u, t)

≥HM (D1)(F1u,F2v, t)≥HM (D)(F1u,F2v, t).

≥ψ
(
HM (d)(I u,J v, t),HM (p)(I u,F1u, t),HM (p)(J v,F2v, t),

HM (p)(I u,F2v, t),HM (p)(J v,F1u, t)
)

yielding thereby

HM (p)(I u,F1u, t)≥ ψ
(
1,HM (p)(I u,F1u, t),1,1,HM (p)(I u,F1u, t)

)
which, by (iii), gives HM (p)(I u,F1u, t) = 1. Thus, by lemma 2.6, I u ⊆ F1ui.e.I u ∈

{F1u}1.

Thus by the above assumption of α∗−η∗−admissibility and α∗−η∗−ψ−hybrid contraction
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in the pairs {F1,I } and {F2,J }, we have

α(I u,F1u, t)≤ η(I u,F1u, t)⇒

HM (I {F1u}1,{F1I u}1, t)≥ ψ (m(I u,{F1u}1, t)) = 1

and

α(J v,F2v, t)≤ η(J v,F2v, t)⇒

HM

(
J {F2v}1,{F2J v}1, t

)
≥ ψ (m(J v,{F2v}1, t)) = 1

which gives I {F1u}1 = {F1I u}1 = {F1Σ}1 and J {F2v}1 = {F2J v}1 = {F2Σ}1 re-

spectively.

But I u ∈ {F1u}1 and J v = {F2v}1 implies I Σ = I I u ∈ I {F1u}1 = {F1Σ}1 and

J Σ = J J v ∈J {F2v}1 = {F2Σ}1.

Hence I Σ⊆F1Σ and J Σ⊆F2Σ. This completes the theorem. �

Corollary 4.1. Let (W (X ),HM ,�) be a HFMS with a� b = ab and ψ ∈ Ψ. Let I ,J :

X →X be self mappings and F1,F2 : X →W (X ) are MVFM’s. Suppose F1 and F2

are α −ψ−hybrid contraction with SVM’s I ,J satisfying conditions (i)-(iii), (3) and the

following assertions:,

(v) F1,F2 are α∗−η∗−admissibel mapping’s with η = 1,

(vi) (a) ∪{F1(X )}
λ
⊂J (X ) (b) ∪{F2(X )}

λ
⊂I (X ) for each λ ∈ [0,1]

(vii) there is a ψ ∈Ψ s.t. ∀ Θ,Ξ ∈X , t > 0,

HM (D)
(F1Θ,F2Ξ, t)≥

(
HM d)(I Θ,J Ξ, t),HM (p)(I Θ,F1Θ, t),

HM (p)(J Ξ,F2Ξ, t),HM (p)(I Θ,F2Ξ, t),HM (p)(J Ξ,F1Θ, t)
)

(viii) for any sequence {Ξn}inX , converging to Θ ∈ X and α(Ξn,Ξn+1, t) ≤ 1, ∀n ∈ N∪

{0},Σ ∈ X and t > 0, s.t. I Σ ⊆ F1Σ and J Σ ⊆ F2Σ and satisfy the condition (2), i.e.

lim
n→∞

∞

�
i=n

M (Ξ1,Ξ2, tsi) = 1. If I (X )orJ (X ) is complete, then Σ is a common fixed point of

I ,J ,F1andF2.

If I = J : X → X be self mapping and F1 = F2 : X → W (X ) is multi-valued fuzzy

mapping’s. Then we have following corollary.
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Corollary 4.2. Let (W (X ),HM ,�) be a HFMS with a� b = ab and ψ ∈ Ψ. Let I : X →

X be self mapping and F1 : X →W (X ) is multi-valued fuzzy mapping. Suppose F1 is

α −ψ−hybrid contraction with single valued mapping I , satisfying conditions (i)-(iii), (2)

and the following assertions:

(ix) F1 is α−ψ−admissible mapping,

(x) ∪{F1(X )}
λ
⊂I (X ) for each λ ∈ [0,1]

(xi) there is a ψ ∈Ψ s.t. ∀ Θ,Ξ ∈X , t > 0,

HM (D)
(F1Θ,F1Ξ, t)≥

(
HM d)(I Θ,I Ξ, t),HM (p)(I Θ,F1Θ, t),

HM (p)(I Ξ,F1Ξ, t),HM (p)(I Θ,F1Ξ, t),HM (p)(I Ξ,F1Θ, t)
)

(xii) for any sequence {Ξn} ∈ X , converging to Θ ∈ X and α(Ξn,Ξn+1, t) ≤ 1, for all

n ∈ N∪{0},Σ ∈X and t > 0, we have α(Ξn,Σ, t) ≤ 1,∀n ∈ N∪{0},Σ ∈X andt > 0, s.t.

I Σ⊆F1Σ and satisfy the condition (2) i.e. lim
n→∞

∞

�
i=n

M (Ξ1,Ξ2, tsi) = 1. If I (X ) is complete,

then Σ is a common fixed point of I andF1.

If I = J = 1 and F1 = F2 : X → W (X ) is MVFM. Then we have following corol-

lary.

Corollary 4.3. Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space with a� b = ab and

ψ ∈ Ψ. Let F1 : X →W (X ) is MVFM. Suppose F1 is α −ψ−contractive and satisfying

conditions (i)-(iii), (2) and the following assertions:

(xiii) F1 is α−ψ−admissible mapping,

(xiv) there is a ψ ∈Ψ s.t. ∀ Θ,Ξ ∈X , t > 0,

HM (D)
(F1Θ,F1Ξ, t)≥ ψ

(
HM d)(Θ,Ξ, t),HM (p)(Θ,F1Θ, t),HM (p)(Ξ,F1Ξ, t),

HM (p)(Θ,F1Ξ, t),HM (p)(Ξ,F1Θ, t)
)

(xv) for any sequence {Ξn} ∈ X , converging to Σ ∈ X and α(Ξn,Ξn+1, t) ≤ 1, ∀n ∈ N∪

{0},Σ ∈X and t > 0, we have α(Ξn,Σ, t)≤ 1,∀n ∈N∪{0},Σ ∈X and t > 0, then F1 has a

FP.
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Corollary 4.4. Let all hypothesis of corollary 4.3 hold except (xv) changed into the following

one as (xvi) for a ψ ∈Ψ s.t. ∀ Θ,Ξ ∈X , t > 0,

α(Θ,Ξ, t).HM (D)
(F1Θ,F1Ξ, t)≥ ψ

(
HM d)(Θ,Ξ, t),HM (p)(Θ,F1Θ, t),

HM (p)(Ξ,F1Ξ, t),HM (p)(Θ,F1Ξ, t),HM (p)(Ξ,F1Θ, t)
)

(xvii) for a ψ ∈Ψ s.t. ∀ Θ,Ξ ∈X , t > 0,

(α(Θ,Ξ, t)+λ )
HM (D)

(F1Θ,F1Ξ,t) ≥ (1+λ )
ψHM d)(Θ,Ξ,t),HM (p)

(Θ,F1Θ,t),HM (p)
(Ξ,F1Ξ,t),

HM (p)(Θ,F1Ξ, t),HM (p)(Ξ,F1Θ, t),λ > 0

(xviii) for a ψ ∈Ψ s.t. ∀ Θ,Ξ ∈X , t > 0,

(
HM (D)

(F1Θ,F1Ξ, t)+λ

)α(Θ,Ξ,t)
≥ ψ

(
HM d)(Θ,Ξ, t),HM (p)(Θ,F1Θ, t),

HM (p)(Ξ,F1Ξ, t),HM (p)(Θ,F1Ξ, t),HM (p)(Ξ,F1Θ, t)
)
+λ ,λ > 0

Then F1 has a Fixed Point.

Corollary 4.5. Let (W (X ),HM ,�) be a Hausdorff fuzzy metric space with a� b = ab and

ψ ∈ Ψ. Let F1 : X →W (X ) is an η − admissiable MVFM with α = 1. Suppose F1 is η −

ψ− contractiveandsatis f yingconditions(i)− (iii),(2)andthe f ollowingassertions :

(xix)thereisaψ ∈Ψ s.t. ∀ Θ,Ξ ∈X , t > 0,

η(Θ,Ξ, t)≥ 1⇒HM (D)
(F1Θ,F1Ξ, t)≥ ψ

(
HM d)(Θ,Ξ, t),HM (p)(Θ,F1Θ, t),

HM (p)(Ξ,F1Ξ, t),HM (p)(Θ,F1Ξ, t),HM (p)(Ξ,F1Θ, t)
)

(xx) for any sequence {Ξn} ∈ X , converging to Σ ∈ X and η(Ξn,Ξn+1, t) ≥ 1, ∀n ∈ N∪

{0}, t > 0, and t > 0, we have η(Ξn,Σ, t) ≥ 1,∀n ∈ N∪{0},Σ ∈X andt > 0, then F1 has a

fixed point.
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Example 4.1. Let X = [1,∞) be endowed with the usual fuzzy metric M (Θ,Ξ, t) = t
t+|Θ−Ξ| ,

∀Θ,Ξ ∈X , t > 0. Define α,η : X ×X → [0,∞) by

α(Θ,Ξ, , t) =


1, if Θ,Ξ ∈ {0,1}

1, if Θ,Ξ > 1

0, if otherwise

and η(Θ,Ξ, t) =


1, if Θ,Ξ ∈ {0,1}

2, if Θ,Ξ > 1

0, if otherwise

Let us consider the sequence {Θn}∞
n=1 where Θn = 1− 1

n ,∀n ∈ N, and X = {Θn : n ∈ N}.

We also define ψ : R+→R by ψΓ =
(
1− exp(1−Θn)

−a) ,a > 0. Let F1Θn = 1− 1
n−1 , and

F2Θn = 1− 1
n−2 with lim

n→∞
Θn = lim

n→∞

(
1− 1

n

)
= 1, and

lim
n→∞

ψΓ (Θn) = lim
n→∞

(
1− exp(1−Θn)

−a)= lim
n→∞

(
1− exp

(
1−1+ 1

n

)−a
)
= 1− exp(0)−a < 1.

Also let I Θ = 1+ Θ

3 and J Θ = 1+ Θ

2 , then I Θn = 4− 1
3n and J Θn = 3− 1

2n , so that the

condition of theorem 4.1 satisfied

5. CONCLUSIONS

In this chapter we introduced the concept of α∗−η∗−ψ−hybrid contraction for single and

multi-valued fuzzy mappings and prove the common fixed point results in Hausdorff fuzzy

metric space. Our result helps in the applications of integral equation, which is significantly

contributed to the existing literature for fixed point theorem.
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