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Abstract. In this paper, nonlinear time fractional Kawahara and modified Kawahara equations based on Caputo-

Fabrizio derivative operator is analysed using iterative Laplace transform method to obtain approximate solutions.

The substantive features of the manuscript is to offer the stability conditions of solution for proposed technique.

The acquired approximate solutions are in comparison with the precise solutions to confirm the applicability,

performance and accuracy of the method. Moreover, the 3D plots of obtained numerical solution of the concerned

equations for various specific cases are presented.
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1. INTRODUCTION

From the past three decades, the most captivating rise in scientific and engineering ap-

plications have been found within the framework of Fractional calculus. It has fascinated the

attention of many scholars due to its usefulness in various fields of science and engineering,
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such as fluid mechanics, diffusive transport, electrical networks, electromagnetic theory, differ-

ent branches of physics, biological sciences and groundwater problems , [1, 2, 3, 4, 5]. In recent

times, many scholars have tried to model various physical or biological processes using frac-

tional differential equations. Moreover, obtaining numerical solutions of these equations is turn

out to be wide area of research and interest for researchers. Some of the most used and efficient

analytical or numerical methods for solving these fractional differential equations are given

as the Finite difference method [8], Adomian decomposition method ADM[6, 7], Homotopy-

perturbation method HPM [9], Homotopy analysis method [10], Adams-Bashforth- Moulton

method [11], Variational iteration method VIM [12, 13], monotone iterative method [14, 15],

etc. Recently, Daftardar-Gejji and Jafari [16] suggested an iterative method which is known

as new iterative method (NIM). Furthermore, applying Laplace transform utilizing NIM [17] is

turned out to be most efficiect and reliable method in fractional calculus for solving linear and

nonlinear fractional partial differential equations.

These FDEs involves several fractional differential operators like Riemann-Liouville oper-

ator [18], Caputo operator [19], Hilfer operator [20], Katugampola operator [21], etc. However

these operators possesses a power law kernel and has singularity which leads to some limita-

tions in modelling physical problems. To overcome this difficulty, in recent times Caputo and

Fabrizio have proposed a reliable operator having nonlocal and nonsingular kernel in the form

of exponential function known as Caputo-Fabrizio operator [22, 23].

Nonlinear wave phenomena has significant importance in various parts of mathematical

physics and engineering such as dispersion, reaction, diffusion and convection. Moreover, one

of the well-known nonlinear evolution equation is the fifth order Kawahara equation which ap-

peares in the study of shallow water waves having magneto-acoustic waves in a plasma, surface

tension and capillary-gravity waves. This equation has attarcted several authors in recent times

[24, 25]. To describe solitary-wave propagation in media, in 1972, Kawahara [26] suggested the

kawahara equation. Moreover, the modified Kawahara equation has some useful applications in

physics such as,capillary-gravity water waves, plasma waves, water waves with surface tension,

etc. [27, 28, 29].
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Inspired by above literature, in this paper we have applied iterative Laplace transform with

to find approximate solutions of time fractional Kawahara and modified Kawahara equations

having Caputo-Fabrizio operator. These equations are given below as follows:

(1.1)
CF∂ β v

∂ tβ
+ v

∂v
∂x

+
∂ 3v
∂x3 −

∂ 5v
∂x5 = 0 0 < β ≤ 1

with initial condition

(1.2) v(x,0) =
105
169

sech4
(

x
2
√

13

)
and

(1.3)
CF∂ β v

∂ tβ
+ v2 ∂v

∂x
+h

∂ 3v
∂x3 + l

∂ 5v
∂x5 = 0 0 < β ≤ 1

where h, l are nonzero real constants and initial condition is

(1.4) v(x,0) =
3h√
−10l

sech2(Mx), M =
1
2

√
−h
5l

Equations (1.1) and (1.3) becomes the original Kawahara and modified Kawahara equations for

β = 1 [26]

The remaining of this manuscript is arranged as below. Section 2 is presentation of some basic

definitions and lemmas of fractional calculus. Preliminary idea of iterative Laplace transform

method is illustrated in section 3. In Section 4, stability criteria for obtained approximate solu-

tions of considered equations are displayed. The numerical simulations, plots and tables for the

obtained solutions are demonstrated in section 5. In section 6, we give our conclusions.

2. BASICS OF FRACTIONAL CALCULUS

In this section, we present some useful definitions and lemmas of fractional calculus.

Definition 2.1. ([30]) The Caputo-Fabrizio fractional integral operator with order 0 < β < 1

is given by

(2.1) CF Iβ

t v(x, t) =
2(1−β )

(2−β )M(β )
u(t)+

2β

(2−β )M(β )

∫ t

0
v(x,ζ )dζ ,
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Definition 2.2. ([31]) Let v ∈ H1(0,a), a > 0,0 < β < 1, then the time fractional Caputo-

Fabrizio differential operator is given as

(2.2) CFDβ

t v(x, t) =
(2−β )M(β )

2(1−β )

∫ t

0
exp
[
− β (t− s)

1−β

]
v′(ζ )dζ , t ≥ 0, 0 < β < 1,

where M(β ) is a normalisation function depending on β such that M(0) =M(1) = 1.

Similar to Caputo derivative operator, the CF operator gives CFDβ

t v(x, t) = 0, if v is a constant

function.

The benefit of Caputo-Fabrizio operator is that there is no singularity for t = s in the new kernel

as compared to Caputo operator

Definition 2.3. ([31]) The Laplace transform for the Caputo-fabrizio fractional operator of

order 0 < β ≤ 1 and m ∈ N is given by

L
(CFDm+β

t v(x, t)
)
(s) =

1
1−β

L(v(m+1)(x, t))L
(

exp
(
− β

1−β
t
))

=
sm+1L(v(x, t))− smv(x,0)− sm−1v′(x,0)−· · ·− v(m)(x,0)

s+β (1− s)
.(2.3)

In particular, we have

L
(CFDβ

t v(x, t)
)
(s) =

sL(v(x̄, t))
s+β (1− s)

, m = 0.

L
(CFDβ+1

t v(x, t)
)
(s) =

s2L(v(x, t))− sv(x,0)− v′(x,0)
s+β (1− s)

, m = 1.

3. ITERATIVE LAPLACE TRANSFORM METHOD

In this section, a general nonhomogeneous Caputo-Fabrizio fractional differential equation

is considered which is given as below

(3.1) CFDβ

t u(x, t)+Ru(x, t)+N u(x, t) = g(x, t)

with initial condition

(3.2) u(x,0) = ψ(x, t)
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Where g(x, t) denotes source term, R and N are given linear and non-linear operator respec-

tively. Applying Laplace transform on (3.1) we get

L{v(x, t)}− 1
s

v(x,0)+
(

s+β (1− s)
s

)(
L{Rv(x, t)}+L{N v(x, t)}

−L{g(x, t)}
)
= 0.(3.3)

Rearranging terms we get

L{v(x, t)}= 1
s

ψ(x, t)−
(

s+β (1− s)
s

)(
L{Rv(x, t)}+L{N v(x, t)}−L{g(x, t)}

)
(3.4)

(3.5) L(v(x, t)) = ψ(x,s)−
(

s+β (1− s)
s

)
L
(
R(v(x, t))+N (v(x, t))

)
,

where

ψ(x,s) =
1
s

ψ(x, t)− s+β (1− s)
s

g̃(x,s).

Next, we apply inverse laplace transform on (3.5) then we get

(3.6) v(x, t) = ψ(x, t)−L−1

[(
s+β (1− s)

s

)
L
(
R(v(x, t))+N (v(x, t))

)]
,

where ψ(x, t) is the term derived from source term.

Further, we use new iterative method to obtain infinite series solution. This method is

introduced by Daftardar-Gejji and Jafari [16].

(3.7) v(x, t) =
∞

∑
n=0

vn(x, t),

since R is linear,

(3.8) R

(
∞

∑
n=0

vn(x, t)
)
=

∞

∑
n=0

R
(
vn(x, t)

)
.
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The decomposion of nonlinear operator N is given as

(3.9) N

(
∞

∑
n=0

vn

)
= N (v0(x, t))+

∞

∑
n=1

{
N

( i

∑
j=0

v j(x, t)
)
−N

( i−1

∑
j=0

v j(x, t)
)}

.

In view of (3.7), (3.8) and (3.9), the equation (3.6) is equivalent to

∞

∑
i=0

vi(x, t) = ψ(x, t)−L−1

[(
s+β (1− s)

s

)
L
(

∞

∑
i=0

R
(
vi(x̄, t)

))]

−L−1

[(
s+β (1− s)

s

)
L
(

N
(
v0(x, t)

)
+

∞

∑
i=1

{
N

( i

∑
j=0

v j(x, t)
)

−N

( i−1

∑
j=0

v j(x̄, t)
)})]

,(3.10)

further, consider the recurrence relation as follows

v0(x, t) = ψ(x, t)

v1(x, t) = L−1

[(
s+β (1− s)

s

)
L
(

R
(
v0(x, t)

)
+N

(
v0(x, t)

))]
...(3.11)

vp+1(x, t) = L−1

[(
s+β (1− s)

s

)
L

(
R
(
vp(x, t)

)
+

{
N

( p

∑
j=0

v j(x, t)
)

−N

( p−1

∑
j=0

v j(x, t)
)})]

(3.12)

The approximate solution with p−term is given as

(3.13) v = v0 + v1 + v2 + · · ·+ vp−1.

The convergence condition of the above approximate solution is obtained in [32]

4. STABILITY ANALYSIS

4.1. Stability analysis of the fractional Kawahara equation. Let (B,‖ · ‖) as a Banach

space. Further, define Γ as self-map of B. and νm+1 = f (Γ,νm) shows exact recurring process.

The fixed-point set on Γ is denoted by F(Γ). Moreover, Γ has atleast one element such that

νm converges to k ∈ F(Γ). Let {ωm} ⊆ B and define ym = ‖ωm+1− f (Γ,ωm)‖. If lim
m→∞

ym =
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0 implies that lim
m→∞

ωm = k, then the iteration method νm+1 = f (Γ,νm) is called as Γ-stable.

Comparably, we think about that, this sequence {ωm} has an upper bound. This iteration is

called as Picard’s iteration and it is Γ− stable, if all these criterias are fulfilled for νm+1 = Γνm.

Theorem 4.1. Consider a Banach space (B,‖ · ‖) and define Γ as self-map on B fulfilling

‖Γm−Γr‖ ≤ ∆‖m−Γm‖+ξ‖m− r‖

for all m, r ∈B where 0 ≤ ∆, 0 ≤ ξ < 1. Assume that Γ is Picard Γ-stable. Let the following

equation related to (1.1)

vm+1(x, t) = vm(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− vm

∂vm

∂x
− ∂ 3vm

∂x3 +
∂ 5vm

∂x5

)]
(4.1)

where
s+β (1− s)

s
is a fractional Lagrange multiplier.

Theorem 4.2. Consider a self-map Γ defined as

Γ(vm(x, t)) = vm+1(x, t) = vm(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− vm

∂vm

∂x
− ∂ 3vm

∂x3 +
∂ 5vm

∂x5

)]
.

is Γ−stable in L2(m,r) if

{
1+F1(β )σ2 +F2(β )σ3 +

F3(β )σ1

2
(δ1 +δ2)

}
< 1.(4.2)

Proof. Here, we will show that Γ consists a fixed point. Hence, for all (m, r) ∈ N×N, we

consider the following.

Γ(vm(x, t))−Γ(vr(x, t)) = vm(x, t)− vr(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− vm

∂vm

∂x

− ∂ 3vm

∂x3 +
∂ 5vm

∂x5

)]
−L−1

[(
s+β (1− s)

s

)
L
(
− vr

∂vr

∂x

− ∂ 3vr

∂x3 +
∂ 5vr

∂x5

)]
.(4.3)
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By applying norm on both sides of (4.3) and without loss of generality, we obtain

∥∥Γ(vm(x, t))−Γ(vr(x, t))
∥∥= ∥∥∥∥∥vm(x, t)− vr(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− vm

∂vm

∂x

− ∂ 3vm

∂x3 +
∂ 5vm

∂x5

)]
−L−1

[(
s+β (1− s)

s

)
L
(
− vr

∂vr

∂x

− ∂ 3vr

∂x3 +
∂ 5vr

∂x5

)]∥∥∥∥∥.(4.4)

Next, utilizing triangular inequality and simplifying further (4.4) we get,

∥∥Γ(vm(x, t))−Γ(vr(x, t))
∥∥≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)
L

[∥∥∥∥− ∂ 3vm

∂x3

+
∂ 5vm

∂x5 +
∂ 3vr

∂x3 −
∂ 5vr

∂x5

∥∥∥∥
]

+L

[∥∥∥∥− vm
∂vm

∂x
+ vr

∂vr

∂x

∥∥∥∥
]}

.(4.5)

∥∥Γ(vm(x, t))−Γ(vr(x, t))
∥∥≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)

L

[∥∥∥∥(∂ 3vm

∂x3 −
∂ 3vr

∂x3

)
+

(
∂ 5vm

∂x5 −
∂ 5vr

∂x5

)∥∥∥∥
]

+L

[∥∥∥∥vm
∂vm

∂x
− vr

∂vr

∂x

∥∥∥∥
]}

.(4.6)

≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)

L

[∥∥∥∥∂ 3vm

∂x3 −
∂ 3vr

∂x3

∥∥∥∥
]
+L

[∥∥∥∥∂ 5vm

∂x5 −
∂ 5vr

∂x5

∥∥∥∥
]

+L

[
1
2

∥∥∥∥∂v2
m

∂x
− ∂v2

r
∂x

∥∥∥∥
]}

.(4.7)
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Now substituting differential operators
∂

∂x
= σ1,

∂ 3

∂x3 = σ2 and
∂ 5

∂x5 = σ3 we get

∥∥Γ(vm(x, t))−Γ(vr(x, t))
∥∥≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)

L

[
σ2

∥∥∥∥vm(x, t)− vr(x, t)
∥∥∥∥
]
+L

[
σ3

∥∥∥∥vm(x, t)− vr(x, t)
∥∥∥∥
]

+L

[
σ1

2

∥∥∥∥(vm(x, t)+ vr(x, t)
)(

vm(x, t)− vr(x, t)
)∥∥∥∥
]}

.(4.8)

Since, um and ur are bounded functions, we have ‖um‖ ≤ δ1 and ‖ur‖ ≤ δ2. Therefore, simpli-

fying (4.8), we obtain∥∥Γ(vm(x, t))−Γ(vr(x, t))
∥∥≤ {1+F1(β )σ2 +F2(β )σ3

+
F3(β )σ1

2
(δ1 +δ2)

}
‖vm(x, t)+ vr(x, t)‖.(4.9)

where F1, F2 and F3 are functions of L−1
{(s+β (1− s)

s

)
L
}

.

Hence, the self-mapping Γ has a fixed point. This completes the proof.

Further, we prove that Γ satisfies all the criterias in Theorem 4.1. Let (4.9) holds then using

ξ = 0, ∆ =
{

1+F1(β )σ2 +F2(β )σ3 +
F3(β )σ1

2
(δ1 +δ2)

}
.(4.10)

Thus, all the conditions in Theorem 4.2 are satisfied by Γ. Therefore, Γ is Picard Γ− stable.

4.2. Stability analysis of the fractional modified Kawahara equation. Let (B,‖ · ‖) as a

Banach space. Further, define Θ as self-map of B. and ζm+1 = g(Θ,ζm) shows exact recurring

process. The fixed-point set on Θ is denoted by G(Θ). Moreover, Θ has atleast one element

such that ζm converges to k ∈ G(Θ). Let {µm} ⊆ B and define ym = ‖µm+1− g(Θ,µm)‖. If

lim
m→∞

ym = 0 implies that lim
m→∞

µm = k, then the iteration method ζm+1 = g(Θ,ζm) is called as

Θ-stable. Comparably, we think about that, this sequence {µm} has an upper bound. This

iteration is called as Picard’s iteration and it is Θ− stable, if all these criterias are fulfilled for

ζm+1 = Θζm.

Theorem 4.3. Consider a Banach space (B,‖ · ‖) and define Θ as self-map on B fulfilling

‖Θm−Θr‖ ≤ ∆1‖m−Θm‖+ξ1‖m− r‖
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for all m, r ∈B where 0≤ ∆1, 0≤ ξ1 < 1. Assume that Θ is Picard Θ-stable. Let the following

equation related to (1.3)

vm+1(x, t) = vm(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− v2

m
∂v
∂x
−h

∂ 3vm

∂x3 − l
∂ 5vm

∂x5

)]
(4.11)

where
s+β (1− s)

s
is a fractional Lagrange multiplier.

Theorem 4.4. Consider a self-map Θ defined as

Θ(vm(x, t)) = vm+1(x, t) = vm(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− v2

m
∂v
∂x
−h

∂ 3vm

∂x3 − l
∂ 5vm

∂x5

)]
.

is Θ−stable in L2(m,r) if

{
1+hF4(β )σ5 + lF5(β )σ6 +

F6(β )σ4

3
(δ 2

3 +δ3δ4 +δ
2
4 )
}
< 1.(4.12)

Proof. Here, we will show that Θ consists a fixed point. Hence, for all (m, r) ∈N×N, we

consider the following.

Θ(vm(x, t))−Θ(vr(x, t)) = vm(x, t)− vr(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− v2

m
∂v
∂x

−h
∂ 3vm

∂x3 − l
∂ 5vm

∂x5

)]
−L−1

[(
s+β (1− s)

s

)
L
(
− v2

r
∂v
∂x

−h
∂ 3vr

∂x3 − l
∂ 5vr

∂x5

)]
.(4.13)

By applying norm on both sides of (4.13) and without loss of generality, we obtain

∥∥Θ(vm(x, t))−Θ(vr(x, t))
∥∥= ∥∥∥∥∥vm(x, t)− vr(x, t)+L−1

[(
s+β (1− s)

s

)
L
(
− v2

m
∂v
∂x

−h
∂ 3vm

∂x3 − l
∂ 5vm

∂x5

)]
−L−1

[(
s+β (1− s)

s

)
L
(
− v2

r
∂v
∂x

−h
∂ 3vr

∂x3 − l
∂ 5vr

∂x5

)]∥∥∥∥∥.(4.14)
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Next, utilizing triangular inequality and simplifying further (4.14) we get,

∥∥Θ(vm(x, t))−Θ(vr(x, t))
∥∥≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)
L

[∥∥∥∥−h
∂ 3vm

∂x3

− l
∂ 5vm

∂x5 +h
∂ 3vr

∂x3 + l
∂ 5vr

∂x5

∥∥∥∥
]

+L

[∥∥∥∥− v2
m

∂vm

∂x
+ v2

r
∂vr

∂x

∥∥∥∥
]}

.(4.15)

∥∥Θ(vm(x, t))−Θ(vr(x, t))
∥∥≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)

L

[∥∥∥∥h
(

∂ 3vm

∂x3 −
∂ 3vr

∂x3

)
+ l
(

∂ 5vm

∂x5 −
∂ 5vr

∂x5

)∥∥∥∥
]

+L

[∥∥∥∥v2
m

∂vm

∂x
− v2

r
∂vr

∂x

∥∥∥∥
]}

.(4.16)

≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)

hL

[∥∥∥∥∂ 3vm

∂x3 −
∂ 3vr

∂x3

∥∥∥∥
]
+ lL

[∥∥∥∥∂ 5vm

∂x5 −
∂ 5vr

∂x5

∥∥∥∥
]

+L

[
1
3

∥∥∥∥∂v3
m

∂x
− ∂v3

r
∂x

∥∥∥∥
]}

.(4.17)

Now substituting differential operators
∂

∂x
= σ4,

∂ 3

∂x3 = σ5 and
∂ 5

∂x5 = σ6 we get

∥∥Θ(vm(x, t))−Θ(vr(x, t))
∥∥≤ ‖vm(x, t)− vr(x, t)‖+L−1

{(
s+β (1− s)

s

)

L

[
hσ5

∥∥∥∥vm(x, t)− vr(x, t)
∥∥∥∥
]
+L

[
lσ6

∥∥∥∥vm(x, t)− vr(x, t)
∥∥∥∥
]

+L

[
σ4

3

∥∥∥∥(v2
m(x, t)+ vm(x, t)vr(x, t)

+ v2
r (x, t)

)(
vm(x, t)− vr(x, t)

)∥∥∥∥
]}

.(4.18)
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Since, um and ur are bounded functions, we have ‖um‖ ≤ δ3 and ‖ur‖ ≤ δ4. Therefore, simpli-

fying (4.18), we obtain

∥∥Θ(vm(x, t))−Θ(vr(x, t))
∥∥≤ {1+hF4(β )σ5 + lF5(β )σ6

+
F6(β )σ4

3
(δ 2

3 +δ3δ4 +δ
2
4 )
}
‖vm(x, t)− vr(x, t)‖.(4.19)

where F4, F5 and F6 are functions of L−1
{(s+β (1− s)

s

)
L
}

.

Hence, the self-mapping Θ has a fixed point. This completes the proof.

Further, we prove that Θ satisfies all the criterias in Theorem 4.3. Let (4.19) holds then using

ξ1 = 0, ∆1 =
{

1+hF4(β )σ5 + lF5(β )σ6 +
F6(β )σ4

3
(δ 2

3 +δ3δ4 +δ
2
4 )
}
.(4.20)

Thus, all the conditions in Theorem 4.4 are satisfied by Θ. Therefore, Θ is Picard Θ−

stable.

5. NUMERICAL SIMULATIONS

This section deals with the interpretation of the analytical results for the time fractional

Kawahara and modified Kawahara equations with the graphical illustrations. We have used

Mathematica software to compute approximate solutions.

5.1 Approximate solution for time fractional Kawahara equation

Consider the time fractional Kawahara equation (1.1) with initial condition (1.2).

The exact solution to (1.1) is given in [33] as

(5.1) v(x, t) =
105
169

sech4
(

1
2
√

13

(
x− 36t

169

))
The initial condition (1.2) is rewritten as

v(x,0) =
1680
169

e
2x√
13(

e
x√
13 +1

)4

Applying laplace transform on both side of (1.1) we get

L{v(x, t)}− 1
s

u(x,0)+
(

s+β (1− s)
s

)
L
{

v
∂v
∂x

+
∂ 3v
∂x3 −

∂ 5v
∂x5

}
= 0.(5.2)
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Rearranging terms we obtain

L{v(x, t)}= 1
s

(
1680
169

e
2x√
13(

e
x√
13 +1

)4

)
−
(

s+β (1− s)
s

)
L
{

v
∂v
∂x

+
∂ 3v
∂x3 −

∂ 5v
∂x5

}
(5.3)

Next, the inverse Laplace transform on (5.3), gives

v(x, t) =
1680
169

e
2x√
13(

e
x√
13 +1

)4 −L−1

{(
s+β (1− s)

s

)
L
{

v
∂v
∂x

+
∂ 3v
∂x3 −

∂ 5v
∂x5

}}
(5.4)

The series solution is given as follows,

(5.5) v(x, t) =
∞

∑
n=0

vn(x, t),

The nonlinear term v
∂v
∂x

is written as vn
∂vn

∂x
= ∑

∞
n=0Pn; whereas Pn is further decomposed as

follows

Pn =
n

∑
i=0

vi.
∂

∂x

( n

∑
i=0

vi

)
−

n−1

∑
i=0

vi.
∂

∂x

(n−1

∑
i=0

vi

)

by using v0(x, t) =
1680
169

e

2x√
13e

x√
13 +1

4 , we get the recursive formula as follows

vn+1(x, t) = v0(x, t)−L−1

{(
s+β (1− s)

s

)
L
{

vn
∂vn

∂x
+

∂ 3vn

∂x3 −
∂ 5vn

∂x5

}}
(5.6)

The n−term approximate solution is given by

(5.7) v(x, t) = v0(x, t)+ v1(x, t)+ v2(x, t)+ · · ·+ vn−1(x, t).
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Therefore, using (5.6) the first three terms of approximate solution of (1.1) are obtained as

follows

v0 =
1680
169

e
2x√
13(

e
x√
13 +1

)4

v1 =−
120960e

2x√
13

(
e

x√
13 −1

)
(β (t−1)+1)

28561
√

13
(

e
x√
13 +1

)5

v2 =

4354560e
2x√
13

(
−3e

x√
13 + e

2x√
13 +1

)
137858491849

(
e

x√
13 +1

)11

(
2197

(
β

2((t−4)t +2)+4β (t−1)+2
)

+10985e
x√
13
(
β

2((t−4)t +2)+4β (t−1)+2
)
+10985e

4x√
13
(
β

2((t−4)t +2)+4β (t−1)

+2
)
+2197e

5x√
13
(
β

2((t−4)t +2)+4β (t−1)+2
)
+224

√
13β

3 ((t−3)2t−3
))))

v3 =−
1

19004963774880799438801
(

e
x√
13 +1

)23 17418240
(
−4962905706564

√
13e

2x√
13

−47147604212358
√

13e
3x√
13 +348305518922790

√
13e

4x√
13 +65780525341440e

4x√
13

+4284679410923028
√

13e
5x√
13 −25621514620490880e

5x√
13 +120941967334930560e

6x√
13

+15052992814426944
√

13e
6x√
13 +21841020780811128

√
13e

7x√
13 +452975230290360960e

7x√
13 · · ·

Continuing in the same way, remaining terms of the iteration formula (5.6) are obtained.

FIGURE 1. Approx. soln of Eq. (1.1), for β = 1, 0.85, 0.65
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t x β = 0.55 β = 0.75 β = 0.95 Absolute error

|vexact − vapprx| for

β = 1

0.03 -5 0.262901 0.259311 0.255766 0.0010822

-1 0.602059 0.600445 0.598686 0.000584122

0 0.620821 0.621140 0.621289 1.27545×10−11

1 0.592981 0.595140 0.597158 0.000584122

5 0.246095 0.249485 0.252934 0.0010822

0.07 -5 0.263310 0.259863 0.256455 0.00252512

-1 0.602234 0.600706 0.599045 0.00136294

0 0.620775 0.621105 0.621277 3.78065×10−10

1 0.592729 0.594818 0.596777 0.00136294

5 0.245714 0.248956 0.252253 0.00252512

0.1 -5 0.263617 0.260277 0.256973 0.00360731

-1 0.602364 0.600901 0.599313 0.00194704

0 0.620740 0.621077 0.621266 1.57462×10−9

1 0.592538 0.594575 0.596490 0.00194704

5 0.245428 0.248560 0.251743 0.00360731
TABLE 1. The numerical results for various values of β and comparison of ab-

solute error between the exact solution with four term approximations obtained

by ILTM of (1.1) for β = 1

5.2. Approximate solution for modified time fractional Kawahara equation

Here, we consider the modified time fractional Kawahara equation (1.3) with initial condi-

tion (1.4).

The exact solution for the classical modified Kawahara equation is given by [33]

(5.8) u(x, t) =
3p√
−10q

sech2[M(x− ct)], c =
25q−4p2

25q
.
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Applying laplace transform on both side of (1.3) we get,

L{v(x, t)}− 1
s

v(x,0)+
(

s+β (1− s)
s

)
L
{

v2 ∂v
∂x

+h
∂ 3v
∂x3 + l

∂ 5v
∂x5

}
= 0.(5.9)

Rearranging terms we obtain,

L{v(x, t)}= 1
s

(
3h√
−10l

sech2(Mx)
)
−
(

s+β (1− s)
s

)
L
{

v2 ∂v
∂x

+h
∂ 3v
∂x3 + l

∂ 5v
∂x5

}
(5.10)

Next, the inverse Laplace transform on (5.10), gives

v(x, t) =
3h√
−10l

sech2(Mx)−L−1

{(
s+β (1− s)

s

)
L
{

v2 ∂v
∂x

+h
∂ 3v
∂x3 + l

∂ 5v
∂x5

}}
(5.11)

The series solution is given as,

(5.12) v(x, t) =
∞

∑
n=0

vn(x, t),

The nonlinear term v2 ∂v
∂x

is written as v2
n

∂vn

∂x
= ∑

∞
n=0 Jn; whereas Jn is further decomposed as

follows

Jn =
n

∑
i=0

v2
i .

∂

∂x

( n

∑
i=0

vi

)
−

n−1

∑
i=0

v2
i .

∂

∂x

(n−1

∑
i=0

vi

)

by using v0(x, t) =
3h√
−10l

sech2(Kx), we get the recursive formula as follows

vn(x, t) = v0(x, t)+L−1

{(
s+β (1− s)

s

)
L
{

v2
n

∂vn

∂x
+h

∂ 3vn

∂x3 + l
∂ 5vn

∂x5

}}
(5.13)

The n−term approximate solution is given by

(5.14) v(x, t) = v0(x, t)+ v1(x, t)+ v2(x, t)+ · · ·+ vn−1(x, t).
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v0 =
6
√

2
5he

x
√
− h

l√
5

√
−l

(
e

x
√
− h

l√
5 +1

)2

u1 =−
36
√

2h3
√
−h

l (−β +β t +1)e
x
√
− h

l√
5

(
17e

x
√
− h

l√
5 −102e

2x
√
− h

l√
5 −1

)

125(−l)3/2

(
e

x
√
− h

l√
5 +1

)7

−
36
√

2h3
√
−h

l (−β +β t +1)e
x
√
− h

l√
5

(
102e

3x
√
− h

l√
5 −17e

4x
√
− h

l√
5 + e

√
5x
√
− h

l

)

125(−l)3/2

(
e

x
√
− h

l√
5 +1

)7

u2 =
2317248

√
2h8√−l

√
−h

l e
4x
√
− h

l√
5

78125l5

(
e

x
√
− h

l√
5 +1

)17 −
46656

√
2h8√−l

√
−h

l e
3x
√
− h

l√
5

78125l5

(
e

x
√
− h

l√
5 +1

)17

+
85396032

√
2h8√−l

√
−h

l e
6x
√
− h

l√
5

15625l5

(
e

x
√
− h

l√
5 +1

)17 −
2084932224

√
2h8√−l

√
−h

l e
7x
√
− h

l√
5

78125l5

(
e

x
√
− h

l√
5 +1

)17

−7039036728
√

10β
4h11t4e2

√
5x
√
− h

l −727056
√

10β
4h11t4e

√
5x
√
− h

l

−123665616
√

10β
4h11t4e3

√
5x
√
− h

l + · · · .
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FIGURE 2. Approx. soln of Eq. (1.3), for β = 1,0.8,0.6

t x β = 0.55 β = 0.75 β = 0.95 Absolute error

|vexact − vapprx| for

β = 1

1 -10 0.000943956 0.000943906 0.000943956 9.88185×10−7

-5 0.000947498 0.000947498 0.000947498 5.20717×10−7

0 0.000948683 0.000948683 0.000948683 4.74326×10−8

5 0.000947498 0.000947498 0.000947498 4.26325×10−7

10 0.000943956 0.000943956 0.000943956 8.95888×10−7

2 -10 0.000941829 0.000941829 0.000941829 2.07022×10−6

-5 0.000943286 0.000943286 0.000943286 1.13562×10−6

0 0.000946834 0.000946834 0.000946834 1.89711×10−7

5 0.000947061 0.000947061 0.000947061 7.58088×10−7

10 0.000941829 0.000941829 0.000941829 1.69833×10−6

TABLE 2. The numerical results for various values of β and comparison of ab-

solute error between the exact solution with three term approximations obtained

by ILTM of (1.3) for β = 1
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Fig. 1 shows surfaces for approximate solution of Eq. (1.1) and exact solution of classical

Kawahara equation for κ = 1,0.85,0.65. Fig. 2 shows surfaces for approximate solution of

Eq. (1.3) and exact solution of classical modified Kawahara equation for κ = 1,0.85,0.65. It

is observed that these surfaces for various values of κ are differes each other and coincides

with exact solution as the value of κ approaches towards one. Moreover, from all the plots we

can see that the present technique is more accurate and very effective to analyse the considered

fractional order differential equations.

In table 1 and 2, we have calculated the numerical values of approximate solution of equations

(1.1) and (1.3) respectively with h = 0.001 and l = −1 for various values of κ = 1,0.95,0.75

and 0.55. Moreover, we have obtained comparison of absolute error between the exact solution

with obtained approximate solution obtained by ILTM for each equation. It is seen that This

technique provides accurate numerical solutions even if lower order approximations are used.

6. CONCLUSIONS

In this work, iterative Laplace transform method is applied lucratively to obtain the ap-

proximate solutions of time fractional Kawahara and modified Kawahara equations based on

Caputo-Fabrizio fractional derivative. We have also obtained the stability conditions of approx-

imate solution. The present investigation illuminates the effetiveness of the considered deriva-

tive operator. It is seen that the results obtained byiterative Laplace transform method are more

stimulating as compared to results available in the literature. We can conclude from the nu-

merical results that this is very simple, reliable and powerful technique for finding approximate

solutions of many fractional physical models arise in applied sciences.
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