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Abstract. In this paper, we consider an appropriate bootstrapped version of the estimators of the

stochastic differential equation. The theoretical aspects are studied and some examples are given.
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1. Introduction.

The stochastic differential equation (SDE) is a necessary tool for analyzing random

phenomena occurring in engineering, finance and physics. The SDE’s, however, suffer from

existence of some unknown parameters, in practice. There are several perfect methods

to estimate these parameters and the limiting distributions of estimators are well studied

see Iacus (2008) and references therein. It is known that the bootstrap is a very good

method to derive the finite sample approximations of distributions of estimators. In this

paper, we consider the bootstrapping the estimators of SDE’s parameters.

Consider the one-dimensional SDE {xt}0≤t≤1 defined by

dxt = a(t, xt; θ)dt+ b(t, xt; θ)dwt,
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with non-random initial value x0 = a, where wt is standard Brownian motion on (0,1)

and θ is the vector of unknown parameters. We suppose that global Lipschitz and linear

growth assumptions are hold for a(t, x; θ), b(t, x; θ), as functions of x, when θ is assumed

to be fixed. These assumption guarantee that the solution of above SDE exists and it is

unique. Suppose that, using the Euler scheme at ti = i/n, i = 1, ..., n (for some positive

integer n), samples yi = xti are generated, i.e.,

yi − yi−1 = a(ti−1, yi−1; θ)∆ +
√

∆b(ti−1, yi−1; θ)zi,

where ∆ = 1/n and zi =
wti−wti−1√

∆

iid∼ N(0, 1). One can see that the y[nt]+1 approximates

well, as n→∞, the distribution of xt, the solution of SDE. The following theorem states

this fact.

Theorem 1. Given SDE dxt = a(t, xt; θ)dt+b(t, xt; θ)dwt, the Euler solution y[nt]+1 converges

in distribution to xt.

Proof. The y[nt]+1 plays the role of ε(ti) defined in Amano (2005) page 4. Therefore,

following Amano (2005), we conclude that y[n·]+1 ⇒ x· (notation⇒ stands for convergence

in distribution).

At the first glance, this theorem is obvious. Since we generate samples yi from the

xt and we say the distribution of y[nt]+1 is close to the distribution of xt. However, this

theorem helps one to understand that from which SDE the discrete samples are generated.

We use this fact in the bootstrap cases.

To handle the bootstrap method here, based on estimated residuals, the following three

steps are done. The alternative method for bootstrapping is the blockwise bootstrap

method (Lahiri, 2003) which isn’t considered here.

(a) Estimate the vector of unknown parameters θ using a suitable method and derive

the estimated errors ẑi = yi−yi−1−a(ti−1,yi−1;θ̂)∆√
∆b(ti−1,yi−1;θ̂)

.
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(b) Generate a bootstrapped sample {z∗1 , ..., z∗n} form {ẑ1 − ẑ, ..., ẑn − ẑ} where ẑ =

(1/n)
∑n

i=1 ẑi. Then generate y∗i , i = 1, ..., n with y∗0 = a by recursive equation

y∗i = y∗i−1 + a(ti−1, y
∗
i−1; θ̂)∆ +

√
∆b(ti−1, y

∗
i−1; θ̂)z∗i .

Then using the estimation method proposed in (a) and samples y∗i , i = 1, ..., n calculate

θ̂
∗
.

(c) Repeat steps (a) and (b), R times. Then, sample properties of θ̂
∗
r, r = 1, 2, ..., R

approximates the finite sample behavior of θ̂, see Efron and Tibshirani (1993).

It is seen that for 0 ≤ t ≤ 1

y∗[nt] = a+ (1/n)

[nt]∑
i=1

a(ti−1, y
∗
i−1; θ̂) + n−1/2

[nt]∑
i=1

b(ti−1, y
∗
i−1; θ̂)z∗i .

Let x∗n(t) = y∗[nt] and s∗n(t) = n−1/2
∑[nt]

i=1 z
∗
i . We have

x∗n(t) = x∗n(0) +

∫ t

0

a(s, x∗n(s); θ̂)ds+

∫ t

0

b(s, x∗n(s); θ̂)ds∗n(s).

In the following theorem, we obtain the SDE which generates y∗i .

Theorem 2. Given on observations, as n → ∞, x∗n(·) ⇒ x∗(·), the solution of the

following SDE defined by

dx∗t = a(t, x∗t ; ζ)dt+ b(t, x∗t ; ζ)dw∗t ,

where w∗t is standard Wiener process on (0,1).

Proof. Following Bickel and freedman (1981), given on observations, s∗n(·) ⇒ w∗(·).

Given observations, θ̂ =ζ is non-random. Then, following Amano (2005), we conclude

that x∗n(·)⇒ x∗(·).

We call the above differential equation for x∗t as the bootstrapped SDE. This equation

says that if we replace the θ with θ̂ the bootstrapped SDE is made and using the Euler

discretization scheme (or the other methods such as Milstein approach), the bootstrapped
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samples x∗ti = y∗i , i = 1, 2, ..., n are generated. The above argument also says that this

approach is equivalent to the usual bootstrap method proposed by steps (a), (b) and (c).

Remark 1. Suppose that θ̂ is consistent for θ, then it can be shown that x∗n(.) ⇒ xt,

the solution of original SDE. This shows that the proposed bootstrap is asymptotically

valid in the scene that x∗n(·) is a consistent estimate (in probability) of xt.

Remark 2. Note that our bootstrap method is very similar to parametric bootstrap.

For example, to handle the bootstrap method for N(θ, σ2), we first replace θ and σ2

with their estimates and then, given data, we generate re-samples form N(θ̂, σ̂2). A same

procedure is done in our problem as described in above.

2. Examples. In this section, we consider three examples to show that how our

method is done, in applications.

Example 1. Consider the first order continuous autoregressive CAR(1) model as

follows, for 0 ≤ t ≤ 1,

dxt = αxtdt+ σdwt,

where α is a real negative number and σ is positive. Both of them are unknown. The

least square estimation of α is given by

α̂ = (

∫ 1

0

xtdxt)/(

∫ 1

0

x2
tdt).

For n discrete observations, for instance, xt1 , ..., xtn ; ti = i/n; the α̂ is approximated by

(n
∑n

i=2 xti−1
(xti−xti−1

))/
∑n

i=2 x
2
ti−1

. An estimate for σ2 is given by

σ̂2 = (1/n)
n∑
i=1

e2
ti
,

where eti = xti−xti−1
− (α̂/n)xti−1

(see Brockwell et al. (2007)). By substituting α̂ and σ̂

in the original CAR(1) the following boostrapped CAR(1) is obtained

dx∗t = α̂x∗tdt+ σ̂dw∗t ,
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where w∗t is standard Brownian motion on (0,1). Given data, α̂ and σ̂ are fixed and by

applying the discretization method to the bootstrapped SDE, the bootstrapped samples

are extracted. Therefore, all the known applications of bootstrap can be performed here.

Example 2. It is seen that max0<t<1wt
d
= |N | where N has standard normal distri-

bution N(0, 1) and the argmax0<t<1wt is distributed as arcsine law. The argmax of a

stochastic process is a time point at which the mentioned stochastic process attains its

maximum. The question is what are the distributions of maxt xt and argmaxtxt where xt

is solution of a SDE? Some results can be found in Abundo (2008). Specially, when the

SDE involves some unknown parameters, the problem is more difficult. In this case, our

method can be applied. Here, we report results of some simulation study. We consider the

SDE dxt = a(t, xt; θ)dt+ b(t, xt; θ)dwt on t ∈ [0, 1] with deterministic initial value x0 = 1

and θ = (θ1, θ2)
′

= (−0.2, 0.5), (2, 2), (0.2, 0.75) for illustration purpose. We let n = 100

and the mean (m) and standard deviation (std) of maxt xt and argmaxtxt is simulated by

bootstrap method based on B = 1000 replications. The discretization method is Euler

scheme. The drift and diffusion coefficients are a(t, x; θ) = θ1

√
x, b(t, x; θ) = θ2x for Table

1 and they are a(t, x; θ) = θ1x, b(t, x; θ) = θ2x in Table 2. The parameters are estimated

using maximum likelihood procedure.

Table 1: Simulation results, a(t,x;θ)=θ1
√
x, b(t,x;θ)=θ2x

(θ1, θ2) (θ̂1, θ̂2) m(arg) std(arg) m(max) std(max)

(-0.2, 0.5) (-0.18, 0.45) 0.3433 0.3323 1.308 0.3543

(2, 2) (1.89, 2.05) 0.5482 0.3327 7.192 12.762

(0.2, 0.75) (0.19, 0.78) 0.4856 0.3419 1.872 1.0916

Table 2: Simulation results, a(t,x;θ)=θ1x, b(t,x;θ)=θ2x

(θ1, θ2) (θ̂1, θ̂2) m(arg) std(arg) m(max) std(max)

(-0.2, 0.5) (-0.21, 0.48) 0.3308 0.3191 1.286 0.3423

(2, 2) (1.93, 2.15) 0.2974 0.3462 10.249 26.875

(0.2, 0.75) (0.2, 0.81) 0.4711 0.3533 1.9142 1.1532
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Example 3. In Example 2, we mentioned that max0<t<1wt
d
= |N |. Therefore,

(maxtwt)
2 has chi-square distribution with one degree of freedom, χ2

(1). In this exam-

ple, using the mentioned bootstrap method, we approximate tail probabilities of cU at

which U =(max0<t<1 xt)
2 by tail of a χ2

(r) distribution where

dxt = θ1xdt+ θ2dwt.

Here, c is a positive parameter and the degree of freedom r is a non-integer positive

unknown parameter. We first replace (θ1, θ2) by their estimates (θ̂1, θ̂2) and dx∗t is con-

structed. Then using a bootstrap based on B = 1000 replications the mean (µ) and

variance (v) of U are approximated. The moment estimates of c and r are 2µ/v and

2µ2/v, respectively. Let α = 0.85(0.01)0.99 and qα denotes the α-th empirical quantile of

cU and Fr denotes the cumulative distribution function of χ2
(r) random variable. If the

chi-square approximation fits well then the errors e(α) = |Fr(qα)−α| should be negligible.

The following table gives the values of maximum (max) and median (med) of e(α) over

α = 0.85(0.01)0.99. It also reports the values of c and r as well as (θ̂1, θ̂2). It is seen that

our approximation distribution works well for tail probabilities of cU.

Table 3: Simulation results of chi-square distribution fitting to cU

(θ1, θ2) (θ̂1, θ̂2) max med c r

(0.2, 0.75) (0.18, 0.83) 0.00384 0.00155 1.5142 4.753

(2, 2) (1.93, 2.15) 0.00801 0.00192 0.0122 1.284
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