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Abstract. In this paper, a computational method is presented for solving a class of singularly perturbed

Volterra integro-di¤erential boundary-value problems with a boundary layer at one end. The implemented

technique consists of solving two problems which are a reduced problem and a boundary layer correction

problem. The Pade�approximation technique is used to satisfy the conditions at in�nity. Theoretical

and numerical results are presented.
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1. Introduction

Many physical phenomena and engineering problems are governed by mathematical

models involving ordinary di¤erential equations with a very small positive parameter

multiplying the highest order derivative thus leading to singularly perturbed boundary-

value problems.
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For examples; applications related to geophysical �uid dynamics problems, �uid dy-

namics in particular boundary layer types, studies of edge e¤ect in elastic shells, mod-

eling oceanic and atmospheric circulation, chemical reactors theory, convection di¤usion

processes, and optimal control; among many other areas of applied mathematics and en-

gineering. For many years; singularly perturbed boundary value problems have drawn the

attention of many researchers and practitioners who devised various techniques for their

numerical solutions; among them the works in [1]-[5].

The numerical solution of these problems is very challenging as the dependence on the

small positive parameter causes the solution to vary very fast over parts of the domain and

slowly over others. This creates narrow layers where the solutions of the given problems

exhibit abrupt jumps followed by layers where normal behavior of the solutions dominates.

This phenomenon requires careful examination of the technique to be used to tackle such

problems. Hence; it is important to seek robust and e¢ cient computational methods which

will accurately produce the solutions and inherit the properties of the exact solutions of

the original problems.

Interests in accurately approximating the solutions of singularly perturbed boundary

value problems have been the focus of attention of many scientists. There are numerous

special purpose techniques to adequately deal with singularly perturbed boundary value

problems; for example the work in [2], [3], [6], [7] and [8]. Most of the attention was given

to problems governed by second order di¤erential equations. However e¤orts have been

made to devised special numerical techniques for higher order di¤erential equations for

example [9]-[13].

In this paper the numerical solution of a class of non-linear Volterra integro-di¤erential

type of singularly perturbed problems is considered; namely

(1) ��y00(x) + u(x; y)y0(x) +
xZ
0

K(x; t)v(t; y)dt = f(x); x 2 (0; 1);

(2) y(0) = �; y(1) = �;
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where � > 0 is a small positive parameter, �; � are given constants, and u(x; y), v(x; y), f(x)

are su¢ ciently smooth functions with respect to the corresponding variables. Additional

conditions on the functions u(x; y), v(x; y), and f(x) will be added later in the paper.

Motivated by the work in [14], [15], and [16] and the proposed method therein; an ex-

tension is presented in this paper with the aim to address a class of nonlinear Volterra

integro-di¤erential singularly perturbed equation.

In section 2 of this paper; some relevant analytical results are presented and the max-

imum principle for the problem in hand is discussed. Section 3; presents the concept

underlying the proposed method; namely the concept of reduced problem and boundary

layer correction. In section 4; numerical results for a number of examples are presented

and discussed.

2. Analytical Results

In this section, three important theorems are presented which are the maximum princi-

ple, the stability result, and the uniqueness result. Firstly problem (1)-(2) is transformed

into an equivalent problem as follows:

Py : = ��y00(x) + u(x; y)y0(x) +
xZ
0

K(x; t)v(t; y)dt = f(x); x 2 (0; 1);(3)

y(0) = �; y(1) = �:(4)

The following conditions are needed in order to guarantee that problem (3)-(4) does not

have turning-point problem;

�k2 � u(x; y) � �k1(5)

0 � v(x; y) � �k3;(6)

K(x; t) � k4 � 0;(7)

for all x 2 [0; 1]; where k1; k2; k3; and k4 are positive constants and y 2 C2(0; 1) [C[0; 1]:
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Theorem 2.1. (MaximumPrinciple). Consider the boundary value problem (3)-(4)

with the conditions (5)-(7). Assume that P' � 0 in (0; 1),'(0) � 0; and '(1) � 0: Then,

'(x) � 0 in [0,1].

Proof: Assume that the conclusion is false, then '(x) < 0 for some x 2 [0; 1]: Thus,

'(x) has a local minimum at x0 for some x0 2 (0; 1): Thus, '0(x0) = 0 and '00(x0) > 0.

Simple calculations implies that

P'(x0) = ��'00(x0) + u(x0; ')'0(x0) +
x0Z
0

K(x0; t)v(t; ')dt

<

x0Z
0

K(x0; t)v(t; ')dt � 0:

This is a contradiction. Therefore, '(x) � 0 in [0,1].

In the next theorem, the stability result is presented.

Theorem 2.2. (Stability Result). Consider the problem (3)-(4) under the condi-

tions (5)-(7) with u = u(x) and v = v(x). If y(x) is a smooth function, then

(8) kyk = max fjy(x)j : x 2 [0; 1]g � 2a max
�
j�j ; j�j ; max

x2[0;1]
jPyj

�
:

where a = 1 + 1
k2
:

Proof: Following [10] and [11], let

K0 = max

�
j�j ; j�j ; max

x2[0;1]
jPyj

�
= max

�
j�j ; j�j ; max

x2[0;1]
jf(x)j

�
;

and let

s�(x) = 2a K0(1�
x

2
)� y(x); x 2 [0; 1]:

Simple calculations implies that

Ps� = ��(2a K0(1�
x

2
)� y(x))00 + u(x)( 2a K0(1�

x

2
)� y(x))0 +

xZ
0

K(x; t)v(t)dt

= �a K0u(x)� Py > K0 � Py � 0;8x 2 [0; 1]:

Similarly,

s�1 (0) = 2a K0 � � > K0 � � � 0
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and

s�1 (1) = a K0 � � > K0 � � � 0:

From Theorem 2.1, one can conclude that s�(x) � 0 for all x 2 [0; 1]: Thus,

kyk � max
x2[0;1]

n
2a K0(1�

x

2
)
o
� 2a K0 = 2a max

�
j�j ; j�j ; max

x2[0;1]
jPyj

�
; x 2 [0; 1]:

Theorem 2.3. (Uniqueness Result). Consider the problem (3)-(4) under the

conditions (5)-(7) with u = u(x) and v = v(x). If y1 and y2 are two solutions to problem

(3)-(4), then y1(x) = y2(x) for all x 2 [0; 1]:

Proof: Let z(x) = y1(x)� y2(x): Then,

Pz = 0; z(0) = 0; z(1) = 0;

P (�z) = 0;�z(0) = 0;�z(1) = 0

Using Theorem 2.1it follows that z(x) � 0 and z(x) � 0 for all x 2 [0; 1] which means

that y1(x) = y2(x) for all x 2 [0; 1], hence; uniqueness os solution.

3. Reduced and Boundary Layer Correction method

In this section, the implemented approach used in this paper to solve problem (1)-(2)

is presented. This approach consists of two steps. In the �rst step, a reduced problem is

obtained by setting � = 0 in equation (1) to get

(9) u(x; y1)y
0
1(x) +

xZ
0

K(x; t)v(t; y1)dt = f(x); x 2 (0; 1):

Equation (9) is solved with the the following boundary conditions

(10) y1(1) = �:

On most of the interval, the solution of problem (9)-(10) behaves like the solution of

problem (1)-(2). However, there is small interval around x = 0 in which the solution of

problem (9)-(10) does not agree with the solution of problem (1)-(2). To handle this situa-

tion, the boundary layer correction problem is introduced. The stretching transformation
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x = �s is introduced which leads to

dy

dx
=
1

�

dy

ds
and

d2y

dx2
=
1

�2
d2y

ds2
:

Thus, equation (1) becomes

�� 1
�2
d2y

ds2
+
1

�
u(�s; y)

dy

ds
+

�sZ
0

K(�s; t)v(t; y)dt = f(�s)

hence;

(11) �d
2y

ds2
+ u(�s; y)

dy

ds
+ �

�sZ
0

K(�s; t)v(t; y)dt = �f(�s)

Setting � = 0 in equation (11) implies that

�d
2y

ds2
+ u(0; y)

dy

ds
= 0:

Since the solution of the reduced problem (9)-(10) does not satisfy the boundary condition

at x = 0, then solution of the above equation should satisfy it. This means, its solution

has the form y1(0) + y2(x): Substitute y(x) = y1(0) + y2(x) in the above equation to get

boundary layer correction equation

(12) �d
2y2
ds2

+ u(0; y1(0) + y2)
dy2
ds

= 0:

The solution of equation (1) will be expressed in the form

(13) y(x) = y1(x) + y2(
x

�
);

and the boundary conditions (2) must be satis�ed by expression (13). When x = 0; the

condition will be

(14) � = y(0) = y1(0) + y2(0) which implies that y2(0) = �� y1(0):

When x = 1; the condition will be

(15) � = y(1) = y1(1) + y2(
1

�
) which implies y2(

1

�
) = 0:

Since 0 < � << 1, condition (15) can be replaced by;
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(16) Lim
s!1

y2(s) = 0:

The condition at in�nity above can be replaced by y02(0) = �: To obtain the values of �;

we approximate the solution y2(s) using the Pade�approximation as a rational function

of the form

y2(s) �
p(s; �)

q(s; �)
;

where p and q are two polynomials in s: Then equation (15) is solved for �: In the Pade�

approximation, the degree of p is selected to be equal to the degree of q:

4. Numerical results

First, we describe the numerical procedure employed to obtain approximate solution to

the reduced problem (9)-(10). The solution of problem (12)-(16) can be found using

Mathematica through the following steps:

(1) Approximate the solution of y2 by the series solution of the form y2(s) =
1X
k=0

aks
k

with the a0 = �� y1(0) and a1 = �:

(2) Substituting the series solution into equation (12).

(3) Approximating y2(s) using the Pade�approximation of order [m;m] to obtain
p(s;�)
q(s;�)

:

(4) To �nd �;solve the equation Lim
s!1

p(s;�)
q(s;�)

= 0:

Next, to �nd the solution of problem (9)-(10), the interval [0; 1] is discretized with the

nodes xi = ih; h = 1
n
; n 2 N: Let y1;k � y1(xk) and uk = u(xk; y1;k) for k = 0 : n: Using

the backward �nite di¤erence method to approximate y01(xk) and using the trapezoidal

quadrature rule to approximate the integral

xkZ
0

K(xk; t)v(t; y1)dt, we obtain the following

nonlinear system of equations

uk
y1;k � y1;k�1

h
+
h

2

k�1X
j=0

[K(xk; xj)v(xj; yj) +K(xk; xj+1)v(xj+1; yj+1)](17)

= f(xk); 1 � k � n:
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Then Mathematica code is used to solve the nonlinear system (17). In order to assess

the accuracy of the technique, several examples are tested. Some of these examples are

presented below:

Example 1: Consider the nonlinear singular Volterra integro-di¤erential boundary-

value problem

��y00(x)� 2y0(x)�
xZ
0

K(x; t)ey(t)dt = f(x); x 2 (0; 1);

subject to

y(0) = y(1) = 0:

where K(x; t) = 1 and f(x) = �2 ln(x+ 1) + 2
x+1
: Following the above discussion, we set

� = 0 to obtain the following reduced problem

�2h01(x)�
xZ
0

eh1(t)dt = �2 ln(x+ 1) + 2

x+ 1
; h1(1) = 0:

It can be easily veri�ed that system (17) has the form

AY1 +Be
Y1 = F

where

A =
1

h

26666666666664

�1 1 0 0 ::: 0

0 �1 1 0 ::: 0
...

. . . . . . . . . . . .
...

... ::: 0 �1 1 0

... ::: ::: 0 �1 1

0 ::: ::: ::: 0 �1

37777777777775
; B =

h

4

266666666666666664

1 1 0 ::: 0 ::: 0

1 2 1
. . . 0 ::: 0

1 2 2
. . . 0 ::: 0

...
...
...
. . . . . . . . .

...
...
...
... ::: 2 1 0

...
...
... ::: 2 2 1

1 2 2 ::: 2 2 2

377777777777777775
;
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Figure 1. Graph of y1(x)

F =

26666666664

f(x1)

f(x2)
...

f(xn�1)

f(xn)� h
4

37777777775
; Y1 =

26666666664

y0

y1
...

yn�2

yn�1

37777777775
:

Using Mathematica code, one can see that the solution for the above system is given by

Figure 1. It is worth mention that y1(0) � y0 = 0:693147. However, using the stretching

transformation x = �s, we have the following boundary layer correction problem

�y002(s)� 2y02(s) = 0; y2(0) = �y1(0) = �0:693147; y02(0) = �:

Simple calculations implies that

(18) y2(s) =
� � �e�2s � 1:38629

2

Approximating (18) using the Pade�approximation of order [5; 5], we have

y2(w) � �y2(s) =
p(s; �)

q(s; �)
;

where

p(s; �) = �0:693147+(��0:693147)x�0:308065x2+1
9
(��0:693147)x3�0:0110023x4+ 1

945
(��0:693147)x5

and

q(s; �) = 1 + x+
4

9
x2 +

1

9
x3 +

1

63
x4 +

1

945
x5:
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Figure 2. y(x) with � = 0:001; 0:00001; 0:0000001

Solving the equation

lim
s!1

p(s; �)

q(s; �)
= � � 0:693147 = 0;

we obtain � = 0:693147.

The graphs of the approximate solutions y for several values of � are displayed in Figure

(2). Obviously, the singularity of the solution at x = 0 is accurately captured by the

present technique.
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Example 2. Consider the nonlinear singular Volterra integro-di¤erential boundary-

value problem

��y00(x)� y2y0(x)�
xZ
0

K(x; t) (y(t))2 dt = f(x); x 2 (0; 1);

subject to

y(0) = �1; y(1) = 6:

where K(x; t) = (x� t)2 and f(x) = �25� 100x��x2 � 25
3
x3 � 5

6
x4 � x5

30
:

The reduced problem is

�y21y01(x)�
xZ
0

K(x; t) (y1(t))
2 dt = f(x); y1(1) = 6:

It can be easily veri�ed that system (17) has the form

y21;k
y1;k � y1;k�1

h
+
h

2

k�1X
j=0

�
rk;j y

2
1;j + rk;j+1 y

2
1;j+1

�
= �f(xk); 1 � k � n:

where

rk;j = (xk � xj)2 = (k � j)2h2:

Using a Mathematica code, the solution for the above system is displayed in Figure 3. It

is worth mention that y1(0) � y0 = 5. From Figure (4), one can deduce that

y1(x) = x+ 5:

The boundary layer correction problem is

(19) �y002(t)� (5 + y2)2y02(t) = 0; y2(0) = �1� y1(0) = �6; y02(0) = �:

To solve problem (19), we approximate the solution of y2 by the series solution of the

form y2(x) =
1X
k=0

akt
k with the a0 = �6 and a1 = �: Substituting the series solution into

equation (19) we get

y2(s) = �6 + �s� �
2
s2 +

1

6
(�2�2)s3 +

1

24
(�� � 8�2 + 2�3)s4 + 1

120
�(1 + 22� + 30�2)s5

+
1

720
�(�1� 52� � 200�2 � 60�3)s6 + �

5040
(1 + 114� + 964�2 + 1040�3 + 60�4)s7 + :::
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Figure 3. Graph of y1(x)

Approximating (19) using the Pade�approximation of order [3; 3] and solving the following

equation

lim
s!1

p(s; �)

q(s; �)
= 0;

we obtain � = 0:405922. The results for di¤erent values of � are given in Figure (4).

Conclusions and remarks:

We will end this section by the following:

(1) The proposed method has accurately depicted the behavior of the solution in the

boundary layer.

(2) Numerical results demonstrated satisfactory stability for di¤erent small values of

the parameter �:

(3) The proposed method is both accurate and e¢ cient.

(4) The proposed method is shown to be an e¢ cient approach in handling the set goal

of solving a class of nonlinear singularity perturbed volterra integro-di¤erential

boundary value problems.
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