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Abstract: To approximate the partial derivative of Linear Hyperbolic Partial Differential Equations (LPHDE), a 

system of compact schemes used at non-boundary nodes. For the spatial discretization of the advection term, instead 

of using the upwind schemes, central difference based compact 4th
 order and conventional 2nd

order schemes are 

experimented. The main aim of the numerical experiments carried out is, to assess the ability of the compact 4th
 order 

scheme in capturing the convection process, in comparison with the conventional 2nd
order scheme. 

Keywords: central difference based compact schemes; linear hyperbolic partial differential equations; incompressible 

fluid flow; explicit scheme; implicit scheme; spatial discretization. 

2010 AMS Subject Classification: 65M20. 

 

1. INTRODUCTION 

The general Linear Hyperbolic Partial Differential Equations is the advection equation. Its 

mathematical form in one-dimension is given by, 
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(1.1) 

It is also called as wave equation, when this equation is used to model the propagation of 

sufficiently small perturbations with a phase speed “a”. Equation (1.1) should be satisfied for the 

distance on the real line.  

It is important to define a initial condition to satisfy the well-posedness of the problem 

and to find a unique solution. One of the distinguishing feature of this equation is that, the 

solution is constant along any characteristic curve 
1 0x at− = . In the next two subsections, the 

time and the spatial discretization using the 4𝑡ℎorder compact schemes of the one dimensional 

wave equation and the numerical algorithm to solve the fully discretized equation is explained. 

Herein, the fourth order compact schemes relevant discretize the first order spatial derivative on 

a periodic and non-periodic computational domains are presented. 

The last part of this section, the developed numerical schemes for the equation (1.1) is 

tested on several test problems. Each of the test problems selected represent to a particular 

physical situation, which exhibit an unique dispersive behavior of the quantity being transported 

or propagated. Since, central difference based compact schemes for the first derivative do not 

induce artificial numerical dissipation, itis essential their performance is evaluated more 

rigorously with such linear problems, before employing them for the non-linear PDE. To this end, 

the aim of the numerical experiments is to demonstrate the superiority of the central difference 

based compact 4𝑡ℎorder schemes to model a convection process, in comparison with the central 

difference based 2𝑛𝑑order schemes. 

 

2. TIME DISCRETIZATION OF ONE-DIMENSIONAL ADVECTION EQUATION 

The explicit Adams-Bashforth (AB) method for the skew-symmetric form of the spatial first 

derivative, the time discretized form of the equation (1.1) is given by, 
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The skew-symmetric form of the convection term 
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Appearing in the RHS of the equation (1.2) is nothing but the average of its advection 

and divergence forms. The reason for using skew symmetric form is, to assess the accuracy of 

the compact schemes, developed for this term, because of its importance in the discrete 

conservation of kinetic energy, in the simulation of the incompressible fluid flows. 

 

3. COMPACT SCHEMES FOR SPATIAL DISCRETIZATION OF ONE DIMENSIONAL 

ADVECTION EQUATION ON PERIODIC COMPUTATIONAL DOMAIN 

 At boundary nodes 0  and 
1x

 are known, the partial derivative, 
1

f

x




 approximated on 

uniform grid at
i , where ( )

1
1........ 1xi N= − . The coefficients in the matrix representation is 

given by, 

                          
[ ]   [ ]x x x RA F B f=

                         
(1.3) 

Where 
xA and

xB represent the matrices of the coefficients and 
xF ,

Rf represent the column 

vectors of  non-boundary values in LHS and RHS respectively. 

Using equation (1.3), to compute the values of 
1

f

x




at the ( ) -  1

th
n and thn time levels are 

deduced respectively as, 

                 
1 1 1  [ ]n n

x x x RF A B f− − −
  =

                            
(1.4) 

and 

                    
1  [ ]n n

x x x RF A B f−
  =

                            
(1.5) 

Compact schemes to interpolate the values of the function, f on the non-boundary nodes, 

at 
i where, ( )

1
1........ 1xi N= − located on one-dimensional structured Cartesian uniform grid 
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(Figure 1.1) is given by, 
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(1.6c) 

The above equations solved simultaneously, with the known values of the function, f on 

the left boundary node, at
0 and some guessed values on the non-boundary nodes, at

i where, 

( )
1

1........ 1xi N= − . Using Taylor series expansion the values of the coefficients involved in the 

equation (1.6) are given in the Table 1.1. Equation (1.6) is in matrix form of given by, 

                            
[ ]   [ ]x x x RA f B f=

                            
(1.7) 

where,
xA and

xB represent the coefficient matrices and 
xf , 

Rf represent the column 

vectors of equations (1.6a) -(1.6c) 

 Similarly, Using equation (1.7), to find the values of the function, f at the ( ) -  1
th

n and thn

time levels as, 

                   

-1
1 1= [ ] [ ]

n
n

x x x Rf A B f− −

                               
(1.8) 

and  

                  
1= [ ] [ ]

n
n

x x x Rf A B f−

                                  
(1.9) 

The calculations in the equations (1.8) or (1.9) involve tri-diagonal matrix and a matrix 

vector multiplication. 

A system of compact schemes to approximate the partial derivative,
( )

1

af

x




on the right 

boundary node and on the non-boundary nodes along the one-dimensional Cartesian uniform grid 

(Figure 1.2) are given by, 
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(1.10c) 

The above (1.10a) - (1.10c) are simultaneously solved on the non-boundary nodes using 

the known values of the function f . Using Taylor series expansion, the coefficient values 

involved in the equation (1.10) are given in the Table 1.2 

The equation (1.10) represented in matrix form is given by, 

                            
x x x RA F B f   

   
=

                           
(1.11) 

Where, xA and xB represent the matrices of the coefficients of equations (1.10a) - (1.10c) 

and xF , 
Rf represent the column vectors of values. 

Using equation (1.11), to compute the partial derivative 
( )

1

af

x




 values of at the ( ) -  1

th
n

and thn time levels as, 

                               

11 1n n

x x x RF A B f
−− −

   
   

=
                    

(1.12) 

and 
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(1.13) 
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Figure 1.1: One-dimensional structured Cartesian uniform grid used to approximate the function 

value, f at the
i locations, using the known function value, f at the

i locations on a periodic 

domain 

Table 1.1: Values of the coefficients in the equations (1.6a) - (1.6c) 

____________________________________________________________

Values of the coefficients in the LHS   Values of the coefficients in the RHS

____________________________________________________________

1
=

.0

6.0

2.0
=

3.0

1.0
=

6.0

_____________________________________________________________





− − − −

− − − −

 

 

Figure 1.2: One-dimensional structured Cartesian uniform grid used to approximate the 

divergence form of the convection term 
( )

1

af

x




on a periodic domain 
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Table 1.2: Values of the coefficients in the equations (1.10a) - (1.10c) 

____________________________________________________________

Values of the coefficients in the LHS   Values of the coefficients in the RHS

____________________________________________________________

1
=

.0

22.0

12.0
=

11.0

1.0
=

22.0

_____________________________________________________________





− − − −

− − − −

− − − −

 

 

4. ALGORITHM TO SOLVE THE FULLY DESCRETIZED ONE-DIMENSIONAL ADVECTION 

EQUATION ON PERIODIC COMPUTATIONAL DOMAIN 

The summation of the terms in the RHS of the equation (1.2) corresponding to the right boundary 

node, at
1x

N and the non-boundary nodes, at
i where, ( )

1
1........ 1xi N= − are carried out, using the 

known values of the partial derivatives 
1

f

x




, 

( )

1

af

x




and the function f . After storing the RHS 

value and function value in the equation (1.2) corresponding to each node of interest in the column 

vector
RC and

Rf respectively, the function value at the ( )1
th

n+ time level is computed, in a straight 

forward manner and is given as, 

                             
1n n

R Rf C+ =
                                 

(1.14) 

It is worth mentioning that, during the first iteration of the time evolution of the solution, 

the calculations in the RHS of the equation (1.2) are carried out, by setting as equal, the values of 

the function at the ( )-1
th

n and thn time levels. In the subsequent iterations of the time marching, the 

value of the function at the thn time level is assigned as the function value at ( )-1
th

n time level and 

the value of the function computed during current time step (i.e. at the ( )1
th

n+ time level) is 

assigned as the function value at thn time level. The solution is marched in time, by solving the 
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equation (1.2) recursively, for the succeeding time steps, following the steps as discussed above. 

 

Figure 1.3: Uniform grid to calculate the function value, f at 
i locations, using the known value 

of the function at the 
i locations on a non-periodic domain 

 

Figure 1.4: Uniform grid used to approximate the convection term 
( )

1

af

x




on a non-periodic 

Computational Domain 

 

5. ALGORITHM TO SOLVE THE FULLY DISCRETIZED ONE-DIMENSIONAL ADVECTION 

EQUATION ON NON-PERIODIC COMPUTATIONAL DOMAIN 

The terms in the RHS of the equation (1.2) to the non-boundary nodes, at 
i where,

( )
1

1........ 1xi N= − are carried out, using the known values of the partial derivatives 
1

f

x




, 

( )

1

af

x





and the function f . 

Using the equation (1.2) corresponding to each node of interest in the column vector 
Rc

and 
Rf respectively, the function value at the ( )1

th
n+ time level is computed, in a straight 

forward manner and is given as, 

                             
1n n

R Rf c+ =
                                   

(1.15) 
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6. TEST PROBLEMS 

The exact solutions of these problems satisfy the PDE, subjected to an initial and a Dirichlet 

boundary condition. In the case of numerical scheme developed for the LHPDE, the time 

discretization is carried out using a fully explicit Euler method. 

 

PROBLEM 1: 

        

( )
( )

( )
2

1

1 1, 0.5exp ln 2 , 20 420, 1, 1
3

x at
f x t x x a

 −
= − −    = = 

 
             

(1.16a) 

with the initial condition given by, 

                  

( )
( )

( )
2

1

1,0 0.5exp ln 2
3

x
f x

 
= − 

 
                             

(1.16b) 

and the boundary condition given by, 

                

( )
( )

( )
2

20
20, 0.5exp ln 2

3

at
f t

 − −
− = − 

 
                         

(1.16c) 

Where, a  is the wave propagation speed. Herein, the interest is to examine the nature of 

the wave profile at the time 400t = , after it is convected to a distance of 
1 400x = . In the 

numerical experiments carried out on this problem, the values of the grid spacing and the wave 

propagation speed, a are fixed, as one unit. This in turn means, the CFL number is equal to the 

value of the time step, used in the calculation. 

There are two numerical experiments carried out on this problem. In the first problem, the 

convection of the wave profile in a non-periodic computational domain with 0.0005CFL = , 

subjected to the initial and the boundary condition, given by the equations (1.16b) and (1.16c), 

respectively is simulated. In the second problem, the convection of the wave profile in a periodic 

domain, subjected to the boundary condition of ( ) ( )20, 450,f t f t− = and the initial condition, 

given by the equation (1.16b) is simulated.  
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RESULTS 

In the Figure 1.5, the exact solution and the numerical solutions are compared based on the 

compact 4th order and the conventional 2nd order schemes is presented. 

Similarly, in the Figure 1.6, the exact solution and the numerical solutions are compared 

based on the compact 4th order and the conventional 2nd order schemes with the exact solution is 

presented. From these figures, it is found that, the solution obtained by imposing periodic 

boundary condition is identical, with the same, produced by imposing non-periodic boundary 

conditions. This finding, confirms the correct implementation of the periodic tridiagonal algorithm, 

in the solver. 

From this numerical experiment, it is found that, the usage of compact 4th order central 

scheme, to approximate the spatial first derivatives in the wave equation, confirms, its good 

dispersion preserving character. Generally, in such propagation problems, if the central difference 

based schemes are used to approximate the first derivatives, it will cause spurious oscillations in 

the solutions, due to the inherent dispersion error. This behavior is proved correct, with the 

solutions arrived, using the 2nd
order central scheme. Rather, the solution arrived using the 

compact schemes shows only mild oscillations, along with only a small dampening in the 

amplitude. This numerical behavior proves its ability to maintain better trade-off between the 

dispersion and dissipation error than the 2nd
order schemes. 
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Figure 1.5: (a) Nature of wave profile at 400t = obtained by imposing non-periodic boundary 

condition.
 

 

Figure 1.5: (b) Truncated view of the wave profile between 
1 300x = and 

1 450x =
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Figure 1.6: (a) Nature of wave profile at 400t = obtained by imposing non-periodic boundary 

condition.
 

 

Figure 1.6: (b) Truncated view of the wave profile between 
1 300x = and 

1 450x =
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PROBLEM 2: 

            
( ) ( )1 1 1, 0.5 cos 10 ,0 1, 0.05f x t x at x a= −   =                     (1.17a) 

with the boundary condition given by, 

                        
( )0, 0f t =                                      (1.17b) 

and the initial condition given by, 

                       
( ) ( )1 1,0 0.5 cos 10f x x=                            (1.17c) 

Where, a is the wave propagation speed. The exact solution given by the equation (1.17a) 

represents a cosine profile of periodicity  
1

5  
and amplitude 0.5 . Ideally, in the case of wave 

equation, if the scalar quantity is defined on only one boundary, it means, it is entering the domain 

through the inflow boundary. In the meantime, if there is no boundary condition is imposed on the 

other boundary, it means, the scalar quantity leaves the domain through the outflow boundary, 

without any distortion or reflection. In this particular problem, a sudden discontinuity in the 

solution is introduced at the in let of the domain (i.e.) at 
1 0x = . As the cosine wave is propagating 

at a phase speed of 0.05 , the discontinuity travels, along with the wave at this particular speed and 

leaves the domain, at 20t = . During the course of passing through the domain, the discontinuity 

introduces, spurious oscillations in the wave propagation. But it is physically expected, that these 

spurious oscillations are damped out, after the wave passes through the domain. That is, after 

several cycles, the wave must be seen along the length of the domain without any oscillations. 

Therefore, the objective of this numerical simulation is to assess and compare the stability 

of the compact 4th
order and the conventional 2nd

order schemes. The numerical parameters for 

this problem are as follows: For the given wave speed, a very low CFL number of 45x10− is 

considered, by selecting the grid spacing value as 0.01 . The time integration is performed for a 

long time of 100t = . The solutions obtained at different time intervals, viz.,

10,25,30,60 and 100t = plotted over the length of the domain is shown, in the Figure 1.7. 
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RESULTS: 

From these graphs, it is clear that, at 10,25and 30t = , spurious oscillations are more persistent in 

the domain, for the solution produced using 2nd order scheme, when compared to that of the 4th

order scheme. It is because, in addition to the inherent oscillations in the solution, caused by the 

imposed discontinuity, the high dispersion error of the second order scheme, induces additional 

oscillatory behavior, in the wave propagation. The oscillation in the wave propagation is meager. 

However, the dissipation induced by this scheme in the solution is not sufficient to suppress the 

oscillations due to the discontinuity. At 60 and 100t t= = , the solutions based on both the 

schemes, oscillate very close to the 0f = line. But one distinct feature about the compact scheme 

is that, after the time 20t = at which, the wave leaves the domain, the oscillations observed at the 

intervals 10,25,30,60 and 100t = fluctuate very close to the 0f = line. Whereas, at these 

intervals the solutions produced using the second order scheme show significant fluctuation about 

the 0f =  line. From this numerical simulation, the better stability and dispersion preserving 

capability of the compact scheme based numerical solution, in the long time integration of a wave 

propagation phenomenon is demonstrated. 
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Figure 1.7: (a) Nature of wave profile at 10t = . 

 

Figure 1.7: (b) Nature of wave profile at 25t = . 
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Figure 1.7: (c) Nature of wave profile at 30t = . 

 

 

Figure 1.7: (d) Nature of wave profile at 60t = . 
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Figure 1.7:(e)  Nature of wave profile at 100t =  
 

 

7. CONCLUSION 

As per the above two numerical experiments, In the first problem it is found that, the usage of 

compact 4th
order central scheme, to approximate the spatial first derivatives in the wave equation, 

confirms, its good dispersion preserving character. If the central difference based schemes are used 

to approximate the first derivatives, it will cause spurious oscillations in the solutions, due to the 

inherent dispersion error. This behavior is proved correct, with the solutions arrived, using the 2nd

order central scheme. Rather, the solution arrived using the compact schemes shows only mild 

oscillations, along with only a small dampening in the amplitude. In the second problem it is clear 

that, at 10,25and 30t = , spurious oscillations are more persistent in the domain, for the solution 

produced using 2nd
order scheme, when compared to that of the 4th

order scheme.  
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