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Abstract. A set Dh of vertices in a graph G = (V,E) is a hinge dset if every vertex u in V −Dh is adjacent to some

vertex v in Dh and a vertex w in V −Dh such that (v,w) is not an edge in E. The hinge domination number γh(G)

is the minimum size of a hinged dset. In this paper we determine hinge domination number γh(G) for standard

graphs and some shadow distance graphs.
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1. INTRODUCTION

A graph G = (V,E), we mean a finite, nontrivial and undirected graph without loops and

multiple edges. The concept of a dset is well known in graph theoretic literature and various

domination parameters have been studied. A set Dh of vertices in G is called a hinge dominating

set [1] if every u ∈V −Dh is adjacent to some vertex v ∈Dh and a vertex w in V −Dh such that
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(v,w) is not an edge in E. The hinge domination number γh(G) [1] is the minimum size of a

hinge dominating set. Throughout this paper we will denote dominating set by dset.

Let D be the set of all possible distances in G = (V,E) and let Ds ⊂ D. The distance graph

associated with G denoted by D(G,Ds) [7] is the graph with vertex set V and two vertices u and

v are adjacent in it if d(u,v) ∈ Ds. The shadow distance graph of G, denoted by Dsd(G,Ds) is

obtained from G by considering two copies of G namely G itself and G
′

such that if u ∈ V (G)

then the corresponding vertex u
′

is in V (G
′
) and E(Dsd(G,Ds)) = E(G)∪E(G

′
)∪EDS where

EDS consists of the set of all edges of the form e = (u,v
′
) with the condition d(u,v) ∈ Ds in G.

In this paper we determine the hinge domination number for some standard graphs and

shadow distance graphs. We also show that the hinge domination number of the cycle graph

provided in [1] is incorrect and provide the exact value.

2. MAIN RESULTS

We begin this section with the following result which gives the condition for a minimal hinge

dset.

Theorem 2.1. A hinge dset Dh is minimal if and only if for every v ∈ Dh, one of the following

condition holds:

(i) deg(v) = 0 in Dh

(ii) ∃ a vertex u in V −Dh such that N(u)∩Dh = {v}.

(iii) < (V −Dh)∪{v}> is connected

Proof. For every u ∈ Dh, if Dh−{u} is not a hinge dset in G, it follows that either u is an

isolated vertex of Dh or there exists a vertex v ∈V −Dh such that N(v)∩Dh = {u}. Further, for

v ∈ Dh, it is clear that the induced graph of [(V −Dh)∪{v}] is connected.

Conversely, if Dh is not minimal, there exist u ∈ Dh such that Dh−{u} is also a hinge dset.

Thus, for at least one v ∈ Dh−{u} there is a path between u and v in G. This contradicts

condition (i). Also, If Dh−{v} is a hinge dset, then every u ∈ V −Dh is adjacent to at least

one vertex in Dh−{v}, so that condition (ii) also fails. Now, let us consider v ∈ Dh such that v

does not satisfy conditions (i) and (ii). Then from conditions (i) and (ii), Dh1 = Dh−v is hinge
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dset. Also by condition (iii), <V −Dh > is disconnected, so that Dh1 is a hinge dset of G. This

contradicts condition (iii). Hence the proof. �

Theorem 2.2. For any graph G, γh(G)≥ n+1
∆(G)+1 .

Proof. Let Dh be a minimum hinge dset of G and the number of edges t in G having one v ∈Dh

and the other in V −Dh. Since ∆(G) ≥ degv ∀ v ∈ Dh. For every v ∈ Dh has at least one

unique neighbor in Dh, t ≤ γh(G).∆(G)−1. Also t ≥ |V −Dh| = n− γh(G). Hence n− γh(G)≤

∆(G)γh(G)−1. This gives γh(G)≥ n+1
∆(G)+1 . �

Theorem 2.3. For any graph G = (V,E) such that |V |= p and |E|= q, p−q≤ γ(G)≤ γh(G).

Proof. Suppose q ≥ p− 1, then 1 ≥ p− q since γh(G) ≥ 1, γh(G) ≥ p− q. So assume q ≤ p

then G has atleast p−q components. At least one vertex per component is requried in any hinge

dset. Therefore p−q≤ γ(G)≤ γh(G). �

Theorem 2.4. For any graph G, d p
1+4(G)

e ≤ γ(G)≤ γh(G).

Proof. Let Dh be a hinge dset of G. Each vertex dominates atmost itself and 4(G) other ver-

tices. From the proof of the theorem, it follows that γ(G) =
p

1+4(G)
= γh(G) if and only if

γh set Dh such that N[u]∩N[v] = φ for all u,v ∈ Dh and |N(v)| = 4(G) for all v ∈ Dh. For

example, the cycle C6 has γ(G) = 2 = γh(G) and
p

1+4(G)
= 2. �

Theorem 2.5. Let Dh be a hinge dset of G such that |Dh| = γh(G). Then |V (G)−D| ≤ deg(v).

Proof. Let Dh be a hinge dset of G, then |degv− degu| ≤ 1 ∀ v ∈ Dh,u ∈ V −Dh and every

vertex v ∈ V −Dh is adjacent to one vertex in Dh. Hence each vertex in V −Dh contributes at

least one to the sum of degrees of the vertex of Dh. Hence |V (G)−D| ≤ deg(v) �

The following result is from [1] related to the cycle graph Cn.

Proposition 2.2 For n≥ 3, γh(Cn)=


k i f n = 3k

k+1 i f n = 3k+1

k+2 i f n = 3k+2

.

From this result, it is clear that γ(C3) = 1. As a counter example we observe that the graph

C3 illustrated in figure 1 has hinge domination number 3.



ON HINGE DOMINATION IN GRAPHS 5673

FIGURE 1. γh(C3) = 3, Dh ={v1,v2,v3}

We now provide the correct value of γh(Cn) in our next result.

Theorem 2.6. If n≥ 3, then γh(Cn) =



2 n = 4,6

3 n = 3,5

n
3 , n≡ 0(mod3)

dn
3e, n≡ 1(mod3)

dn
3e+1, n≡ 2(mod3)

Proof. Let V (Cn) = {vi|1≤ i≤ n} and E(Cn)= {ei|1≤ i≤ n} where ei = (vi,vi+1), i = 1,2, .....n,

where computation is under modulo n.

If n = 4 and 6, the sets Dh ={v1,v2} and Dh ={v2,v5} are minimal so that γh(G) = 2. Also,

for n = 3 and 5, the set Dh ={v1,v2,v3} is minimal so that γh(G) = 3. Let n> 7. Then, for

case(i): n = 3i+4, i = 1,2,3 . . . , we consider the set Dh = {v3s−2}, 1≤ s≤ dn
3e.

case(ii): n = 3 j+5, j = 1,2,3 . . . , we consider the set Dh = {v3t−2}∪{vn−1}∪{vn}, 1≤ t ≤

dn
3e−1.

and for

case(iii): n = 3k+6, k = 1,2,3 . . . , we consider the set Dh = {v3r−2}, 1≤ r ≤ n
3 .

It is clear that the sets Dh in cases (i),(ii) and (iii) are minimal hinge dsets. Thus, some

vertex v ∈ Dh is adjacent to only one vertex u ∈V −Dh and not to any other vertex.
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Therefore, since |Dh| =



2 n = 4,6

3 n = 5

n
3 , n≡ 0(mod3)

dn
3e, n≡ 1(mod3)

dn
3e+1, n≡ 2(mod3)

,

we immediately obtain γh(Cn) =



2 n = 4,6

3 n = 5

n
3 , n≡ 0(mod3)

dn
3e, n≡ 1(mod3)

dn
3e+1, n≡ 2(mod3)

.

Hence the proof.

�

For the path graph Pn, the following result can be found in [1].

Proposition 2.2 γh(Pn) =


2, n = 2

k+2, n = 3k

dn−1
3 e+1, n 6= 3k

In the next theorem, a modified version of this result is provided.

Theorem 2.7. If n≥ 3, then γh(Pn) =


n
3 +2, n≡ 0(mod3)

dn
3e, n≡ 1(mod3)

dn
3e+1, n≡ 2(mod3)

Proof. Let V (Pn) = {vi/1 ≤ i ≤ n} and E(Pn)= {ei/1 ≤ i ≤ n− 1} where ei = (vi,vi+1), i =

1,2, .....n−1, where computation is under modulo n.

If n = 3 and 4, the sets Dh = {v1,v2,v3} and Dh = {v1,v4} are minimal so that γh(P3) = 3 and

γh(P4) = 2 respectively. Let n> 5. Then, for

case(i): n = 3i+2, i = 1,2,3 . . . , we consider the set Dh = {v3s−2}∪{vn}, 1≤ s≤ dn
3e.
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case(ii): n = 3 j+3, j = 1,2,3 . . . , we consider the set Dh = {v3t−2}∪{vn−1}∪{vn}, 1≤ t ≤ n
3 .

and for

case(iii): n = 3k+4, k = 1,2,3 . . . , we consider the set Dh = {v3r−2}, 1≤ r ≤ dn
3e.

It is clear that the sets Dh in cases (i),(ii) and (iii) are minimal hinge dsets. Thus, some

vertex v ∈ Dh is adjacent to only one vertex u ∈V −Dh and not to any other vertex.

Therefore, since |Dh| =


n
3 +2, n≡ 0(mod3)

dn
3e, n≡ 1(mod3)

dn
3e+1, n≡ 2(mod3)

,

we immediately obtain γh(Pn) =


n
3 +2, n≡ 0(mod3)

dn
3e, n≡ 1(mod3)

dn
3e+1, n≡ 2(mod3)

Hence the proof. �

We now determine the hinge domination number for some shadow distance graphs.

Theorem 2.8. If n≥ 2, then γh(D2{Pn}) =


2 n = 2

n−1 n≥ 3

Proof. Let V (Pn)= {vi/1 ≤ i ≤ n} and V (P
′
n) = {v′i/{vi/1 ≤ i ≤ n}. Let E(Pn) = {ei/1 ≤ i ≤

n−1} and E(P
′
n)= {e

′
i/1≤ i≤ n−1}, where ei = (vi,vi+1), e

′
i = (v

′
i,v
′
i+1) for i = 1,2, .....n−1.

Let G = (D2{Pn,}).

If n = 2, Dh ={v1,v
′
2} is minimal so that γh(G) = 2.

Let n≥ 3

Consider Dh = {v2 j−1} ∪ {v
′
2k}, where 1 ≤ j ≤ bn

2c, 1 ≤ k ≤ n
2 − 1, when n is even and

1≤ k ≤ bn
2c when n is odd

If Dh is not a hinge dset of G, there exists a vertex v ∈Dh such that Dh1 = Dh−{v} is a hinge

dset of G and also, < V −Dh > is disconnected. This implies that Dh1 is a hinge dset of G,

which contradicts condition (iii). Therefore, Dh is minimal and since

|Dh| =


2, n = 2

n−1, n≥ 3
, so that γh(D2{Pn}) =


2, n = 2

n−1, n≥ 3
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Hence the proof.

�

Theorem 2.9. If n≥ 3, then γh(D2{Cn}) =


2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +4, n≡ 2(mod3)

Proof. Let V (Cn)= {vi/1≤ i≤ n} and V (C
′
n) = {v′i/{vi/1≤ i≤ n}. Let E(Cn) = {ei/1≤ i≤ n}

and E(C
′
n)= {e

′
i/1 ≤ i ≤ n}, where ei = (vi,vi+1) and e

′
i = (v

′
i,v
′
i+1) for i = 1,2, .....n, where

computation is under modulo n.

Let G = (D2{Cn}).

Let n≥ 3. Then, for

case(i): n = 3a, a = 1,2,3 . . . , we consider the set Dh = {v3 j−2}∪{v
′
3k−2}, 1≤ j,k ≤ n

3 .

case(ii): n = 3b+1, b = 1,2,3 . . . , we consider the set Dh = {v3 j−2}∪{v
′
3k−2}, 1≤ j,k≤ dn

3e

and for

case(iii): n = 3c+2, c = 1,2,3 . . . , we consider the set Dh = {v3 j−2}∪{v
′
3k−2}∪{vn}∪{v

′
n},

1≤ j,k ≤ dn
3e.

If Dh is not a hinge dset of G, there exists a vertex v ∈Dh such that Dh1 = Dh−{v} is a hinge

dset of G and also, < V −Dh > is disconnected. This implies that Dh1 is a hinge dset of G,

which contradicts condition (iii). Therefore, Dh is minimal and since

|Dh| =


2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +4, n≡ 2(mod3)

,

so that γh(D2{Cn}) =


2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +4, n≡ 2(mod3)

Hence the proof.

�
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Theorem 2.10. If n≥ 3, then γh(Dh{Pn,{2}}) =


2 n = 3

3 n = 4

n−1 n≥ 5

Proof. Let V (Pn)= {vi/1 ≤ i ≤ n} and V (P
′
n) = {v′i/{vi/1 ≤ i ≤ n}. Let E(Pn) = {ei/1 ≤ i ≤

n−1} and E(P
′
n)= {e

′
i/1≤ i≤ n−1}, where ei = (vi,vi+1), e

′
i = (v

′
i,v
′
i+1) for i = 1,2, .....n−1.

Let G = (Dsd{Pn,{2}}).

If n = 3,4 , the sets Dh = {v1,v
′
1} and Dh = {v1,v4,v

′
2} are minimal so that γh(G) = 2 and 3

respectively

Let n≥ 5

Consider Dh = {v2 j−1} ∪ {v
′
2k+1} , where 1 ≤ j ≤ bn

2c, 1 ≤ k ≤ n
2 − 1 where n is even ,

1≤ k ≤ bn
2c where n is odd.

Let Dh is not hinge dset of G, there exists a vertex v ∈ Dh, then Dh1 = Dh− v is dset of G,

also < V −Dh > is disconnected. This implies that Dh1 is a hinge dset of G, This contradicts

condition (iii).

Therefore, Dh is minimum and

|Dh| =


2 n = 3

3 n = 4

n−1 n≥ 5

, so that γh(Dh{Pn,{2}}) =


2 n = 3

3 n = 4

n−1 n≥ 5
Hence the proof. �

Theorem 2.11. if n≥ 4, then γh(Dh{Cn,{2}}) =


2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

Proof. Let V (Cn)= {vi/1≤ i≤ n} and V (C
′
n) = {v′i/{vi/1≤ i≤ n}. Let E(Cn) = {ei/1≤ i≤ n}

and E(C
′
n)= {e

′
i/1 ≤ i ≤ n}, where ei = (vi,vi+1) and e

′
i = (v

′
i,v
′
i+1) for i = 1,2, .....n, where

computation is under modulo n.

Let G = (Dsd{Cn,{2}}).

Let n≥ 4. Then for
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case(i): n = 3a+1, a = 1,2,3 . . . , we consider the set Dh = {v3 j−2}∪{v
′
3k}∪{v

′
n}, 1 ≤ j ≤

dn
3e, 1≤ k ≤ bn

3c

case(ii): n = 3b+2, b = 1,2,3 . . . , we consider the set Dh = {v3 j−2}∪{v
′
3k−2}, 1≤ j,k≤ dn

3e

and for

case(iii): n = 3c+3, c = 1,2,3 . . . , we consider the set Dh = {v3 j−2}∪{v
′
3k−2}, 1≤ j,k ≤ n

3

Let Dh is not hinge dset of G, there exists a vertex v ∈ Dh, then Dh1 = Dh− v is dset of G,

also < V −Dh > is disconnected. This implies that Dh1 is a hinge dset of G, This contradicts

condition (iii).

Therefore, Dh is minimal and

|Dh| =


2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

,

so that γh(Dh{Cn,{2}}) =


2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

Hence the proof. �

Theorem 2.12. If n≥ 4, then γh(Dh{Pn,{3}}) =



4, n = 4,5

2n
3 , n≡ 0(mod3)

2(n−1)
3 +1, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

Proof. Let G = (Dsd{Pn,{3}}).

If n = 4,5 , the set Dh = {v1,v4,v
′
1,v

′
4} is minimal so that γh(G) = 4.

Let n≥ 6. Then for

case(i): n = 3a+ 1, a = 1,2,3 . . . , we consider Dh = {v3 j−2}∪ {v
′
3k}∪ {v

′
n}, 1 ≤ j ≤ dn

3e,

1≤ k ≤ bn
3c

case(ii): n = 3b+2, b = 1,2,3 . . . , we consider Dh = {v3 j}∪{v
′
3k−2}, 1≤ j≤bn

3c, 1≤ k≤dn
3e

and for

case(iii): n = 3c+3, c = 1,2,3 . . . , we consider Dh = {v3 j}∪{v
′
3k−2}, 1≤ j,k ≤ n

3
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Let Dh is not hinge dset of G, there exists a vertex v ∈ Dh, then Dh1 = Dh− v is dset of G,

also < V −Dh > is disconnected. This implies that Dh1 is a hinge dset of G, This contradicts

condition (iii).

Therefore, Dh is minimal and

|Dh| =



4, n = 4,5

2n
3 , n≡ 0(mod3)

2(n−1)
3 +1, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

,

so that γh(Dh{Pn,{3}}) =



4, n = 4,5

2n
3 , n≡ 0(mod3)

2(n−1)
3 +1, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

Hence the proof �

Theorem 2.13. If n≥ 6, then γh(Dh{Cn,{3}}) =



4, n = 6

2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

Proof. Let G = (Dsd{Cn,{3}}).

If n = 6, Dh = {v1,v4,v
′
1,v

′
4} is minimal so that γh(G) = 4.

Let n≥ 7. Then for

case(i): n = 3a+ 4, a = 1,2,3 . . . , we consider Dh = {v3 j−2}∪ {v
′
3k}∪ {v

′
n}, 1 ≤ j ≤ dn

3e,

1≤ k ≤ bn
3c

case(ii): n = 3b+5, b = 1,2,3 . . . , we consider Dh = {v3 j−2}∪{v
′
3k−2}, 1≤ j,k ≤ dn

3e

and for

case(iii): Let n = 3c+6, c = 1,2,3 . . . , we consider Dh = {v3 j−2}∪{v
′
3k−2}, 1≤ j,k ≤ n

3

Let Dh is not hinge dset of G, there exists a vertex v ∈ Dh, then Dh1 = Dh− v is dset of G,

also < V −Dh > is disconnected. This implies that Dh1 is a hinge dset of G, This contradicts

condition (iii).
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Therefore, Dh is minimal and

|Dh| =



4, n = 6

2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

,

so that γh(Dh{Cn,{3}}) =



4, n = 6

2n
3 , n≡ 0(mod3)

2(n−1)
3 +2, n≡ 1(mod3)

2(n−2)
3 +2, n≡ 2(mod3)

�

3. CONCLUSION

In this paper, the hinge domination number of some standard graphs and shadow distance

graphs related to the path and cycle graphs is determined. The hinge domination number related

to the cycle Cn which was provided in [1] is corrected and, a more generalized result for the

hinge domination number of the path Pn is provided.
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