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Abstract: The objective of this chapter is to analyze the effect of mass transfer on unsteady hydromagnetic free 

convective flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous plate in 

presence of constant suction and heat source. The governing equations of the flow field are solved using Galerkin 

finite element method and approximate solutions are obtained for velocity field, temperature field, concentration 

distribution, skin friction and the rate of heat and mass transfer. The numerical results for some special cases were 

compared with Das et al. [7] and were found to be in good agreement. The effects of the flow parameters such as 

Hartmann number (M), Grashof number for heat and mass transfer (Gr, Gc), Permeability parameter (Kp), Schmidt 

number (Sc), Heat source parameter (S), Prandtl number (Pr) and Eckert number (Ec) on the flow field are analyzed 

with the help of figures. The problem has some relevance in the geophysical and astrophysical studies. 

Keywords: hydromagnetic; mass transfer; free convection; porous medium; suction; heat source; Galerkin finite 
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1. INTRODUCTION 

The phenomenon of hydromagnetic flow with heat and mass transfer in an electrically 

conducting fluid past a porous plate embedded in a porous medium has attracted the attention 

of a good number of investigators because of its varied applications in many engineering 

problems such as MHD generators, plasma studies, nuclear reactors, oil exploration, 

geothermal energy extractions and in the boundary layer control in the field of aerodynamics. 

Heat transfer in laminar flow is important in problems dealing with chemical reactions and in 

dissociating fluids. 

In view of its wide applications, Hasimoto [8] initiated the boundary layer growth on a flat plate 

with suction or injection. Soundalgekar [17] showed the effect of free convection on steady 

MHD flow of an electrically conducting fluid past a vertical plate. Yamamoto and Iwamura [18] 

explained the flow of a viscous fluid with convective acceleration through a porous medium. 

Mansutti et al. [12] have discussed the steady flow of a non-Newtonian fluid past a porous plate 

with suction or injection. Jha [9] analyzed the effect of applied magnetic field on transient free 

convective flow in a vertical channel.  

Chandran et al., [2] have discussed the unsteady free convection flow of an electrically 

conducting fluid with heat flux and accelerated boundary layer motion in presence of a 

transverse magnetic field. Acharya et al. [1] have reported the problem of heat and mass transfer 

over an accelerating surface with heat source in presence of suction and blowing. The unsteady 

free convective MHD flow with heat transfer past a semi-infinite vertical porous moving plate 

with variable suction has been studied by Kim [10]. Singh and Thakur [16] have given an exact 

solution of a plane unsteady MHD flow of a non- Newtonian fluid. Sharma and Pareek [14] 

explained the behaviour of steady free convective MHD flow past a vertical porous moving 

surface. Singh et al., [15] have analyzed the effect of heat and mass transfer in MHD flow of a 

viscous fluid past a vertical plate under oscillatory suction velocity. Makinde et al. [11] 

discussed the unsteady free convective flow with suction on an accelerating porous plate. Sarangi 

and Jose [13] studied the unsteady free convective MHD flow and mass transfer past a vertical 

porous plate with variable temperature. Das et al., [3] estimated the mass transfer effects on 

unsteady flow past an accelerated vertical porous plate with suction employing finite difference 

analysis. Das et al. [4] investigated numerically the unsteady free convective MHD flow past an 

accelerated vertical plate with suction and heat flux. Das and Mitra [5] discussed the unsteady 
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mixed convective MHD flow and mass transfer past an accelerated infinite vertical plate with 

suction.  

Recently, Das et al. [6] analyzed the effect of mass transfer on MHD flow and heat 

transfer past a vertical porous plate through a porous medium under oscillatory suction and heat 

source. More recently, Das et al. [7] investigated the hydromagnetic convective flow past a 

vertical porous plate through a porous medium with suction and heat source. The study of stellar 

structure on solar surface is connected with mass transfer phenomena. Its origin is attributed to 

difference in temperature caused by the non - homogeneous production of heat which in many 

cases can rest not only in the formation of convective currents but also in violent explosions. 

Mass transfer certainly occurs within the mantle and cores of planets of the size of or larger than 

the earth. In the present study we therefore, propose to analyze the effect of mass transfer on 

unsteady free convective flow of a viscous incompressible electrically conducting fluid past an 

infinite vertical porous plate with constant suction and heat source in presence of a transverse 

magnetic field. This paper basically highlights the effect of mass transfer on hydromagnetic flow 

in presence of suction and heat source. 

 

2. MATHEMATICAL FORMULATION 

Consider the unsteady free convective mass transfer flow of a viscous incompressible electrically 

conducting fluid past an infinite vertical porous plate in presence of constant suction and heat 

source and transverse magnetic field. Let the x′ - axis be taken in vertically upward direction 

along the plate and y′ - axis normal to it. The physical sketch and geometry of the problem is 

shown in figure A. Within the above framework, the equations which govern the flow under the 

usual Boussinesq’s approximation are as follows  
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Energy Equation: 
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Concentration Equation: 
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The boundary conditions of the problem are: 
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Introducing the following non-dimensional variables and parameters, 
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where EcKSGcGrScDCCCCTTkg ppwwo ,,,,,Pr,,,,,,,,,,,,,,,,,, ''''*

  and 

M are respectively the acceleration due to gravity, density, electrical conductivity, coefficient of 

kinematic viscosity, volumetric coefficient of expansion for heat transfer, volumetric coefficient 

of expansion for mass transfer, angular frequency, coefficient of viscosity, thermal diffusivity, 

temperature, temperature at the plate, temperature at infinity, concentration, concentration at the 

plate, concentration at infinity, specific heat at constant pressure, molecular mass diffusivity, 

Prandtl number, Schmidt number, Grashof number for heat transfer, Grashof number for mass 

transfer, heat source parameter, permeability parameter, Eckert number and Hartmann number. 

Substituting (6) in equations (2), (3) and (4) under boundary conditions (5), we get: 
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The corresponding boundary conditions are: 
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3. METHOD OF SOLUTION 

By applying Galerkin finite element method for equation (7) over the element (e), ( kj yyy  ) 

is: 
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Integrating the first term in equation (11) by parts one obtains 
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Neglecting the first term in equation (12), one gets: 
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  Where prime and dot denotes differentiation w.r.t ‘y’ and time ‘t’ respectively. Assembling the 

element equations for two consecutive elements 
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Now put row corresponding to the node ‘i’ to zero, from equation (13) the difference schemes 

with hl e =)( is: 
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Applying the trapezoidal rule, following system of equations in Crank-Nicholson method are 

obtained: 
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Now from equations (8) and (9), following equations are obtained:  
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Where  A1 = 2 + 4Ak + 12rk – 24r; A2 = 16Ak + 48r + 8; A3 = 2 + 4Ak - 12rh - 24r; 

A4 = 2 - 4Ak - 12rh + 24r; A5 = 8 – 16Ak – 48r; A6 = 2 - 4Ak + 12rh + 24r;              

            G1 = 2(Pr) + 12rh(Pr) – S(Pr)k – 24r; G2 = 8(Pr) + 48r – 4S(Pr)k;  

            G3 = 2(Pr) - 12hr(Pr) - 24r – S(Pr)k; G4 = 2(Pr) - 12rh(Pr) + 24r + S(Pr)k;  

G5 = 8(Pr) – 48r + 4S(Pr)k; G6 = 2(Pr) + 12rh(Pr) + 24r + S(Pr)k; 

J1 = 2(Sc) + 12rh(Sc) - 24r; J2 = 8(Sc) + 48r; J3 = 2(Sc) – 12rh(Sc) - 24r;  

J4 = 2(Sc) – 12rh(Sc) + 24r; J5 = 8(Sc) - 48r;  J6 = 2(Sc) + 12rh(Sc) + 24r;; 
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Here r = 
2h

k
  and h, k are mesh sizes along y - direction and time - direction respectively. Index 

‘i’ refers to space and ‘j’ refers to the time. In the equations (15), (16) and (17) taking i = 1(1) n 

and using boundary conditions (10), then the following system of equations are obtained: 

3)1(1== iBXA iii                                              (18)  

Where '

iA s are matrices of order n and 
iX , '

iB s are column matrices having n-components. The 

solutions of above system of equations are obtained by using Thomas algorithm for velocity, 

temperature and concentration. Also, numerical solutions for these equations are obtained by                          

C - programme. In order to prove the convergence and stability of Galerkin finite element 

method, the same C - programme was run with smaller values of h and k and no significant 

change was observed in the values of u, θ and C. Hence the Galerkin finite element method is 

stable and convergent. 
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Shear Stress and Rate of Heat and Mass Transfer: 

The skin friction at the plate in the direction of velocity is given by 
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Mass transfer coefficient (Sh) at the plate is 
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4. RESULTS AND DISCUSSION 

The effect of mass transfer on unsteady free convective flow of a viscous incompressible 

electrically conducting fluid past an infinite vertical porous plate with constant suction and heat 

source in presence of a transverse magnetic field has been studied. The governing equations of 

the flow field are solved by applying Galerkin finite element method and approximate solutions 

are obtained for velocity field, temperature field, concentration distribution, skin friction and rate 

of heat and mass transfer. The effects of the pertinent parameters on the flow field are analyzed 

and discussed with the help of velocity profiles (figures 1 - 5), temperature profiles (figures 6 - 8) 

and concentration distribution (figure 9). To be more realistic, during numerical calculations we 

have chosen the values of Pr = 0.71 representing air at Co20 , Sc = 0.60 representing H2O vapour, 

Gr > 0 corresponding to cooling of the plate and S > 0 representing heat source.  

Velocity field: 

The velocity of the flow field is found to change more or less with the variation of the 

flow six parameters. The major factors affecting the velocity of the flow field are Hartmann 

number M, Permeability parameter Kp, Grashof number for heat and mass transfer (Gr, Gc); and 

Heat source parameter S. The effects of these parameters on the velocity field have been 

analyzed with the help of figures 1 - 5.   
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 The effect of the Hartmann number (M) is shown in figure (1). It is observed that the 

velocity of the fluid decreases with the increase of the magnetic field number values. The 

decrease in the velocity as the Hartmann number (M) increases is because the presence of a 

magnetic field in an electrically conducting fluid introduces a force called the Lorentz force, 

which acts against the flow if the magnetic field is applied in the normal direction, as in the 

present study. This resistive force slows down the fluid velocity component as shown in figure 

(1). Figure (2) shows the effect of the permeability of the porous medium parameter Kp on the 

velocity distribution. As shown, the velocity is increasing with the increasing dimensionless 

porous medium parameter. The effect of the dimensionless porous medium Kp becomes smaller 

as Kp increase. Physically, this result can be achieved when the holes of the porous medium may 

be neglected. 

The temperature and the species concentration are coupled to the velocity via Grashof 

number Gr and Modified Grashof number Gc as seen in equation (7). For various values of 

Grashof number and Modified Grashof number, the velocity profiles ‘u’ are plotted in figures (3) 

and (4). The Grashof number Gr signifies the relative effect of the thermal buoyancy force to the 

viscous hydrodynamic force in the boundary layer. As expected, it is observed that there is a rise 

in the velocity due to the enhancement of thermal buoyancy force. Also, as Gr increases, the 

peak values of the velocity increases rapidly near the porous plate and then decays smoothly to 

the free stream velocity. The Modified Grashof number (Gc) defines the ratio of the species 

buoyancy force to the viscous hydrodynamic force. As expected, the fluid velocity increases and 

the peak value is more distinctive due to increase in the species buoyancy force. The velocity 

distribution attains a distinctive maximum value in the vicinity of the plate and then decreases 

properly to approach the free stream value. It is noticed that the velocity increases with 

increasing values of the Modified Grashof number.  

Figure (5) shows the collective effects of heat source parameter S for conducting air                           

(Pr = 0.71) in the case of cooling plate (Gr > 0), i.e., the free convection currents convey heat 

away from the plate into the boundary layer. With an increase in S from 0.0 to 0.9, there is a 

clear increase in the velocity, i.e., the flow is accelerated. When heat is generated, the buoyancy 

force increases, which accelerates the flow rate and thereby giving, rise to the increase in the 

velocity profiles. These velocity profiles are closely agreed with existed results of Das et al. [7].  
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 Temperature field: 

The temperature of the flow field suffers a substantial change with the variation of the 

flow parameters such as Prandtl number Pr, Eckert number Ec and Heat source parameter S. 

These variations are shown in figures (6) – (8). The temperature profiles are in good agreement 

with those of Das et al. [7]. In figure (6) we depict the effect of Prandtl number (Pr) on the 

temperature field. It is observed that an increase in the Prandtl number leads to decrease in the 

temperature field. Also, temperature field falls more rapidly for water in comparison to air and 

the temperature curve is exactly linear for mercury, which is more sensible towards change in 

temperature. From this observation it is conclude that mercury is most effective for maintaining 

temperature differences and can be used efficiently in the laboratory. Air can replace mercury, 

the effectiveness of maintaining temperature changes are much less than mercury. However, air 

can be better and cheap replacement for industrial purpose. This is because, either increase of 

kinematic viscosity or decrease of thermal conductivity leads to increase in the value of Prandtl 

number (Pr). Hence temperature decreases with increasing of Prandtl number (Pr).  

The temperature profiles θ are depicted in figures (7) and (8) for different values of 

Eckert number Ec and Heat source parameter S. The fluid temperature attains its maximum value 

at the plate surface, and decreases gradually to free stream zero value far away from the plate. It 

is seen that the fluid temperature increases with a rise in Ec. In the present study, we restrict our 

attention to the positive values of Ec, which corresponds to plate cooling, i.e., loss of heat from 

the plate to the fluid. Also, we note that increasing Ec causes an increase in Joule heating as the 

magnetic field adds energy to the fluid boundary layer due to the work done in dragging the fluid 

Therefore, the fluid temperature is noticeably enhanced with an increase in S from 0.0 to 0.9. 

This increase in the temperature profiles is accompanied by the simultaneous increase in the 

thermal boundary layer thickness. 

 Concentration distribution: 

The effect of Schmidt number (Sc) on the concentration field is presented in figure (9). 

Figure (9) shows the concentration field due to variation in Schmidt number (Sc) for the gasses 

Hydrogen, Helium, Water-vapour, Oxygen and Ammonia. It is observed that concentration field 

is steadily for Hydrogen and falls rapidly for Oxygen and Ammonia in comparison to Water-

vapour. Thus Hydrogen can be used for maintaining effective concentration field and Water-

vapour can be used for maintaining normal concentration field.  
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Skin friction: 

The values of skin friction at the wall against Kp for different values of Hartmann 

number M and heat source parameter S are shown in the figures (10) and (11) respectively. From 

figure (10), it is observed that a growing Hartmann number M reduces the skin friction at the 

wall for a fixed value of the permeability parameter due to the action of Lorentz force in the flow 

field. It is further observed from figure (11) that heat source parameter S enhance the skin 

friction at the wall. Our observation for skin friction agrees with those of Das et al. [7]. 

Rate of heat and mass transfer: 

The rate of heat transfer at the wall varies with the variation of Hartmann number M, Heat 

source parameter S against Prandtl number Pr are shown in the figures (12) and (13). From 

figure (12), we observe that a growing heat source parameter increases the magnitude of the rate 

of heat transfer at the wall. Further, it is observed that from figure (13) that an increase in 

Hartmann number reduces its value for a given value of Prandtl number due to the magnetic pull 

of the Lorentz force acting on the flow field. These variations agree with those of Das et al. [7] 

with a little deviation for all the values of M. The rate of mass transfer at the wall varies with the 

variation of Schmidt number Sc against y is shown in the figure (14). From figure (14), we 

observe that a growing Schmidt number decreases the magnitude of the rate of heat transfer at 

the wall.  In order to ascertain the accuracy of the numerical results, the present results are 

compared with the existed results of Das et al., [7] for different values of M in the figure (15). 

They are found to be in a good agreement. 

 

5. CONCLUSIONS 

We summarize below the following results of physical interest on the velocity, 

temperature and the concentration distribution of the flow field and also on the wall shear 

stress and rate of heat transfer at the wall. 

1. A growing Hartmann number retards the velocity of the flow field at all points. 

2. The effect of increasing Grashof number for heat and mass transfer or heat source 

parameter is to accelerate velocity of the flow field at all points. 

3. The velocity of the flow field increases with an increase in permeability parameter and 

heat source parameter. 
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4. A growing Eckert number or heat source parameter increases temperature of the flow 

field at all points. 

5. The Prandtl number Pr increases the temperature of the flow field at all points 

6. The effect of increasing Schmidt number is to reduce the concentration boundary layer 

thickness of the flow field at all points. 

7. A growing Hartmann number reduces the skin friction at the wall while a growing heat 

source parameter reverses the effect against the permeability parameter. 

8. The effect of increasing heat source parameter is to increase the magnitude of the rate 

of heat transfer at the wall. On the other hand, a growing Hartmann number reduces its 

value for a given value of Prandtl number due to the magnetic pull of the Lorentz force 

acting on the flow field. 

9. The effect of increasing Schmidt number is to decrease the magnitude of the rate of 

mass transfer at the wall. 

10. In order to ascertain the accuracy of the numerical results, the present results are 

compared with the existed results of Das et al., [7] for velocity, temperature, 

concentration, skin friction, rate of heat and mass transfer. They are found to be in a good 

agreement. 
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Figure A. Physical sketch and geometry of the problem 
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 Figure 1. Velocity profiles against y for different values of M with Gr = 5.0,                       

Gc = 5.0, Pr = 0.71, Sc = 0.60, Kp = 1.0, S = 0.1, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = 

π/2.  

 

 

Figure 2. Velocity profiles against y for different values of Kp with Gr = 5.0,                        

Gc = 5.0, Pr = 0.71, Sc = 0.60, M = 1.0, S = 0.1, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  
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Figure 3. Velocity profiles against y for different values of Gr with Gc = 5.0,                                 

Kp = 1.0, Pr = 0.71, Sc = 0.60, M = 1.0, S = 0.1, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  

 

 

Figure 4. Velocity profiles against y for different values of Gc with Gr = 5.0,                                  

Kp = 1.0, Pr = 0.71, Sc = 0.60, M = 1.0, S = 0.1, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  
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Figure 5. Velocity profiles against y for different values of S with Gr = 5.0, Gr = 5.0                                     

Kp = 1.0, Pr = 0.71, Sc = 0.60, M = 1.0, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  

 

 

 

Figure 6. Temperature profiles against y for different values of Pr with Gr = 5.0,                           

Gr = 5.0, Kp = 1.0, Sc = 0.60, Ec = 0.002, M = 1.0, S = 0.1, ε = 0.2, ω = 1.0 and              

ωt = π/2.  
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Figure 7. Temperature profiles against y for different values of S with Gr = 5.0,                         

Gr = 5.0, Kp = 1.0, Pr = 0.71, Sc = 0.60, M = 1.0, Ec = 0.002, ε = 0.2, ω = 1.0 and        ωt 

= π/2.  

 

 

Figure 8. Temperature profiles against y for different values of Ec with Gr = 5.0,                    

Gr = 5.0, Kp = 1.0, Pr = 0.71, Sc = 0.60, M = 1.0, S = 0.1, ε = 0.2, ω = 1.0 and             ωt 

= π/2.  
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Figure 9. Concentration profiles against y for different values of Sc with Gr = 5.0,                       

Gr = 5.0, Kp = 1.0, Pr = 0.71, Ec = 0.002, M = 1.0, S = 0.1, ε = 0.2, ω = 1.0 and               

ωt = π/2.  

 

 

Figure 10. Skin friction profiles against Kp for different values of M with Gr = 5.0,                   

Gr = 5.0, Pr = 0.71, Sc = 0.60, S = 0.1, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  
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Figure 11. Skin friction profiles against Kp for different values of S with Gr = 5.0,                     

Gr = 5.0, Pr = 0.71, Sc = 0.60, M = 1.0, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  

 

 

Figure 12. Rate of heat transfer (Nu) against Pr for different values of M with Gr = 5.0, 

Gr = 5.0, Kp = 1.0, Sc = 0.60, S = 0.1, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  
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Figure 13. Rate of heat transfer (Nu) against Pr for different values of S with Gr = 5.0, Gr 

= 5.0, Kp = 1.0, Sc = 0.60, M = 1.0, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  

 

 

Figure 14. Rate of mass transfer (Sh) against y for different values of Sc with Gr = 5.0,          

Gr = 5.0, Kp = 1.0, S = 0.1, M = 1.0, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2.  
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Figure 15. Velocity profiles against y for different values of M with Gr = 5.0,                         

Gc = 5.0, Pr = 0.71, Sc = 0.60, Kp = 1.0, S = 0.1, Ec = 0.002, ε = 0.2, ω = 1.0 and ωt = π/2. 
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