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Abstract. Using the idea of quasi-coincidence of a fuzzy point with a fuzzy set, we discuss a new kind of (∈,∈∨q)-

fuzzy prime (semiprime) ideals of near-rings. The concept of (∈,∈ ∨qδ
0 )-fuzzy prime (semiprime) ideals of near-

rings are introduced and some of its related properties are investigated.
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1. INTRODUCTION

In 1965, Zadeh [16] introduced the concept of a fuzzy set. Using this concept, Rosenfeld [15]

defined fuzzy subgroups in 1971. Since then, the study of fuzzy algebraic structure has been

pursued in many directions such as groups, rings, near-rings, modules and so on. Abou-zaid

[1] introduced the concept of fuzzy subnear-rings (ideals) and defined fuzzy prime ideals of

near-rings. The concept of quasi-coincidence of a fuzzy point with a fuzzy set was introduced

by Ming and Ming [14]. Using the idea of quasi-coincidence of a fuzzy point with a fuzzy set,

Bhakat and Das [2] defined different types of fuzzy subgroups called (α,β )-fuzzy subgroups.

In particular, they introduced (∈,∈ ∨q)-fuzzy subgroup as the most viable generalization of
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a fuzzy subgroup defined by Rosenfeld. Narayanan and Manikantan [13] defined (∈,∈ ∨q)-

fuzzy subnear-rings (ideals) of near-rings. The notions of (∈,∈∨qδ
0 )-fuzzy subgroups, qδ

0 -level

sets and (∈ ∨qδ
0 )-level sets were introduced by Jun et al. [9]. The notion of (∈,∈ ∨qδ

0 )-fuzzy

subnear-rings (ideals) of near-rings was introduced by Gangmei and Devi [8]. Using the idea of

quasi-coincidence of a fuzzy point with a fuzzy set, Bhakat and Das [4] defined (∈,∈∨q)-fuzzy

semiprime (prime) of rings. Jian-ming and Davvaz [10] defined (∈,∈ ∨q)-fuzzy prime ideals

of near-rings in the context of a fuzzy point with a fuzzy set. In this paper, (∈,∈ ∨qδ
0 )-fuzzy

semiprime (prime) ideals of near-rings in context of a fuzzy point with a fuzzy set are introduced

and some of its related properties are investigated.

2. PRELIMINARIES

We first recall the definition of a near-ring. A non-empty subset N with two binary operations

“+”(addition) and “·” (multiplication) is called a near-ring if it satisfies the following axioms:

i) (N,+) is a group,

ii) (N, ·) is a semigroup,

iii) (x + y) · z = x · z + y · z ∀ x,y,z ∈ N. It is a right near-ring because it satisfies the right

distributive law. If it satisfies left distributive law it is called left near-ring.

Unless otherwise stated, we shall consider only right near-rings throughout this paper.

Definition 2.1. [1] Let N be a near-ring. A normal subgroup I of (N,+) is called

i) a right ideal if IN ⊆ I,

ii) a left ideal if n(m+ i)−nm ∈ I ∀ n,m ∈ N and i ∈ I,

iii) an ideal if it is both right and left ideal.

An ideal I of a near-ring N is called prime if xy ∈ I⇒ x ∈ I or y ∈ I ∀ x,y ∈ N.

Definition 2.2. [16] A fuzzy set in a set X is a function µ : G→ [0,1].

Definition 2.3. [14] A fuzzy set µ in a set X of the form

µ(y) =

 t ∈ (0,1] if y = x,

0 if y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt .
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Definition 2.4. [14] For a fuzzy point xt and a fuzzy set µ in a set X , we say that

i) xt ∈ µ (resp. xtqµ) if µ(x)≥ t (resp. µ(x)+ t > 1),

ii) xt ∈ ∨qµ if xt ∈ µ or xtqµ .

Definition 2.5. [2],[3] A fuzzy set µ of a group G is said to be an (∈,∈ ∨q)-fuzzy subgroup

of G if ∀ x,y ∈ G and t,r ∈ (0,1],

i) xt ,yr ∈ µ ⇒ (xy)min{t,r} ∈ ∨qµ and

ii) xt ∈ µ ⇒ (−x)t ∈ ∨qµ .

Definition 2.6. [13] A fuzzy set µ of a near-ring N is said to be an (∈,∈ ∨q)-fuzzy subnear-

ring of N if ∀ x,y ∈ N and t,r ∈ (0,1]

i) xt ,yr ∈ µ ⇒ (x+ y)min{t,r} ∈ ∨qµ .

ii) xt ∈ µ ⇒ (−x)t ∈ ∨qµ .

iii) xt ,yr ∈ µ ⇒ (xy)min{t,r} ∈ ∨qµ .

Definition 2.7. [13] A fuzzy set µ of a near-ring N is said to be an (∈,∈ ∨q)-fuzzy ideal of

N if

i) µ is an (∈,∈ ∨q)-fuzzy subnear-ring of N,

ii) xt ∈ µ and y ∈ N⇒ (y+ x− y)t ∈ ∨qµ ,

iii) xt ∈ µ and y ∈ N⇒ (xy)t ∈ ∨qµ ,

iv) at ∈ µ and x,y ∈ N⇒ (y(x+a)− yx)t ∈ ∨qµ ∀ x,y,a ∈ N.

Definition 2.8. [10] An (∈,∈ ∨q)-fuzzy ideal µ of a near-ring N is prime if ∀ x,y ∈ N and

t ∈ (0,1], we have (xy)t ∈ µ ⇒ xt ∈ ∨qµ or yt ∈ ∨qµ .

An (∈,∈ ∨q)-fuzzy ideal µ of a near-ring N is semiprime if ∀ x,y ∈ N and t ∈ (0,1], we have

(x2)t ∈ µ ⇒ xt ∈ ∨qµ .

Jun et al. [9] introduced the concept of δ -quasi-coincidence of a fuzzy point with a fuzzy set

as a generalization of quasi-coincidence of a fuzzy point with a fuzzy set in view of Bhakat and

Das [2]. Let δ ∈ (0,1]. For a fuzzy point xt and a fuzzy set µ in a set X , we say that

•xt is a δ -quasi-coincident with µ , written xtqδ
0 µ , if µ(x)+ t > δ .

•xt ∈ ∨qδ
0 µ , if xt ∈ µ or xtqδ

0 µ .

If δ = 1, then the δ -quasi-coincident with µ is the quasi-coincident with µ , i,e xtq1
0µ = xtqµ .
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Definition 2.9. [8] A fuzzy set µ of a near-ring N is called an (∈,∈ ∨qδ
0 )-fuzzy subnear-ring

of N if ∀ x,y ∈ N and t,r ∈ (0,δ ],

i) xt ∈ µ,yr ∈ µ ⇒ (x− y)min{t,r} ∈ ∨qδ
0 µ and

ii) xt ∈ µ,yr ∈ µ ⇒ (xy)min{t,r} ∈ ∨qδ
0 µ .

Definition 2.10. [8] A fuzzy set µ of a near-ring N is called an (∈,∈ ∨qδ
0 )-fuzzy ideal in N

if ∀ x,a ∈ N and t ∈ (0,δ ],

i) it is an (∈,∈ ∨qδ
0 )-fuzzy subnear-ring of N,

ii) xt ∈ µ,y ∈ N⇒ (y+ x− y)t ∈ ∨qδ
0 µ ,

iii) xt ∈ µ,y ∈ N⇒ (xy)t ∈ ∨qδ
0 µ and

iv) at ∈ µ,x,y ∈ µ ⇒ (y(x+a)− yx)t ∈ ∨qδ
0 µ .

A fuzzy set with condition i), ii), iii) is called an (∈,∈ ∨qδ
0 )-fuzzy right ideal of N and if it

satisfies i), ii), iv), then it is called an (∈,∈ ∨qδ
0 )-fuzzy left ideal of N.

3. MAIN RESULTS

Throughout this section, δ ∈ (0,1].

Definition 3.1. An (∈,∈ ∨qδ
0 )-fuzzy ideal µ of a near-ring N is said to be

i) an (∈,∈ ∨qδ
0 )-fuzzy prime, if ∀ x,y ∈ N and t ∈ (0,δ ],

(xy)t ∈ µ ⇒ xt ∈ ∨qδ
0 µ or yt ∈ ∨qδ

0 µ .

ii) an (∈,∈ ∨qδ
0 )-fuzzy semiprime, if ∀ x ∈ N and t ∈ (0,δ ],

(x2)t ∈ µ ⇒ xt ∈ ∨qδ
0 µ .

Example 3.2. Let N = {0,a,b,c} with (N,+) as the Klein 4-group and (N, .) as given in

table below,

· 0 a b c

0 0 0 0 0

a 0 a a a

b 0 b b b

c 0 c c c
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Then (N,+, ·) is a right near-ring.

Define a fuzzy set µ in N as µ(0) = 0.7,µ(a) = 0.8,µ(b) = 0.6,µ(c) = 0.5. Then µ is an

(∈,∈ ∨qδ
0 )-fuzzy prime of N with δ ∈ (0,1].

Theorem 3.3. An (∈,∈ ∨qδ
0 )-fuzzy ideal µ of a near-ring N is an (∈,∈ ∨qδ

0 )-fuzzy prime if

and only if max{µ(x),µ(y)} ≥ min{µ(xy), δ

2} ∀ x,y ∈ N.

Proof: Let µ be an (∈,∈ ∨qδ
0 )-fuzzy prime.

If possible, let there exist x,y ∈ N such that max{µ(x),µ(y)}< min{µ(xy), δ

2}.

Choose t such that max{µ(x),µ(y)}< t < min{µ(xy), δ

2}. Then

(xy)t ∈ µ but xt∈ ∨qµ and yt∈ ∨qµ which is a contradiction.

Therefore, max{µ(x),µ(y)} ≥ min{µ(xy), δ

2}.

Conversely, suppose max{µ(x),µ(y)} ≥ min{µ(xy), δ

2}.

Let (xy)t ∈ µ , now max{µ(x),µ(y)} ≥ min{µ(xy), δ

2} ≥ min{t, δ

2}.

⇒ max{µ(x),µ(y)} ≥ t if t ≤ δ

2 or max{µ(x),µ(y)}+ t > δ if t > δ

2 .

So, either xt ∈ ∨qδ
0 µ or yt ∈ ∨qδ

0 µ . Hence, µ is an (∈,∈ ∨qδ
0 )-fuzzy prime.

Proposition 3.4. Let µ be an (∈,∈ ∨qδ
0 )-fuzzy prime of a near-ring N, then

i) µ(x)≥ min{µ(xn), δ

2} and

ii) if µ(x)< δ

2 , then µ(x)≥ µ(xn) ∀ n belong to natural number.

Proof: i) Since µ is an (∈,∈ ∨qδ
0 )-fuzzy prime ideal of N,

max{µ(x),µ(x)} ≥ min{µ(xx), δ

2}. This implies that µ(x)≥ min{µ(x2), δ

2}.

Thus, for n = 2 is true. Suppose for n = k is true, that is, µ(x)≥ min{µ(xk), δ

2}.

Now, max{µ(x),µ(xk)} ≥ min{µ(xk+1), δ

2}. If min{µ(xk), δ

2}= µ(xk), then, µ(x)≥ µ(xk).

⇒ max{µ(x),µ(xk)}= µ(x). This gives µ(x)≥ min{µ(xk+1), δ

2}.

If min{µ(xk), δ

2}=
δ

2 , then µ(x)≥ δ

2 ≥ min{µ(xk+1, δ

2}.

⇒ µ(x)≥ min{µ(xk+1), δ

2}. Hence, by principle of mathematical induction,

µ(x)≥ min{µ(xn), δ

2} ∀ n belong to natural number.

ii) If µ(x)< δ

2 , then µ(x)≥ min{µ(xn), δ

2} [by (i)].

⇒ µ(x)≥ µ(xn) ∀ n belong to natural number.

Theorem 3.5. An (∈,∈ ∨qδ
0 )-fuzzy ideal µ of a near-ring N is (∈,∈ ∨qδ

0 )-fuzzy semiprime

if and only if µ(x)≥ min{µ(x2), δ

2} ∀ x ∈ N.
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Proof: Let µ be an (∈,∈∨qδ
0 )-fuzzy semiprime. Let x∈N such that µ(x)< t <min{µ(x2), δ

2}.

Then µ(x2)≥ t. This implies that (x2)t ∈ µ . That is, xt ∈ ∨qδ
0 µ which is a contradiction.

Therefore, µ(x)≥ min{µ(x2), δ

2}.

Conversely, we assume that µ(x)≥ min{µ(x2), δ

2}. Let x ∈ N and (x2)t ∈ µ.

Then µ(x2)≥ t. Now, µ(x)≥ min{µ(x2), δ

2} ≥ min{t, δ

2}.

⇒ µ(x)≥ t if t ≤ δ

2 or µ(x)≥ δ

2 if t > δ

2 .

⇒ µ(x)≥ t if t ≤ δ

2 or µ(x)+ t > δ if t > δ

2 .

Therefore, (x)t ∈ ∨qδ
0 µ . Hence, µ is an (∈,∈ ∨qδ

0 )-fuzzy semiprime.

Definition 3.6. [6] Let µ be a fuzzy set of a group G. Then ∀ t ∈ (0,1], the set µt = {x ∈

G |µ(x)≥ t} is called level set of µ .

Definition 3.7. [5] The subset µ̄t = {x ∈ X |µ(x)≥ t or µ(x)+ t > 1} is called (∈ ∨q)-level

set of X determined by µ and t.

Theorem 3.8. [8] A fuzzy set µ of a near-ring N is an (∈,∈ ∨qδ
0 )-fuzzy subnear-ring (ideal)

of N if and only if the levet set µt is a subnear-ring (ideal) of N ∀ t ∈ (0, δ

2 ] and δ ∈ (0,1].

Collorary 3.9. [13] A fuzzy set µ of a near-ring N is an (∈,∈ ∨q)-fuzzy subnear-ring(ideal)

of N if and only if the levet set µt is a subnear-ring(ideal) of N ∀ t ∈ (0,0.5].

Theorem 3.10. An (∈,∈ ∨qδ
0 )-fuzzy ideal µ of a near-ring N is (∈,∈ ∨qδ

0 )-fuzzy prime if

and only if µt is a prime ideal ∀ t ∈ (0, δ

2 ] and δ ∈ (0,1].

Proof: Let µ be an (∈,∈ ∨qδ
0 )-fuzzy prime.

Then by Theorem 3.8., µt is an ideal of N ∀ t ≤ δ

2 .

Let xy ∈ µt . Since µ is an (∈,∈ ∨qδ
0 )-fuzzy prime, by Theorem 3.3.,

max{µ(x),µ(y)} ≥ min{µ(xy), δ

2} ≥ min{t, δ

2}= t.

Then µ(x)≥ t or µ(y)≥ t. This implies that x ∈ µt or y ∈ µt .

Hence, µt is a prime ideal.

Conversely, let µt be a prime ideal. Then by Theorem 3.8.,

µ is an (∈,∈ ∨qδ
0 )-fuzzy ideal of N. Let (xy)t ∈ µ , then xy ∈ µt .

⇒ x ∈ µt or y ∈ µt .[since µt is a prime].

⇒ µ(x)≥ t or µ(y)≥ t.

⇒ xt ∈ µ or yt ∈ µ.
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⇒ xt ∈ ∨qδ
0 µ or yt ∈ ∨qδ

0 µ.

Therefore, µ is an (∈,∈ ∨qδ
0 )-fuzzy prime.

If t > δ

2 , then µt may not be a prime ideal.

Example 3.11. Let N = {0,a,b,c} be a near-ring with (N,+) as the Klein 4-group and (N, .)

as given in table below,

· 0 a b c

0 0 0 0 0

a a a a a

b 0 0 0 0

c a a a a

Define a fuzzy set µ in N as µ(0) = 0.7,µ(a) = 0.8,µ(b) = 0.6,µ(c) = 0.5.

Then µ is an (∈,∈ ∨qδ
0 )-fuzzy prime ideal of N with δ ∈ (0,1].

When t = 0.65 > δ

2 ,µt = {0,a}. Then µt is an ideal of N,

but µt is not a prime ideal since c ·b = a ∈ µt but c 6∈ µt and b 6∈ µt .

Collorary 3.12. [13] An (∈,∈ ∨q)-fuzzy ideal µ of a near-ring N is prime if and only if the

level set µt is a prime ideal of N ∀ t ∈ (0,0.5].

Theorem 3.13. An (∈,∈ ∨qδ
0 )-fuzzy ideal µ of a near-ring N is an (∈,∈ ∨qδ

0 )-fuzzy

semiprime if and only if µt is a semiprime ideal ∀ t ∈ (0, δ

2 ].

Proof is similar to the proof of Theorem 3.10.

Definition 3.14. [9] Let µ be a fuzzy set of a group G. Then the subset µ̄δ
t = {x∈G; µ(x)≥ t

or µ(x)+ t > δ} is called (∈ ∨qδ
0 )-level set of G.

Theorem 3.15. [8] A fuzzy set µ of a near-ring N is an (∈,∈ ∨qδ
0 )-fuzzy ideal of N if and

only if µ̄δ
t (6= φ) is an ideal of N ∀ t ∈ (0,δ ] and δ ∈ (0,1].

Theorem 3.16. [10] A fuzzy set µ of a near-ring N is an (∈,∈ ∨q)-fuzzy ideal of N if and

only if µ̄t(6= φ) is an ideal of N ∀ t ∈ (0,1].

Theorem 3.17. A fuzzy set µ of a near-ring N is an (∈,∈ ∨qδ
0 )-fuzzy prime of N if and only

if µ̄δ
t (6= φ) is a prime ideal of N ∀ t ∈ (0,δ ].

Proof: Let µ be an (∈,∈ ∨qδ
0 )-fuzzy prime of N.
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Then by Theorem 3.15., µ̄δ
t is an ideal of N ∀ t ∈ (0,δ ].

Let xy ∈ µ̄δ
t . Then µ(xy)≥ t or µ(xy)+ t > δ . This implies that (xy)t ∈ µ or (xy)tqδ

0 µ .

Case 1. Let (xy)t ∈ µ .

a) if t > δ

2 , then max{µ(x),µ(y)} ≥ min{µ(xy), δ

2} ≥ min{t, δ

2}=
δ

2

⇒ max{µ(x),µ(y)}+ t > δ .

⇒ µ(x)+ t > δ or µ(y)+ t > δ .

⇒ x ∈ µ̄δ
t or y ∈ µ̄δ

t .

b) if t ≤ δ

2 , then max{µ(x),µ(y)} ≥ min{µ(xy), δ

2} ≥ min{t, δ

2}= t

⇒ µ(x)≥ t or µ(y)≥ t

⇒ x ∈ µ̄δ
t or y ∈ µ̄δ

t .

Case 2. Let µ(xy)< t and µ(xy)+ t > δ .

a) if µ(xy) ≤ δ

2 , then max{µ(x),µ(y)}+ t ≥ min{µ(xy), δ

2}+ t = µ(xy)+ t > δ , implies that

µ(x)+ t > δ or µ(y)+ t > δ . That is, x ∈ µ̄δ
t or y ∈ µ̄δ

t

b) if µ(xy)> δ

2 , then max{µ(x),µ(y)} ≥ min{µ(xy), δ

2}=
δ

2 .

⇒ max{µ(x),µ(y)}+ t > δ [since t > µ(xy)> δ

2 ]

⇒ µ(x)+ t > δ or µ(y)+ t > δ . That is, x ∈ µ̄δ
t or y ∈ µ̄δ

t .

Thus, in both cases, x ∈ µ̄δ
t or y ∈ µ̄δ

t . Hence, µ̄δ
t is a prime ideal of N.

Conversely, suppose µ̄δ
t is a prime ideal of N.

Then by Theorem 3.15., µ is an (∈,∈ ∨qδ
0 )-fuzzy ideal of N.

Let (xy)t ∈ µ . Then µ(xy)≥ t, this implies that xy ∈ µ̄δ
t .

⇒ x ∈ µ̄δ
t or y ∈ µ̄δ

t [since µ̄δ
t is a prime ideal].

⇒ xt ∈ ∨qδ
0 µ or yt ∈ ∨qδ

0 µ. Thus, µ is an (∈,∈ ∨qδ
0 )-fuzzy prime ideal of N.

Collorary 3.18. [10] A fuzzy set µ of a group G is an (∈,∈∨q)-fuzzy prime of G if and only

if µ̄t(6= φ) is a prime ideal of N ∀ t ∈ (0,1].

Definition 3.19. [8] For a subset A of a near-ring N, a fuzzy set χδ
A in N defined by χδ

A : N→

[0,δ ] as

χ
δ
A (x) =

 δ if x ∈ A,

0 otherwise,

is called a δ -characteristic fuzzy set of A in N.



5728 GAIKHANGNING GANGMEI, O. RATNABALA DEVI

Theorem 3.20. [8] A non-empty subset A of a near-ring N is a subnear-ring(ideal) of N if

and only if χδ
A is an (∈,∈ ∨qδ

0 )-fuzzy subnear-ring(ideal) of N.

Theorem 3.21. A non-empty subset A of a near-ring N is a prime (semiprime) ideal if and

only if χδ
A is an (∈,∈ ∨qδ

0 )-fuzzy prime (semiprime) ideal of N.

The proof is straightforward
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