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Abstract. In this work, we introduce a new generalized gamma function and establish its validity through the

Bohr-Mullerup theorem. We also establish the generalized Euler reflection formula and some other properties

related to the generalized gamma function.The concept of powers of logarithm was largely used to establish the

results.
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1. INTRODUCTION

Euler introduced the gamma function with the goal to generalize the factorial to non integer

values. Some prominent mathematicians such as Gauss, Legendre, Weierstrass, among others

also studied it. The Gamma function belongs to the class of special functions and some mathe-

matical constants such as the Euler-Mascheroni constant occur in its study.

In studying the Riemann zeta function and other special functions, the gamma function plays a

∗Corresponding author

E-mail address: gabeikpeng@gmail.com

Received May 31, 2021
5916



ON A GENERALIZED GAMMA FUNCTION AND ITS PROPERTIES 5917

vital role and has been the subject of study for over 300 years. The gamma function is still being

studied by contemporary mathematicians and yet there seems to be so much to study about it.

The gamma function is essential for modeling situations involving continuous change and has

applications in calculus, differential equations, statistics, fluid mechanics, quantum physics and

complex analysis.

A generalized gamma function Γk(z) for k ∈ N0 was introduced in [1] which connects to the

constant γk as Γ(z) does to γ . Motivated by a series form of the generalized Euler-Mascheroni

constants and through the concept of powers of logarithms, some properties of the gamma func-

tion were presented in [1].

The aim of this paper is to establish another form of a generalized gamma function and its

properties.

2. PRELIMINARIES

The gamma function, a generalization of the factorial to non-integer values, was defined by

Euler as

Γ(z) =
1
z

lim
n→∞

n

∏
j=1

(
1+ 1

j

)z(
1+ z

j

) ,z ∈ C\Z−.(2.1)

Gauss rewrote Euler’s product representation of the gamma function as

Γ(z) = lim
n→∞

nzn!
z(z+1)(z+2)...(z+n)

,z ∈ C\R−.(2.2)

The integral representation of the gamma function was also defined by Euler as

Γ(z) =
∫

∞

0
tz−1e−tdt,R(z)> 0.(2.3)

Weierstrass also established another product representation of the gamma function as

Γ(z) =
e−γz

z

∞

∏
j=1

(
1+

z
j

)−1

e
z
j ,z ∈ C\Z−,(2.4)

where γ is the Euler Mascheroni constant.



5918 GREGORY ABE-I-KPENG, MOHAMMED MUNIRU IDDRISU, KWARA NANTOMAH

Eventhough Euler pioneered the theory of complex analysis, he did not consider the gamma

function of a complex argument. Gauss did by establishing its multiplication theorem. Karl

Weierstrass also introduced the product representation as given by (2.4).

In [3] a wide class of generalizations for the gamma function was studied and a special case

for this class of generalizations was also studied by Dilcher [1]. In particular, the generalized

gamma function Γk(z) was introduced for k ∈N0 and some basic properties such as product and

series expansions of a generalized gamma function were developed in [1]. He also established

a series expansion for the generalized Euler constant for k ∈ N.

It was observed in [4] that an assymptotic expansion of Dilcher’s generalized gamma function

converges for k = 1 and the closed form was unknown for k > 1.

Some results in [1] are connected with those in [2] and a question was posed in [2] whether it is

possible to extend the gamma function by analytic continuation. This study establishes a new

generalized gamma function and its properties.

The generalized Euler-Mascheroni constants are defined as

γk = lim
n→∞

(
− lnk+1 n

k+1
+

n

∑
j=1

lnk j
j

)
,k = 0,1,2, ...(2.5)

and are coefficients of the Laurent expansion of the Riemann zeta function ζ (s) about s = 1:

ζ (s) =
1

s−1
+

∞

∑
k=0

Ak(s−1)k,Re(s)≥ 0,

where Ak =
(−1)k

k! γk.

The constants Ak were first defined by Stieltjes in 1885 and have been studied by other authors.

It is worth noting that γ0 = γ is the Euler constant and is closely related to the gamma function.

Observe that if s = 0, the above Laurent expansion gives

∞

∑
k=0

γk

k!
=

1
2
.

Thus, the real part of the nontrivial zeroes of the Riemann zeta function is associated with the

generalized Euler-Mascheroni constants.

The Euler’s reflection formula is given by

Γ(1− z)Γ(z) =
π

sinπz
.(2.6)
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The Riemann zeta function is defined by

ζ (s) =
∞

∑
n=1

1
ns ,(2.7)

and its derivatives are given by

ζ
(k)(s) = (−1)k

∞

∑
n=1

lnk n
ns .(2.8)

The stirling numbers of the first kind, s(m, j), is defined by the generating function as

ln j
(

1+
z
n

)
=

∞

∑
n= j

j!
m!

s(m, j)
( z

n

)m
,(2.9)

where |z|< 1.

Alternatively, stirling numbers of the first kind are also defined by

1
j

ln j(1+ t) =
∞

∑
n= j

s(n, j)
tn

n!
,(2.10)

or

ln j(1− t) =
∞

∑
n= j

(−1)n

n!
s(n, j)tn.(2.11)

From (2.9), we see that

s(m,1) = (−1)m−1(m−1)!, s(m,m) = 1 and

s(m,2) = (−1)m(m−1)!∑
m−1
j=1

1
j .

For k = 0,1,2, ...,

Dilcher defined the gamma function as [1]

(2.12) Γ
∗
k(z) = lim

n→∞

exp
( 1

k+1 lnk+1 nz)
∏

n
j=1 exp

( 1
k+1 lnk+1 j

)
∏

n
j=0 exp

( 1
k+1 lnk+1( j+ z)

) ,

where z ∈ C\ R.

This definition excluded non positive real numbers in its domain. That means it is not

possible to find Γ∗k(−
1
2) using Dilcher’s definition.
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The functional equation was obtained as

Γ
∗
k(z+1) = exp

(
1

k+1
lnk+1 z

)
Γ
∗
k(z).(2.13)

The Weierstrass form of the generalized gamma function was also established as

(2.14)
1

Γ∗k(z)
= eγkz exp

(
1

k+1
lnk+1 z

)
×

∞

∏
n=1

(
− z

n
lnk n

)
exp
(

1
k+1

(
lnk+1(n+ z)− lnk+1 n

))
.

It was also discovered in [1] that for |z|< 1,

lnΓ
∗
k(z+1) =−γkz+(−1)kk!

∞

∑
n=2

zn

n!

n

∑
j=1

(−1) js(n, j)
(k+1− j)!

ζ
(k+1− j)(n),(2.15)

and a generalized Euler reflection formula given as

Γ
∗
k(z)Γ

∗
k(1− z) =

1
sk(z)

exp
(
− 1

k+1
lnk+1 z

)
,(2.16)

where

sk(z) =
∞

∏
n=1

exp
(

1
k+1

(
lnk+1(n+ z)+ lnk+1(n− z)−2lnk+1 n

))
.(2.17)

In particular, s0 =
sin(πz)

πz .

A consequence of (2.16) yields

Γ
∗
k(1+ z)Γ∗k(1− z) =

1
sk(z)

.(2.18)

Lemma 2.1. (Dilcher, 1994)

Let z ∈ D be fixed and k ∈ N. The identity

lnk(n+ z)− lnk n =
z
n

k lnk−1 n+O
(

1
n2 lnk−1 n

)
(2.19)
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holds as n→ ∞.

3. MAIN RESULTS

We begin this section by presenting a new generalized gamma function which is pivotal in

achieving further results of this paper.

A new generalization of the gamma function is introduced as follows:

Definition 3.1. Let z ∈ C\ (Z−∪0) and k ∈ N0. Then

Γk(z) = lim
n→∞

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ 1
j

)z)
exp
( 1

k+1 lnk+1 z
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ z
j

)) .(3.1)

Remark 3.2. For k = 0,

Γ0(z) = Γ(z).

We check the validity of Definition 3.1 by showing that the conditions of the Bohr-Mullerup

theorem are satisfied.

Theorem 3.3. (Bohr-Mullerup)

Let f(z) be a positive function on (0,∞). Suppose that

(a) f (1) = 1,

(b) f (z+1) = exp
( 1

k+1 lnk+1 z
)

f (z),

(c) ln f (z) is convex.

Then, f (z) = Γk(z).

Proof.

(a) Γk(1) = 1.

(b) Replacing z by z+1 in (3.1), we have
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Γk(z+1) = lim
n→∞

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ 1
j

)z+1
)

exp
( 1

k+1 lnk+1(z+1)
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ z+1
j

)) ,
= lim

n→∞

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ 1
j

)z)
exp
(

1
k+1 lnk+1

[
1+ 1

j

])
exp
( 1

k+1 lnk+1(z+1)
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ z+1
j

)) ,
= lim

n→∞

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ 1
j

)z)
∏

n
j=1 exp

( 1
k+1 lnk+1 (z+ j)

) ,

=
exp
( 1

k+1 lnk+1 z
)

exp
( 1

k+1 lnk+1 z
) lim

n→∞

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ 1
j

)z)
∏

n
j=1 exp

( 1
k+1 lnk+1 (z+ j)

) ,

= exp
(

1
k+1

lnk+1 z
)

Γk(z).(3.2)

Remark 3.4. (3.2) was also established in [1] using Lemma 2.1.

(c) Taking logarithm on both sides of (3.1), we obtain

(3.3) lnΓk(z) =
∞

∑
j=1

z
k+1

lnk+1
(

1+
1
j

)
− 1

k+1
lnk+1 z−

∞

∑
j=1

1
k+1

lnk+1 (z+ j)

−
∞

∑
j=1

1
k+1

lnk+1 j.

Differentiating, we get

lnΓk(z)
′
=

∞

∑
j=1

1
k+1

lnk+1
(

1+
1
j

)
− lnk z

z
−

∞

∑
j=1

lnk(z+ j)
(z+ j)

.(3.4)

Thus,

lnΓk(z)′′ =
∞

∑
j=0

(
k lnk−1( 1

z+ j )

(z+ j)2 +
lnk(z+ j)
(z+ j)2

)
.(3.5)

For z ∈ R+, we have

lnΓk(z)′′ ≥ 0,(3.6)

and the proof is complete. �
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Now, we present the following theorem which establishes the equality of equations (2.12)

and (3.1) for the same domain.

Theorem 3.5. Let k ∈ N0 and z ∈ C\R−. Then

Γk(z) = Γ
∗
k(z).(3.7)

Proof. From (3.1), we have Γk(z) =

lim
n→∞

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ 1
j

)z)
∏

n
j=1 exp

( 1
k+1 lnk+1 j

)
exp
( 1

k+1 lnk+1 z
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ z
j

))
∏

n
j=1 exp

( 1
k+1 lnk+1 j

) .
This simplifies to

Γk(z) = = lim
n→∞

exp
(

1
k+1 lnk+1

(
∏

n
j=1

(
1+ 1

j

))z)
∏

n
j=1 exp

( 1
k+1 lnk+1 j

)
exp
( 1

k+1 lnk+1 z
)

∏
n
j=1 exp

( 1
k+1 lnk+1(z+ j)

) ,

= Γ
∗
k(z).

Alternatively, from (2.12), we have,

Γ
∗
k(z) = lim

n→∞

exp
( 1

k+1 lnk+1 nz)
∏

n
j=1 exp

( 1
k+1 lnk+1 j

)
∏

n
j=0 exp

( 1
k+1 lnk+1( j+ z)

) ,

= lim
n→∞

exp
(

1
k+1 lnk+1

(
∏

n
j=1

(
1+ 1

j

))z)
∏

n
j=1 exp

( 1
k+1 lnk+1 j

)
exp
( 1

k+1 lnk+1 z
)

∏
n
j=1 exp

( 1
k+1 lnk+1(z+ j)

) ,

= lim
n→∞

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ 1
j

)z)
∏

n
j=1 exp

( 1
k+1 lnk+1 j

)
exp
( 1

k+1 lnk+1 z
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ z
j

))
∏

n
j=1 exp

( 1
k+1 lnk+1 j

) .

Hence,

Γ
∗
k(z) = Γk(z).

�

Theorem 3.6. Let z ∈ D = C\ (Z−∪0). Then the identity

1
Γk(z)

= eγkz exp
(

1
k+1

lnk+1 z
)

∞

∏
j=1

exp
(

1
k+1

lnk+1
(

1+
z
j

))
exp
(
−z

j
lnk j

)
.(3.8)



5924 GREGORY ABE-I-KPENG, MOHAMMED MUNIRU IDDRISU, KWARA NANTOMAH

holds, where γk is the generalized Euler-Mascheroni constant.

Proof. From (3.1) and using j = ∏
n
j=1

(
1+ 1

j

)
, we obtain

1
Γk(z)

= lim
m→∞

exp
( 1

k+1 lnk+1 z
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1+ z
j

))
exp
( 1

k+1 lnk+1 jz
) .(3.9)

Taking logarithm on both sides of (3.9) and applying Lemma 2.1 gives

ln
(

1
Γk(z)

)
=
−z

j
lnk j+

1
k+1

lnk+1 z+
∞

∑
j=1

1
k+1

lnk+1
(

1+
z
j

)
.(3.10)

1
Γk(z)

= exp
(
−z

j
lnk j

)
exp
(

1
k+1

lnk+1 z
)

exp

(
∞

∑
j=1

1
k+1

lnk+1
(

1+
z
j

))
.(3.11)

By introducing convergence factors we obtain

1
Γk(z)

= exp
(

1
k+1

lnk+1 z
)

exp(γkz)
∞

∏
j=1

exp
(

1
k+1

lnk+1
(

1+
z
j

))
exp
(
−z

j
lnk j

)
,

(3.12)

where γk is the generalized gamma function.

This completes the proof. �

Remark 3.7. Equation (3.8) is an improvement of the generalized reciprocal gamma function

in [1].

Remark 3.8. By applying logarithm on both sides of (3.8), letting k = 0 and using (2.9), we

obtain

1
Γ(z)

= zexp

(
γz+

∞

∑
m=2

(−1)m+1

m
ζ (m)zm

)
,(3.13)

a result also found in [1], [2] and [5].
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Remark 3.9. Substituting z = 1 into (3.13) yields

1 = exp

(
γ +

∞

∑
m=2

(−1)m+1

m
ζ (m)

)
.(3.14)

By further taking logarithm on both sides of (3.14) gives

γ =
∞

∑
m=2

(−1)m

m
ζ (m),(3.15)

a result due to Euler.

Theorem 3.10. The identities

Γk(z)Γk(1− z) =
1

tk(z)
(3.16)

and

Γk(1+ z)Γk(1− z) =
1

∏
∞
j=1 exp

(
1

k+1 lnk+1
(

1− z2

j2

))(3.17)

hold for z ∈ D, where

tk(z) = exp
(

1
k+1

lnk+1 z
)

∞

∏
j=1

exp
(

1
k+1

lnk+1
(

1− z2

j2

))
.(3.18)

Proof. Replacing z by −z in (3.2) and multiplying the result by Γk(z), we have

Γk(1− z)Γk(z) = exp
(

1
k+1

lnk+1−z
)

Γk(−z)Γk(z).(3.19)

Using (3.1) we obtain

Γk(z)Γ(−z) = lim
n→∞

1

exp
( 1

k+1 lnk+1−z2
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1− z2

j2

)) .(3.20)

Simplifying further yields

exp
(

1
k+1

lnk+1−z
)

Γk(z)Γ(−z) = lim
n→∞

1

exp
( 1

k+1 lnk+1 z
)

∏
n
j=1 exp

(
1

k+1 lnk+1
(

1− z2

j2

)) .
(3.21)

This completes the proof of the first part of the theorem.

Obtaining the second part of the theorem using (3.2), we have

Γk(z) =
Γk(z+1)

exp
( 1

k+1 lnk+1 z
) .(3.22)
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Substituting (3.22) into (3.16) completes the proof. �

Remark 3.11. For k = 0, (3.16) yields

Γ(1− z)Γ(z) =
1

t0(z)
=

1

z∏
∞
j=1

(
1− z2

j2

) =
π

sin(πz)
.(3.23)

Lemma 3.12. For |z|< 1,

(3.24)

lnk+1( j + z) − lnk+1 j =
z
j
(k + 1) lnk j +

∞

∑
m=2

(
z
j

)m 1
m!

m

∑
n=1

(k+1)!
(k+1−n)!

s(m,n) lnk+1−n j.

Proof.

lnk+1( j+ z)− lnk+1 j =
(

ln
(

1+
z
j

)
+ ln j

)k+1

− lnk+1 j,(3.25)

=
k+1

∑
n=1

k+1

n

 lnn
(

1+
z
j

)
lnk+1−n j.(3.26)

By (2.9) we obtain

lnk+1( j+ z)− lnk+1 j =
k+1

∑
n=1

(k+1)!
(k+1−n)!

lnk+1−n j
∞

∑
m=n

s(m,n)
m!

(
z
j

)m

,

=
∞

∑
m=1

(
z
j

)m 1
m!

m

∑
n=1

(k+1)!
(k+1−n)!

s(m,n) lnk+1−n j.(3.27)

The term belonging to m = 1 is given by

z
j
(k+1)s(1,1) lnk j =

z
j
(k+1) lnk j(3.28)

Substituting (3.28) into (3.27) completes the proof. �

Theorem 3.13. For −1 < z≤ 1, the identity

lnΓk(z+1) =−γk− (−1)kk!
∞

∑
m=2

zm

m!

m

∑
n=1

s(m,n)
(k+1−n)!

ζ
(k+1−n)(m)(3.29)

holds.

Proof. Applying logarithm on both sides of (3.2) gives

lnΓk(z+1) =
1

k+1
lnk+1 z+ lnΓk(z).(3.30)
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Applying logarithm on (3.8), we obtain

lnΓk(z) =−γkz− 1
k+1

lnk+1 z−
∞

∑
j=1

1
k+1

lnk+1
(

1+
z
j

)
+

∞

∑
j=1

z
j

lnk j.(3.31)

Substituting (3.31) into (3.30) yields

lnΓk(z+1) =−γkz−
∞

∑
j=1

1
k+1

lnk+1
(

1+
z
j

)
+

∞

∑
j=1

z
j

lnk j.(3.32)

By Lemma 3.11 , we get

lnΓk(z+1) =−γkz−
∞

∑
m=2

zm

m!

m

∑
n=1

k!
(k+1−n)!

s(m,n)
∞

∑
j=1

lnk+1−n j
jm .(3.33)

By (2.8) the proof of the theorem is complete. �

Remark 3.14. By letting k = 0 and using (2.9), we obtain

lnΓ(z+1) =−γz+
∞

∑
m=2

(−1)m

m
zm

ζ (m).(3.34)

Equation (3.34) was also found in [1] and [5].

Remark 3.15. If z = 1 is put in (3.34), (3.15) is obtained, a result due to Euler.

Remark 3.16. For k = 1 and applying (2.9), we obtain

lnΓ1(z+1) =−γ1z+
∞

∑
m=2

(−1)mzm

m

(
ζ
′(m)−ζ (m)

m−1

∑
i=1

1
i

)
.(3.35)

Remark 3.17. By letting k = 0 and substituting z = 1
2 into (3.33) yields

2 ln
(√

π

2

)
=−γ +2

∞

∑
m=2

(−1)m

m2m ζ (m),(3.36)

a result that is also established in [5].

Lemma 3.18. Let |z|< 1 and k ∈ N0. Then

lnk+1
(

1+
1
j

)
=

(k+1)
j

lnk j+
∞

∑
m=2

(
1
j

)m 1
m!

m

∑
n=1

(k+1)!
(k+1−n)!

lnk+1−n j.(3.37)
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The proof follows the same procedure as that of Lemma 3.11.

Theorem 3.19. Let z =−1
2 and k = 0. Then

Γ

(
−1

2

)
=−2exp

(
1
2

∞

∑
m=2

(−1)mζ (m)

m
+

∞

∑
m=2

ζ (m)

m∗2m

)
.(3.38)

Proof. By Lemma 3.11 and Lemma 3.17, (3.1) becomes

Γk(z) =
exp
(

∑
∞
m=2

( z
m!

)
∑

m
n=1

k!s(m,n)
(k+1−n)!ζ

(k+1−n)(m)
)

exp
( 1

k+1 lnk+1 z
)
∗ exp

(
∑

∞
m=2

( zm

m!

)
∑

m
n=1

k!s(m,n)
(k+1−n)!ζ

(k+1−n)(m)
) .(3.39)

By letting z =−1
2 and k = 0, we obtain

Γ

(
−1

2

)
=

exp
(
−1

2 ∑
∞
m=2

( 1
m!

)
∑

m
n=1

s(m,n)
(1−n)!ζ

(1−n)(m)
)

exp
(
ln
(−1

2

))
exp
(

∑
∞
m=2

(
(−1)m( 1

2)
m

m!

)
∑

m
n=1

s(m,n)
(1−n)!ζ

(1−n)(m)

) ,(3.40)

=
exp
(
−1

2 ∑
∞
m=2

(−1)m+1(m−1)!
m(m−1)! ζ (m)

)
−1

2 exp
(

∑
∞
m=2

(−1)m∗(−1)m+1(m−1)!
2m∗m(m−1)! ζ (m)

) .(3.41)

This completes the proof. �

Theorem 3.20.

Γ(i) = exp

(
∞

∑
m=2

(i)(m)(−1)mζ (m)

m
− iγ− ln(i)

)
.(3.42)

Proof. By substituting z = i and k = 0 into (3.39), we get

Γ(i) =
exp
(

∑
∞
m=2

( i
m!

)
∑

m
n=1

s(m,n)
(1−n)!ζ

(1−n)(m)
)

exp(ln i)∗ exp
(

∑
∞
m=2

( im
m!

)
∑

m
n=1

s(m,n)
(1−n)!ζ

(1−n)(m)
) ,(3.43)

= exp

(
∞

∑
m=2

(i)(m)(−1)mζ (m)

m
− iγ− ln(i)

)
.(3.44)

This completes the proof. �
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Remark 3.21. Using the Wolfram Infinite series analyzer to analyze ∑
∞
m=2

(i)(m)(−1)mζ (m)
m yields

Γ(i) = exp(ln(Γ(1+ i)− ln(i)) ,(3.45)

= exp(ln(−Γ(1+ i))− iπ− ln(i)) ,(3.46)

= exp
(

ln
((
−1

2
+

i
2

))
(1+ i)!− iπ− ln(i)

)
.(3.47)

Theorem 3.22. Let k = 1 and z =−1
2 . Then

Γ1

(
−1

2

)
= exp

(
1
2

(
∞

∑
m=2

(−1)mζ
′
(m)

m
−

∞

∑
m=2

(−1)mHm−1ζ (m)

m

))
×(3.48)

exp

(
−1

2
ln2
(
−1
2

)
+

∞

∑
m=2

ζ
′
(m)

2mm
−

∞

∑
m=2

Hm−1ζ (m)

2mm

)
,(3.49)

where Hm−1 is the (m-1)th harmonic number.

Proof. By substituting k = 1 and z =−1
2 into (3.39), we get

Γ1

(
−1

2

)
=

exp
(
−1

2 ∑
∞
m=2

( 1
m!

)
∑

m
n=1

1!s(m,n)
(2−n)! ζ (2−n)(m)

)
exp
(1

2 ln2 (−1
2

))
exp
(

∑
∞
m=2

(
(−1)m( 1

2)
m

m!

)
∑

m
n=1

1!s(m,n)
(2−n)! ζ (2−n)(m)

) ,(3.50)

=

exp
(
−1

2 ∑
∞
m=2

1
m!

(
s(m,1)ζ

′
(m)

1! + s(m,2)ζ (m)
0!

))
exp
(1

2 ln2 (−1
2

))
∗ exp

(
∑

∞
m=2

(−1)m

m!∗2m

(
s(m,1)ζ ′(m)

1! + s(m,2)ζ (m)
0!

)) .(3.51)

By (2.9), we obtain

Γ1

(
−1

2

)
=

exp
(

1
2

(
∑

∞
m=2

(−1)mζ
′
(m)

m −∑
∞
m=2

(−1)mHmζ (m)
m

))
exp
(1

2 ln2 (−1
2

))
∗ exp

(
∑

∞
m=2

−ζ
′
(m)

m∗2m +∑
∞
m=2

Hm−1ζ (m)
m∗2m

) .(3.52)

This completes the proof. �

Remark 3.23. For k = 1, z =−1
2 and using (3.2), we obtain

Γ1

(
1
2

)
= exp

(
1
2

(
∞

∑
m=2

(−1)mζ
′
(m)

m
−

∞

∑
m=2

(−1)mHmζ (m)

m

))
×

exp

(
∞

∑
m=2

ζ
′
(m)

2mm
−

∞

∑
m=2

Hm−1ζ (m)

2mm

)
, .(3.53)
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Remark 3.24. Substituting z =−1
2 in (3.35) and using (3.22) yields

γ1 =
∞

∑
m=2

(−1)mζ
′
(m)

m
−

∞

∑
m=2

(−1)mHm−1ζ (m)

m
.(3.54)

Remark 3.25. For k = 1 and z = 2, we obtain

Γ1(2) = exp

(
−2γ1−

1
2

ln2 2+
∞

∑
m=2

(−1)m

m2m

(
ζ
′
(m)−Hm−1ζ (m)

))
.(3.55)

Remark 3.26. For k = 1, z = 3 and using (3.22), we get

Γ1(3) = exp

(
−2γ1 +

∞

∑
m=2

(−1)m

m2m

(
ζ
′
(m)−Hm−1ζ (m)

))
.(3.56)

4. CONCLUSIONS

A generalized gamma function has been presented. Some properties of this generalized

gamma function have been established and a generalized Euler-Mascheroni constant obtained

for k = 1. For some values of k and z, some identities of the generalized gamma function were

established.
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