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Abstract. In this paper, a new type of algebra namely S-algebra is introduced. The partial ordering on S-algebra is

introduced, some examples of S-algebras are given and some equivalent conditions for an S-algebra to become a

distributive lattice are given by introducing a partial order S-algebra x≤ y, if y∧ x = x. This partial ordering leads

to some S-algebras. Congruences on S-algebra are introduced and some properties on congruences are proved.

The concept of central element in an S-algebra is introduced. By using a central element a of S, S-algebra can be

decomposed into two S-algebras and some important properties are emphasized.
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1. INTRODUCTION

Boolean logic has a wide applications in Computer science and Electronics. It is the main

logic in Computer Languages . Lattice theory established to develop logic which is used in

several sciences and technology. Distributive lattices are generalization of Boolean algebras. In

this paper , a new concept namely S-algebra is introduced. It is neither a Distributive lattice
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nor a lattice but its satisfies some properties of these lattices.Infact its generalization of distribu-

tive lattices and also C-algebras.some examples of S-algebras are given and some equivalent

conditions for an S-algebra to become a distributive lattice are given by introducing a partial

order S-algebra . By Using this partial ordering , some S-algebras induced by the above partial

ordering. Congruences on S-algebra are introduced and some properties on Congruences are

proved.The concept of central element in an S-algebra is introduced. By using a central ele-

ment a of S, S-algebra can be decomposed into two S-algebras and some important properties

are emphasized.

2. PRELIMINARIES

Definition 2.1. Let A be an algebra and α,β ∈ Con(A). Then we have αoβ = {(x,y) ∈ A×A |

(x,z) ∈ β and (z,y) ∈ α for some z ∈ A}.

Definition 2.2. Let A be an algebra and α,β ∈Con(A). Then α and β are said to be permutable

if αoβ = βoα .

The following is a well known result.

Definition 2.3. Let A be an algebra. Then a subset L of Con(A) is called permutable if any two

congruences in L are permutable.

If A is any algebra and θ ∈ Con(A), then A/θ := {a/θ | a ∈ A} is the quotient algebra with

respect to the operations defined in [6], by a/θ ∧b/θ = (a∧b)/θ and a/θ ∨b/θ = (a∨b)/θ .

We write θ(a) for the element a/θ of A/θ .

Definition 2.4. Let A be an algebra and θ ∈ Con(A). Then the map a 7→ θ(a) is called the

natural map of A onto A/θ .

“If A is any algebra, then the congruences A×A and {(x,x) | x ∈ A} are denoted by5A and

4A respectively. Sometimes we refer to4A as zero congruence on A.”

Definition 2.5. Let A be an algebra and α ∈ Con(A). Then α is called a factor congruence or

direct factor congruence if there exists β ∈ Con(A) such that α ∩β =4A and αoβ =5A.
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Definition 2.6. An algebra A is called (directly) indecomposable if A is not isomorphic to a

direct product of two nontrivial algebras.

The following is a well known result, which characterize indecomposable algebras in terms

of their congruences.

3. THE CONCEPT OF S-ALGEBRA

The variety of S-algebras is a generalisation of C-algebras,that is every C-algebra is an S-

algebra but the converse need not be true since S-algebra is an algebra of type(2,2) where

as C-algebra is an algebra of type (2,2,1).The unary operation in C-algebra is not there in

S-algebra. According to our Knowledge the identities in S-algebra are independent .

Definition 3.1. An algebra (S,∨,∧) of type (2,2) is called an S-algebra if it satisfies the fol-

lowing conditions;

(i): x∧ x = x, x∨ x = x

(ii): x∧ (y∧ z) = (x∧ y)∧ z, x∨ (y∨ z) = (x∨ y)∨ z

(iii): (x∧ y)∨ (y∧ x) = (y∧ x)∨ (x∧ y), (x∨ y)∧ (y∨ x) = (y∨ x)∧ (x∨ y)

(iv): x∧ (x∨ y) = x,x∨ (x∧ y) = x

(v): x∧ (y∨ z) = (x∧ y)∨ (x∧ z),x∨ (y∧ z) = (x∨ y)∧ (x∨ z)

(vi): x∧ y∧ x = x∧ y, x∨ y∨ x = x∨ y

for all x,y,z ∈ S.

Some examples of S-algebras are given in the following.

Example 3.2. Every Boolean algebra is an S-algebra.

Example 3.3. The three element set S = {r,s, t} with operations ∧,∨

given by;

∧ r s t

r r s t

s s s s

t t t t

∨ r s t

r r r r

s r s t

t t t t
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is an S-algebra.

In the following we introduced a partial ordering on S-algebra, this partial ordering leads to

some S-algebras induced by this partial ordering. Given any two elements x,y in an S-algebra

(S,∨,∧), we define ≤ on S by “x ≤ y, if y∧ x = x. ”Through out this chapter, by S, we mean

that it is an S-algebra (S,∨,∧) unless otherwise mentioned.

Lemma 3.4. Let S be an S-algebra. Then ≤ is a partial ordering on S.

Proof. It is easy to observe that≤ satisfies the reflexivity. Let x,y ∈ S such that x≤ y and y≤ x.

Then, we have y∧ x = x and x∧ y = y. Now,

x = y∧ x

= x∧ y∧ x (since x∧ y = y)

= x∧ y (by Def. S−algebra)

= y. (since x∧ y = y)

Therefore ≤ satisfies anti-symmetric. Let x,y,z ∈ Z such that x ≤ y and y ≤ z. Then y∧ x = x

and z∧ y = y. Now,

z∧ x = z∧ y∧ x (since y∧ x = x)

= y∧ x (since z∧ y = y)

= x (since y∧ x = x)

Therefore x≤ z and hence ≤ is a partial ordering on S. �

Lemma 3.5. In a partial ordered set (S,≤), for any x,y ∈ S, we have the following;

(i) If x≤ y, then y∨ x = y and x∧ y≤ x

(ii) If x≤ y, for any z ∈ S, (a) z∧ x≤ z∧ y (b) z∨ x≤ z∨ y.

Proof. Let x,y ∈ S.

(i) If x≤ y, then y∧ x = x. Now,

y∨ x = y∨ (y∧ x) = y and

x∧ (x∧ y) = (x∧ x)∧ y = x∧ y
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(ii) Suppose that x≤ y and for any z ∈ S.

(a)

(z∧ y)∧ (z∧ x) = (z∧ y∧ z)∧ x

= z∧ y∧ x

= z∧ x (since y∧ x = x)

Therefore z∧ x≤ z∧ y.

(b)

(z∨ y)∧ (z∨ x) = z∨ (y∧ x)

= z∨ x (since y∧ x = x)

Therefore z∨ x≤ z∨ y. �

Lemma 3.6. In a partial ordered set (S,≤), for any x,y,z∈ S; we have the following; x≤ y =⇒

x∨ (y∧ z) = y∧ (x∨ z).

Theorem 3.7. In an S-algebra S, for any x,y,z ∈ S, the following identity holds;

x∧ (y∨ z) = x∧ [y∧ (x∨ z)]∨ z

Theorem 3.8. In an S-algebra S; for any x,y,z ∈ S, the following identity holds;

x∨ (y∧ z) = x∨ [y∨ (x∧ z)]∧ z

.

Lemma 3.9. In an S-algebra S, for any x,y ∈ S, x∧ y = y∧ x =⇒ y≤ y∨ x.

Theorem 3.10. An S-algebra S is a distributive lattice “iff ” x∨ y is an upper bound of x,y, for

all x,y ∈ S

Proof. Let S be an S-algebra. It is observe that if S is a distributive lattice; then x∨y is an upper

bound of x,y.

Conversely, suppose that x∨ y is an upper bound of x,y, for all x,y ∈ S. Then x ≤ x∨ y and

y≤ x∨ y. That is (x∨ y)∧ x = x and (x∨ y)∧ y = y. Now,

(x∨ y)∧ (y∨ x) = (x∨ y∨ x)∧ (y∨ x)

= [x∨ (y∨ x)]∧ (y∨ x)

= y∨ x
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(y∨ x)∧ (x∨ y) = (y∨ x∨ y)∧ (x∨ y)

= [y∨ (x∨ y)]∧ (x∨ y)

= x∨ y.

Therefore ∨ is “commutative”.

Similarly

(x∧ y)∨ (y∧ x) = (x∧ y)∨ (y∧ x∧ y)

= (x∧ y)∨ [y∧ (x∧ y)]

= x∧ y

(y∧ x)∨ (x∧ y) = (y∧ x)∨ (x∧ y∧ x)

= (y∧ x)∨ [x∧ (y∧ x)]

= y∧ x. )

Therefore ∧ is commutative. Thus S is a distributive lattices. �

Theorem 3.11. In an S-algebra S, if x∨y is an upper bound of x,y, for all x,y ∈ S, then x∨y is

the supremum of x and y.

Proof. Let x,y ∈ S such that x∨ y is an upper bound of x and y. That is x≤ x∨ y and y≤ x∨ y.

Let t be an upper bound of x and y. Then x≤ t and y≤ t. So that t ∧ x = x and t ∧ y = y. Now,

t ∧ (x∨ y) = (t ∧ x)∨ (t ∧ y)

= x∨ y. (since t ∧ x = x and t ∧ y = y)

Therefore t ∧ (x∨ y) = x∨ y and hence x∨ y≤ t.

Thus x∨ y is the supremum of x and y. �

Theorem 3.12. An S-algebra S is distributive lattice if and only if the following holds.

(i) x∧ (y∨ x) = x for all x,y ∈ S

(ii) x∧ y≤ y, for all x,y ∈ S.

Proof. If S is a distributive lattice, then it is easy to observe that the conditions (i) and (ii) are

trivial. On the other hand, assume that the conditions (i) and (ii) holds in a S-algebra S. Let
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x,y ∈ S. Then

(x∨ y)∧ (y∨ x) = (x∨ y)∧ (y∨ x∨ y)

= (x∨ y)∧ [y∨ (x∨ y)]

= x∨ y

and
(y∨ x)∧ (x∨ y) = (y∨ x)∧ (x∨ y∨ x)

= (y∨ x)∧ [x∨ (y∨ x)]

= y∨ x. (by our assumption(i))

Therefore x∨ y≤ y∨ x and y∨ x≤ x∨ y. Hence x∨ y = y∨ x.

From (ii), we have x∧y≤ y. So that y∧x∧y= x∧y. Hence y∧x= x∧y. . Thus S is a distributive

lattice. �

Lemma 3.13. In an S-algebra S, if x∧ y is a lower bound of x and y, then x∧ y is the infimum

of x and y, for all x,y ∈ S.

Proof. Let x,y ∈ S such that x∧ y is a lower bound of x and y. Then x∧ y≤ x and x∧ y≤ y. Let

t be a lower bound of x and y. Then t ≤ x,y. That is x∧ t = y∧ t = t. Now,

(x∧ y)∧ t = x∧ (y∧ t)

= (x∧ t) (since y∧ t = t)

= t. (since x∧ t = t)

Therefore t ≤ x∧ y. Hence x∧ y is the infimum of x and y. �

4. SOME PROPERTIES OF S-ALGEBRA AND ITS CONGRUENCES

In this section we introduce congruence on S-algebra and some properties of these congru-

ences are proved.

Definition 4.1. Let S be an S-algebra and a ∈ S; χa is defined as χa = {(x,y) | a∧ x = a∧ y}.

Lemma 4.2. Let S be an S-algebra and a ∈ S. Then χa is a congruence relation on S.

Proof. Clearly χa satisfies“ reflexive and symmetric.” Let (x,y) ∈ χa and (y,z) ∈ χa. Then

a∧ x = a∧ y and a∧ y = a∧ z. So that a∧ x = a∧ z. Therefore (x,z) ∈ χa and hence χa is an

equivalence relation on S.
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Let (x,s),(y, t) ∈ χa. Then a∧ x = a∧ s, a∧ y = a∧ t. Now, a∧ (x∧ y)= (a∧ x)∧ y = (a∧ s)∧ y

= (a∧ s∧a)∧ y = (a∧ s)∧ (a∧ y) = (a∧ s)∧ (a∧ t) = (a∧ s∧a)∧ t= (a∧ s)∧ t = a∧ (s∧ t)

Therefore (x∧y,s∧t)∈ χa. Now, a∧(x∨y) = (a∧x)∨(a∧y) = (a∧s)∨(a∧t) (since a∧x=

a∧ s,a∧ y = a∧ t) = a∧ (s∨ t)

Therefore (x∨ y,s∨ t) ∈ χa hence χa is compatible with binary operation ∨,∧.

Thus χa is congruence on S. �

Theorem 4.3. The following are hold for any elements a,b of an S-algebra.

(i) χa∩χb ⊆ χa∧b

(ii) If a≤ b, then a∧b = b∧a

(iii) χa∧b = χb∧a

(iv) χaoχb ⊆ χa∧b = χb∧a

(v) If a≤ b; then χb ⊆ χa.

Proof. For any a,b ∈ S.

(i) Let (x,y) ∈ χa∩χb, then a∧ x = a∧ y and b∧ x = b∧ y.

Now,

(a∧b)∧ x = a∧ (b∧ x) = a∧ (b∧ y) = (a∧b)∧ y.

Therefore (x,y) ∈ χa∧b and hence χa∩χb ⊆ χa∧b.

(ii) If a≤ b, then we have b∧a = a.

Now, a∧b = a∧b∧a = a∧a = a = b∧a.

Therefore a∧b = b∧a

(iii) Let (x,y) ∈ χa∧b, then a∧b∧ x = a∧b∧ y.

Now,

(b∧a)∧ x = (b∧a∧b)∧ x = b∧ (a∧b∧ x) = b∧ (a∧b∧ y) = (b∧a∧b)∧ y)

= (b∧a)∧ y.

Therefore (x,y) ∈ χb∧a and hence χa∧b ⊆ χb∧a

On the other side, let (x,y) ∈ χb∧a;

Now,
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(a∧b)∧ x = (a∧b∧a)∧ x = a∧ (b∧a∧ x) = a∧ (b∧a∧ y) = (a∧b∧a)∧ y) = (a∧b)∧ y

Therefore (x,y) ∈ χa∧b. So that χb∧a ⊆ χa∧b and hence χa∧b = χb∧a (by (iii))

(iv) Let (x,y) ∈ χaoχb. Then there exists t ∈ S such that (x, t) ∈ χa and (t,y) ∈ χb. That is

a∧ x = a∧ t and b∧ t = b∧ y.

Now,

(a∧ b)∧ x = (a∧ b∧ a)∧ x = (a∧ b)∧ (a∧ x) = (a∧ b)∧ (a∧ t) (since a∧ x = a∧ t) =

(a∧b∧a)∧ t = (a∧b)∧ t = a∧ (b∧ t) = a∧ (b∧ y) (since b∧ t = b∧ y) = (a∧b)∧ y.

There fore (x,y) ∈ χa∧b. So that χaoχb ⊆ χa∧b and hence χaoχb ⊆ χa∧b = χb∧a. (by (iii))

(v) If a≤ b then b∧a = a.

Let (x,y) ∈ χb. Then we have b∧ x = b∧ y.

Now,

a∧x = (b∧a)∧x(since b∧a = a) = (a∧b)∧x = a∧(b∧x) = a∧(b∧y) (since b∧x = b∧y)

= (a∧b)∧ y = (b∧a)∧ y = a∧ y. (since b∧a = a )

Therefore a∧ x = a∧ y and hence (x,y) ∈ χa.

Thus χb ⊆ χa. �

5. DECOMPOSITION OF S ALGEBRA BY USING PARTIAL ORDERINGS

In this section ,for each a ∈ S,where S is an S-algebra , Sa = {a∧ x/x ∈ S} is a sub-algebra

of S.The concept of Central element in S-algebra is introduced.By using this,if a is a central

element of S then S is isomorphic to product of two sub-algebras.

For each element in an S-algebra S, we introduce a subalgebra of S.

Lemma 5.1. Let S be an S-algebra and a ∈ S. Then Sa = {a∧ x/x ∈ S} is the subalgebra of S.

Proof. Let S be an S-algebra and x,y ∈ S such that

(a∧ x)∧ (a∧ y) = (a∧ x∧a)∧ y = (a∧ x)∧ y = a∧ (x∧ y)

Therefore (a∧ x)∧ (a∧ y) ∈ Sa. (since x∧ y ∈ S)

Similarly, by Def of S, (a∧ x)∨ (a∧ y) = a∧ (x∨ y) ∈ Sa. (since x∨ y ∈ S)

Hence Sa is a subalgebra of S. �
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Theorem 5.2. For any a ∈ S, a mapping γa from S to Sa defined by γa(x) = a∧ x, for all x ∈ S

is a homomorphism. Moreover
S

Ker(γa)
∼= Sa.

Proof. For any a ∈ S, define a map γa : S −→ Sa by γa(x) = a∧ x, for all x ∈ S. Now, for any

x,y ∈ S,

x = y⇒ a∧ x = a∧ y

⇒ γa(x) = γa(y).

Therefore γa is well defined. Let x,y ∈ S. Then

γa(x∧ y) = a∧ (x∧ y)

= (a∧ x)∧ y

= (a∧ x∧a)∧ y

= (a∧ x)∧ (a∧ y)

= γa(x)∧ γa(y).

Similarly,

γa(x∨ y) = a∧ (x∨ y)

= (a∧ x)∨ (a∧ y)

= γa(x)∨ γa(y).

Therefore γa is homomorphism. Let z ∈ Sa. Then z = a∧ x for some x ∈ S. So that γa(x) =

a∧ x = z. Therefore γa is an onto homomorphism. Now,

Kerγa = {(x,y) | γa(x) = γa(y)}

= {(x,y) | a∧ x = a∧ y}

= χa.

Therefore Ker(γa) = χa. Hence by the homomorphism theorem, we get
S

Ker(γa)
∼= Sa. �

Definition 5.3. An S-algebra S is said to be S-algebra with T , if there exists T ∈ S such that

T ∧ x = x∧T = x, for all x ∈ S.

In this case, T is called meet identity.

Definition 5.4. An S-algebra S is said to be S-algebra with F , if there exists F ∈ S such that

F ∨ x = x∨F = x, for all x ∈ S.

In this case, F is called join identity.
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Lemma 5.5. If F is join identity in S-algebra, then F ∧ x = F.

Proof. Let x ∈ s, and F is join identity. Then we have F ∨ x = x∨F = x.

Now,

F ∧ x = F ∧ (F ∨ x) (since F ∨ x = x)

= F.

Therefore F ∧ x = F . �

Theorem 5.6. Let S be an S-algebra with T,F .Then χT = ∆, χF = S×S.

Proof. Let x,y ∈ S. Then

χT = {(x,y) | T ∧ x = T ∧ y}

= {(x,y) | x = y}

= ∆.

and

χF = {(x,y) | F ∧ x = F ∧ y}

= {(x,y) | F = F}

= S×S.

�

Definition 5.7. An element a of an S-algebra with T,F is said to be a central element of S, if it

obeys the below conditions;

(i) There exists b ∈ S such that a∧b = b∧a = F and a∨b = T.

(ii) If a∧ x = a∧ y and b∧ x = b∧ y, then x = y.

Theorem 5.8. For any central element a of S, there exists b ∈ S such that χa ∩ χb = ∆ and

χaoχb = S×S.

Proof. Let (x,y) ∈ χa∩χb.

Then a∧ x = a∧ y and b∧ x = b∧ y. So that x = y. (since a is central element)

Therefore (x,y)∈ ∆ hence we get χa∩χb⊆ ∆. Clearly we have ∆⊆ χa∩χb. Hence χa∩χb = ∆.
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For, x 6= y, consider z = (a∧ x)∨ (b∧ y)

Now,

a∧ z = a∧ [(a∧ x)∨ (b∧ y)]

= (a∧a∧ x)∨ (a∧b∧ y)

= (a∧ x)∨ (F ∧ y) (since a is central element)

= (a∧ x)∨F

= a∧ x.

Therefore (x,z) ∈ χa. Similarly,

b∧ z = b∧ [(a∧ x)∨ (b∧ y)] (since z = (a∧ x)∨ (b∧ y))

= (b∧a∧ x)∨ (b∧b∧ y)

= (F ∧ x)∨ (b∧ y) (since a is central element)

= F ∨ (b∧ y)

= b∧ y.

Therefore (z,y) ∈ χb. So that (x,y) ∈ χao χb and hence χao χb ⊇ S×S.

Clearly, we have that χao χb ⊆ S×S. So that χaoχb = S×S.

Thus χa,χb are factor congruences on S. �

Theorem 5.9. If a is central element of S, then there exists b ∈ S such that

S∼= Sa×Sb.

Proof. Define a map h : S−→ Sa×Sb such that h(x) = (γa(x),γb(x)). Then,

h[x∨ y] = (γa[x∨ y],γb[x∨ y])

= (a∧ [x∨ y],b∧ [x∨ y]) (since γa(x) = a∧ x)

= ((a∧ x)∨ (a∧ y),(b∧ x)∨ (b∧ y))

= (γa(x)∨ γa(y),γb(x)∨ γb(y))

= (γa(x),γb(x))∨ (γa(y),γb(y)

= h(x)∨h(y).
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and
h(x∧ y) = (γa(x∧ y),γb(x∧ y))

= (a∧ (x∧ y),b∧ (x∧ y)) (since γa(x) = a∧ x)

= ((a∧ x)∧ y,(b∧ x)∧ y))

= ((a∧ x∧a)∧ y,(b∧ x∧b)∧ y)

= ((a∧ x)∧ (a∧ y),(b∧ x)∧ (b∧ y))

= (γa(x)∧ γa(y),γb(x)∧ γb(y))

= (γa(x),γb(x))∧ (γa(y),γb(y))

= h(x)∧h(y).

Therefore h is a homomorphism.

Let x,y ∈ S such that

h(x) = h(y)

⇒ ((γa(x),γb(x)) = (γa(y),γb(y))

⇒ (a∧ x,b∧ x) = (a∧ y,b∧ y)

⇒ a∧ x = a∧ y and b∧ x = b∧ y

Then we have a∧ x = a∧ y and b∧ x = b∧ y.

Therefore x = y (since a is central element). Hence h is one-one.

Let (x,y) ∈ Sa×Sb. Then x = a∧ t and y = b∧ s, for some s, t ∈ S.

Therefore a∧ x = a∧a∧ t = a∧ t = x and b∧ y = b∧b∧ s = b∧ s = y.

So that a∧ x = x and b∧ y = y. Now,

h(x∨ y) = (γa(x∨ y),γ(x∨ y))

= (a∧ (x∨ y),b∧ (x∨ y))

= ((a∧ x)∨ (a∧ y),(b∧ x)∨ (b∧ y))

= (x∨F,F ∨ y) (since a∧ y = b∧ y = F)

= (x,y).

Therefore (x,y) ∈ Sa×Sb . Hence h is onto.

Thus S∼= Sa×Sb. �
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