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Abstract. In this paper, Lie group analysis have been applied to a core group model for isentropic super-dense 

stars assuming that, the interior of the star is filled up with a perfect fluid, the corresponding Einstein’s 

equations constitute an ordinary differential equation of 2nd order involving a parameter K.   Different values of 

K are responsible for different models of the fluid sphere.  Optimal solutions have been obtained in terms of 

special functions, namely the confluent hypergeometric functions. 
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1. INTRODUCTION 

Relativistic static fluid spheres are used very often to represent the interior of neutron stars.  

Such fluid spheres, in addition to satisfying the reality conditions, are required to possess 

negative gradients of density and pressure.  In addition, the velocity of sound through the 

model should be less than that of light, and the adiabatic index    should be larger than 

unity for the temperature to be decreasing away from the center. 

Vaidya P.C and Tikekar R (1982) utilized the space - time with hypersurfaces t equal 

constant as spheroids to describe the gravitational field inside the superdense stars [2]. 

Physically, to prescribe the metric potential 11g (and hence the energy density) in the 

Schwarzschild coordinates and mathematically the Einstein’s equation reduces to an ordinary 

differential equation of 2
nd

 order which involves a parameter K and R with 44g as dependent 
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variable. Vaidya et al (1982) obtained a closed form solution of the said differential equation 

for K= -2 and analyzed it physically.  Knutson (1984) had analyzed the Vaidya’s model with 

respect to validity and stability.  Tikekar (1990) discussed the model corresponding to K= -7 

and found the maximum admissible mass [3]. 

Maharaja Leach P.G.L (1996) presented a new class of algebraic solution for all the negative 

integral value of K [4].  Patrick Wills (1990) analyzed the model for K=2 and K=-7 with 

various physical aspects [9]. 

Jasim et al (2000, 2003) obtained the most exact general solution with some restricted 

conditions [6], [7]. 

In the present article the author has solved the second order differential equation of Vaidya – 

Tikekar (1982) problem in general form using similarity transformation method (STM) to 

obtained an optimal solution by using the very powerful technique; Similarity transformation 

method with the help of confluent hypergeometric functions and MATLAB V.6.  

 

2. BASIC EQUATIONS 

The Vaidya-Tikeker space – time metric [2, 3]  

  2)(22222)(2 sin dteddrdreds rr                                                       (1)   

Assuming that the physical hypersurfaces t = constant in a relativistic super-dense star has 

the geometry of a 3 – spheroid. 

We should have 
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The metric (1) is regular and positive definite at all the points Rr  for K<1.  In case K=1, 

this leads to a flat space while for K=0, leads to a well-known Schwarzschild’s interior 

solution. 

For K<1, the perfect fluid distribution assumes the form 
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Now, there are two cases:  For K<0 a transformation of a type X
K

K
x

1
 sends the 

equation (2) into the following compact form: 

    2,2,011 222  mmKymyXyX                                             (3) 

While for case 0<K<1, a transformation X
K

K
x




1
 transforms the equation (2) to the 

following form:  

    21,2,011 222  mmKymyXyX                                        (4) 

 

Equation (1), together with the Einstein's field equations for perfect fluid distributions yields: 
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The corresponding expressions for energy density  , pressure P, flow vector iv  can be 

furnished as follows: 
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 1,00,0  yvi                                                                                                             (8) 

where y satisfies the isotropy condition  3
3

2
2

1
1 TTT   

    The expressions (6)-(8) with (3) are said to represent physically plausible model for a star 

provided that [8]: 

 The matter density ρ and the fluid pressure P should be positive throughout the 

distribution. 

 The gradients
dr

dP

dr

d
&


should be negative with increasing radius. 

 The weak energy (WEC) and strong energy (SEC) should be positive. 

 The adiabatic sound speed should not exceed the speed of light as implication of 

causality fulfilment. 

The energy density gradient can be obtained by differentiating (6) with respect to r as: 
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It is clear that the energy density gradient ceases to be negative as one goes inside the 

region  KRr /22  .  Therefore, it is clear that 





  0,0

dr
d to get and ensure that K is 

negative. 

 

3. MATHEMATICAL FORMULATION [1] 

 

     We consider a one - parameter Lie group of transformation  

   2* ,  OyxXxx   

   2* ,  OyxYyy                                                                                                        (10) 

Then the extended transformation, will be 

   2;,  OpyxPP   

   2,;,  Oqpyxqq                                                                                                  (11) 
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We derive   and   as follows: 

yXPPXPYYx xy
2    

yxyyyxxxyyyxxx qPXqXXPXPPXYPPYY  322 22    

                                                                                                                                               (12) 

The infinitesimal generator D
(1)

 and D
(2)
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4. GROUP – INVARIANT SOLUTION  
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Equation (3) can be written in the primed form with the use of equations (9) and (10) for the 

primed variables and equating coefficients of p
n
q

m
 give the infinitesimal elements (X,Y) 

leaving equation ( 3 ) to be invariant. 

Now, we find the determining equations for X and Y as follows: 

   2322 22  OqpXqXXpYppXYpPYYq yxyyyxxxyyyxxx   

 yxyyxxyyyxxx XpXXpxpXxYxpYpxYxqx 2232222222 22   

     yxxxy XxpxpXxYxpOxqXOqXxqpXx 22222 2   

      0222   OkYkyYyOpXO                                                        (15) 

 

We find a primary set of determining equations as follows: 

 

Monomials                                              Coefficient 

       p 022 22  XxXXxYxXY xxxyxxxyx                                           (16) 

       P
2
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       P
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      q p 0XxX- y
2

y                                                                                          (20) 

 

and the terms for   free of  the derivatives in extended equation(15) have been found as:  

02  kYYxYYxY xxxxx , which implies to 

    011 2  YkxYYx xxx                                                                                              (21) 

Equation (20)     0012  yy XXx   

   xHyxX ,  

 xHX x                                                                                                                             (22) 

Substituting equation (22) in equation (19), yields 
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Since    xH
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 , substituting equation (23) in equation (19), we get 

                  zeroyxX ,  

Now, rewriting equation (15) using the result obtained above, the second set of the 

determining equations has the following: 

 

Monomials                                             Coefficient 

p 022 2  yxyx YxY                                                                          (24) 

P
2
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From equation (25), we have  

  001 2  yyyy YYx                                                                                                       (26) 

Equation (26) leads to    xRycyxY  1,   

 at 0c
1
 , equation (25) gives 

   xRyxY ,  

i.e   yxY ,  is a function of x only 

The second order deferential equation (3) is invariant to the twice- extended group xx   
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This is of the type of confluent hypergeometric function which is well defined provided c is 

non-negative integer, and converges for 1x  and any solutions in other regions are 

obtainable by analytic continuation of these solutions [5, 10] 
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Therefore we find 
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Now, there exists a simple relation between the confluent hypergeometric with different 

parameters by 1 . 

     From equation (27), we found k for fixed 
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In the similar manner, when 27a  and 23c   ,   14k  

This yield to 
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5. LIE'S REDUCTION THEOREM AND ITS APPLICATION 

      Let the general form of the second order Ordinary Differential Equation is 

  0,,, yyyxw  , which is always written as a pair coupled first order ordinary differential 

equation as follows [4] 

uy   

  0,,, uuyxw                                                                                                                        (28) 

     Equation (28) determines a two – parameter family of curves in 3 – dimensional space, 

which is invariant to the once-extended group ),,( YX ; the transformations of the group 

carry each of these curves into other curves of the family. 

     Each one – parameter family of curves defines a surface in ),,( uyx - space and denoted by 

equation   0,,, cuyx , which is invariant.  
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i.e     cUYXcuyx ;,,,,,0                                                                                       (29) 

and satisfies 0,  uyx YX                                                                                          (30) 

The characteristics equations of which are 
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If  yxP ,  and  yxq ,  are two integrals of equation (29) the general solution for   is an 

arbitrary function G of P and q.  The function  yxP ,  being an integral of the first pair of 

equation (29) is a group invariant, the function    yyxquyxq ,,,,   which is an invariant of 

the once extended group called a first differential invariant. 

(If we adopt the invariant P and first differential invariant q as new variables, the second – 

order differential equation   0,,, yyyxw   will reduce to a first order differential equation in 

P and q). 

Now, if we write differential equation (3) in the form   0,,, yyyxu   where 
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The infinitesimal coefficients of the group are: 
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Direct substitution now shows that 
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From the first equality, we get: 
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     The greater generality of solution in terms of hypergeometric functions outweighs 

tractability of the solution presented [4].    
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Substituting this value of x  in the second and third term tells us that we can treat Y  and Y  as 

constants when integrating the second equality 
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Thus     
43432 1

5

3
1

5

2 xx exxe   is an invariant                                                      (32) 

and     qyxxecye
x

c xx 


















 41243
1

2

3
1

2

3
                                                       (33) 

Differentiating equation (33), we get 
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Such that  xEi  is called (Cauchy-Newton function) and defined by   dt
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6. CONCLUSIONS  

The space time metrics with hypersurfaces t= constant as spheroid involve two parameters K 

and R is describe the interior of a star.  The corresponding Einstein’s equation gives rise an 

ordinary differential equation of 2
nd

 order involving a parameter K.  Lie’s group method has 

been applied to get a very interesting optimal solutions to feed as some very remarkable 

models at K=-2, -7, -14 and so on depending on continuation of  solutions for confluent 

hypergeometric series:  
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Assuming different values of c has generated different values of K to represent different star 

models. The physical analyses are not investigated in this article. 
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