
Available online at http://scik.org

J. Math. Comput. Sci. 11 (2021), No. 6, 8458-8471

https://doi.org/10.28919/jmcs/6230

ISSN: 1927-5307

MODIFIED RESIDUAL POWER SERIES METHOD FOR SOLVING SYSTEM OF
DIFFERENTIAL ALGEBRAIC EQUATIONS

N. R. ANAKIRA1,∗, M. S. HIJAZI2, A. F. JAMEEL3, A. K. ALOMARI4, R. M. BATYHA4,5,

M. ALMAHAMEED1

1Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, 2600

Irbid, Jordan

2Department of Mathematics, College of arts and Sciences Tabarjal, Jouf University, KSA

3School of Quantitative Sciences, Universiti Utara Malaysia (UUM), Kedah, Sintok, 06010 Malaysia

4Department of Mathematics, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan

5Department of Computer Science, Faculty of Science and Information Technology, Irbid National University,

2600 Irbid, Jordan

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, a powerful modified technique based on the residual power series method (RPSM) has been

formulated for the solutions of system of linear and nonlinear algebraic differential equations. The performance

and effectiveness of this modification are verified throughout the results obtained of the tested numerical examples

and comparing it with that obtained by the standard RPSM and other method in literature.
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1. INTRODUCTION

Linear and nonlinear system of differential equations appears in various fields of applied sci-

ence and engineering. Obtaining exact solutions of these systems are not easy to find. Different
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numerical or approximated methods have been applied such as homotopy analysis method, op-

timal homotopy analysis method, A domian decomposition method, Differential transformation

method, cubic splin, and so on [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The existing of a power-

ful and perfect method with high performance results is much more difficulties in related to the

size of computational work, especially when the system is strongly nonlinear. In this regard,

the differential algebraic equation is kind of differential equations, but the unknown functions

in these equations are satisfying additional algebraic equations, such tha the derivatives is not in

general expressed explicitly and typically derivatives of some of the dependent variables may

not arise in the equations at all. In the last decades, several studies about the differential alge-

braic equations have been appeared. In this point, it is commonly difficult to solve these types

of equations analytically. Hence, there are many powerful numerical methods in literature that

can be employed to find approximate solutions, for example, the backward differentiation for-

mula is first numerical method employed to find the solutions of class of algebraic differential

equations. The implicit Runge-Kutta method also has been employed to solve these type of

equations numerically. Furthermore, the variational iteration method and the homotopy pertur-

bation method have been applied successfully for solving different types of equations and their

applications in engineering [14, 15, 16, 17, 18, 19].

The fundamental motivation of this article is to utilized the RPSM for developing a technique

to obtain the exact solutions of strongly linear and nonlinear system of differential algebraic

equations. This technique is simple, in addition it can be applied directly to the given prob-

lems and does’t require big effort to achieve accurate approximate solutions. The RPSM is an

effective, easy and powerful technique that was employed in extensive scale in the last years

for different types of differential equations without any restrictions such as lineariazation, de-

scretization and perturbation [20, 21, 22, 23, 24, 25, 26, 27]. However, the accuracy of the

RPSM depend on the number of the approximation and the solution converge to the exact form

by increasing the number of the approximation.

The fundamental motivation of this article is based on improving the efficiency of the RPSM

solution by using an alternative technique throughout applying the laplace transformation to the

truncated RPSM solution then convert the transformed series into a meromorphic function by
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applying Pade approximants, and then applying the inverse laplace transformation to obtain the

required solution of the given problem.

This article is organized as follows. Section 2 is considered to explain the basic concepts

of the RPSM along with the method analysis besides to the preliminary of the Pade approxi-

mants. Numerical examples are given to demonstrate and prove the capability of the presented

technique. Conclusions of this study are summarized in the last Section.

2. DESCRIPTION OF THE SOLUTIONS PROCEDURES

2.1. Residual Power Series Method RPSM. [28, 29]

In this research article, we explain the solution procedure for system of linear and nonlinear

algebraic differential equations which has the form of a power series expansion about the initial

point t = t0 for the given problem

(1) u′(t) = f (t,u(t)), u(0) = t0, t ∈ [0,a],

where f : [0,a]×R− > R are nonlinear continuous function, u(t) are unknown functions of

independent variable t to be determined, and a > 0. To reach our goal, we assume the solution

in the following form

(2) u(t) =
∞

∑
m=0

um(t),

where um(t) are terms of approximations, note that, when m = 0, we have u0(t) = u(t0) = c0,

which is the initial guess approximation, then we evaluate um(t),∀m = 1,2, ... and approximate

the solution u(t) of the given problem by k’th truncated series

(3) uk(t) =
k

∑
m=0

cm(t)m

To apply the RPSM, we write the given problem (1) in the following form:

u′(t)− f (t,u(t) = 0.(4)

Now, the kth residual function will be obtained by substituting the k′th truncated series (3) into

Eq. (4), as given below

(5) Resk(t) =
k

∑
m=1

mcmtm−1− f (t,
k

∑
m=0

um(t)),
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and the following ∞ ’th residual function:

(6) Res∞(t) = lim
k→∞

Resk(t)

Clearly, it is easy to see that Res∞(t) = 0 for each t ∈ (t0,T ), are infinitely differentiable func-

tions at t = t0. Moreover, dm

dtm Res∞(t0) = dm

dtm Resk(t0) = 0,m = 1,2, ...,k, this relation is consid-

ered a basic rule in the RPSM and its applications.

Now, in order to obtain the first order-approximate solutions, we put k = 1, and substituting

t = 0 into Eq. (5), and using the fact that Res∞(0) = Res1(0) = 0 , to evaluate c1 = f (0,c0) =

f (0,u(0)). Thus, using first-truncated series the first approximation for the given problem can

be written as

u(t) = u(t0)+ f (t0,u(t0))t(7)

Similarly, the second-order approximation will be will be obtained by substituting k = 2 into

Eq. (2) to be ∑
k=2
m=0 um(t) and by differentiate both sides of Eq. (5) with respect to t which yields

to d
dt Res2(0) = 2c2− ∂

∂ t f (0,c0)− c1
∂

∂u2 f (0,c0). In fact, d
dt Res2(0) = Res∞(0) = 0.

Thus, we can write c2 =
1
2(

∂

dt f (0,u(0))+ c1
∂

∂u2 f (0,u(0))). Therefore, by consider the val-

ues of c1 and c2 into Eq.(3) when k = 2, the second-order approximate solution for the given

problem becomes:

u(t) = u(0)+ c1t + c2t2(8)

The same process will be repeated to compute more components of the solution-order to obtain

higher accuracy. The next theorem shows convergence of the RPS method.

2.2. Padé approximation. [29, 30] The [L/M] Padé approximants of a function u(x) is given

by [
L
M

]
=

PL(t)
QM(t)

where PL(t) and QM(t) are polynomials of degrees at most L and M, respectively. We know the

formal power series

u(t) =
∞

∑
i=1

ait i.
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The coefficients of the polynomials PL(t) and QM(t) are obtained from the equation

(9) u(t)− PL (t)
QM (t)

= O
(
tL+M+1)

When the fraction of the numerator and denominator PL(t)
QM(t) is multiplying by a nonzero constant

the fractional values remain unchanged, then we can define the normalization condition as

(10) QM (0) = 1.

Hence, we note that PL(t) and QM(t) have no public factors. If we express the coefficient of

PL(t) and QM(t) as

(11)

 PL (t) = p0 + p1t + p2t2 + · · ·+ pLtL

QM (t) = q0 +q1t +q2t2 + · · ·+qMtM

then, by Eq.s (10) and (11), we may multiply (9) by QM(x), which linearizes the coefficient

equations. We can write out Eq. (9) in more detail as

(12)



aL+1 +aLq1 + · · ·+aL−M+1qM = 0

aL+2 +aL+1q1 + · · ·+aL−M+2qM = 0

.

.

aL+M +aL+M−1q1 + · · ·+aLqM = 0

(13)



a0 = p0

a0 +a0q1 = p1

a2 +a1q1 +a0q2 = p2

.

.

aL +aL−1q1 + · · ·+a0qL = pL

To solve these equations, we start with Eq. (12), which is a set of linear equations for all the

unknown q′s. Once the q′s are known, then Eq. (13) gives an explicit formula for the unknown

p′s, which complete the solution.

If Eq. (12) and Eq. (13) are non-singular, then we can solve them directly and obtain Eq.(15),
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where Eq. (15) holds, and if the lower index on a sum exceeds the upper, the sum is replaced

by zero:

[
L
M

]
=

det



aL−M+1

.

.

.

aL

∑
L
j=M a j−Mx j

aL−M+2

.

.

.

aL+1

∑
L
j=M−1 a j−M+1x j

...

.

.

.

...

...

aL+1

.

.

.

aL+M

∑
L
j=0 a jx j



det



aL−M+1

.

.

.

aL

xM

aL−M+2

.

.

.

aL+1

xM−1

...

.

.

.

...

...

aL+1

.

.

.

aL+M

1



(14)

Now, we can obtain Padé approximants diagonal matrix of different order using software such

as Mathematica, Matlab and son.

3. NUMERICAL RESULTS AND DISSECTIONS

This section is devoted to present some numerical examples to check the validity and perfor-

mances of our procedure.

3.1. Numerical Results.

3.1.1. Example 1. Consider the following linear system of algebraic differential equation

u′1(t)− tu′2(t)+ t2u′3(t)+u1(t)− (t +1)u2(t)+(t2 +2t)u3(t) = 0,

u′2(t)− tu′3(t)−u2(t)+(t−1)u3(t) = 0,

u3(t) = sin(t)(15)

subject to the initial conditions

u1(0) = 1 u2(0) = 1, u3(0) = 0.(16)
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To apply RPSM, we start with the initial conditions c1,0 = u1,0(t) = 1, c2,0 = u2,0(t) =

1, c3,0 = u3,0(t) = 0, as initial guess and then, we suppose the solution in the following form

of kth-truncated series

u1,k(t) = c1,0 + c1,1t + c1,2t2 + · · ·+ c1,ktk,

u2,k(t) = c2,0 + c2,1t + c2,2t2 + · · ·+ c2,ktk,

u3,k(t) = c3,0 + c3,1t + c3,2t2 + · · ·+ c3,ktk.(17)

To evaluate the values of unknown constants ci,m, i = 1,2,3 m = 1,2, ...,k, we construct the

following k′th residual functions

Resk
1(t) =

k

∑
m=1

mc1,mtm−1−
k

∑
m=1

c2,mtm +
k

∑
m=1

mc3,mtm+1 +
k

∑
m=0

c1,m(t)m,

−
k

∑
m=0

c1,mtm +(t2 +2t)
k

∑
m=1

c3,mtm, ,

Resk
2(t) =

k

∑
m=1

mc2,mtm−1−
k

∑
m=1

c3,mtm−
k

∑
m=0

c2,mtm,

+(t +1)
k

∑
m=1

c3,mtm,

Resk
3(t) =

d
dt
(

k

∑
m=1

c3,mtm− sint).(18)

Using k = 1 and t = 0 on the above residual function and by making it equal to zero, i.e

(Res1
i (0) = 0, i = 1,2,3), the values of ci,1, i = 1,2,3 will be c1,1 = 0,c2,1 = 1 and c3,1 = 1.

The values of the coefficients c1,2, c2,2 and c3,2 can be evaluated by differentiate both sides of

Eq.(18) with respect to t by using k = 2 and then substituting t = 0 to be c1,2 =
3
2 , c2,2 =

3
2 and

c3,2 = 0. By follow the same proceeder, the following order of the RPSM series approximate

solutions is given by

u1,10(t) = 1+
3
2

t2 +
1
3

t3 +
5
24

t4 +
1

30
t5 +

7
720

t6 +
8

720
t7 +

1
4480

t8

+
1

45360
t9 +

11
3628800

t10 + · · ·
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u2,10(t) = 1+ t +
3
2

t2 +
1
6

t3− 1
8

t4 +
1

120
t5 +

7
720

t6 +
1

5040
t7− 1

5760
t8

+
1

362880
t9 +

11
3628800

t10 + · · ·

u3,10(t) = t− 1
6

t3 +
1

120
t5− 1

5040
t7 +

1
362880

t9 + · · ·(19)

which is converge to the exact solution in the limit of infinity terms of the order of the ap-

proximate solutions. To get better or high accuracy of the RPSM, we will employ an effective

and accurate technique depend on the truncated series solutions of the RPSM by applying the

laplace transform to the first ten terms of Eq. (21) to be

L{u1,10(t)} =
11
s11 +

8
s10 +

9
s9 +

6
s8 +

7
s7 +

4
s6 +

5
s5 +

2
s4 +

3
s3 +

1
s
,

L{u2,10(t)} =
11
s11 +

1
s10 −

7
s9 +

1
s8 +

7
s7 +

1
s6 −

3
s5 +

1
s4 +

3
s3 +

1
s2 +

1
s
,

L{u2,10(t) =
1

s10 −
1
s8 +

1
s6 −

1
s4 +

1
s2 .(20)

Consider s = 1
z , yields

L{u1(t)} = 11z11 +8z10 +9z9 +6z8 +7z7 +4z6 +5z5 +2z4 +3z3 + z,

L{u2(t)} = 11z11 + z10−7z9 + z8 +7z7 + z6−3z5 + z4 +3z3 + z2 + z,

L{u3(t)} = z10− z8 + z6− z4 + z2.(21)

Then, using the Pade approximants of [5
5 ]

L{u1} =
2z3− z2 + z

z3− z2− z+1

L{u2} =
z5−2z4 +4z3 + z

−z5 + z4−2z3 +2z2− z+1

L{u3} =
z2

z2 +1
.(22)

Consider that z = 1
s , then applying the inverse of Laplace transform, yields to

u1(t) = ett + e−t

u2(t) = et + t sin(t).

u3(t) = sin(t).(23)
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which is the exact solution.

3.1.2. Example 2. The second examples considered is the following nonlinear system of al-

gebraic differential equation

u′1(t)−u1(t)+u1(t)u3(t)+u3(t)+u′3(t) = 1,

u′3(t)−u2(t)+u2
1(t)+u3(t) = 0,

2u2(t)−2u2
1(t) = 0(24)

subject to the initial conditions

u1(0) = u2(0) = u3(0) = 1.(25)

To apply RPSM, we start with the initial conditions c1,0 = u1,0(t) = 1, c2,0 = u2,0(t) =

1, c3,0 = u3,0(t) = 1, as initial guess and then, we suppose the solution in the following form

of kth-truncated series

u1,k(t) =
k

∑
m=0

c1,mtm = c1,0 + c1,1t + c1,2t2 + · · ·+ c1,ktk,

u2,k(t) =
k

∑
m=0

c2,mtm = c2,0 + c2,1t + c2,2t2 + · · ·+ c2,ktk,

u3,k(t) =
k

∑
m=0

c3,mtm = c3,0 + c3,1t + c3,2t2 + · · ·+ c3,ktk,(26)

then we construct the kth residual function Resk
i (t), where i = 1,2, ... is

Resk
1(t) =

k

∑
m=1

mc1,mtm−1−
k

∑
m=0

c1,mtm +(
k

∑
m=0

c1,mtm +1)(
k

∑
m=0

c3,mtm)

+
k

∑
m=1

mc3,mtm−1−1,

Resk
2(t) =

k

∑
m=1

mc3,mtm−1−
k

∑
m=0

c2,mtm +(
k

∑
m=0

c1,mtm)2 +
k

∑
m=0

c3,mtm,

Resk
3(t) =

d
dt
(

k

∑
m=0

2c2,mtm−2(
k

∑
m=0

c1,mtm)2).(27)

Using k = 1 and t = 0 on the above residual function and make it equal to zero, i.e (Res1
i (0) =

0, i= 1,2,3), the values of ci,1, i= 1,2,3 are evaluated to be c1,1 = 1,c2,1 = 2 and c3,1 =−1.
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The values of the coefficients c1,2, c2,2 and c3,2 can be evaluated by differentiate both sides of

Eq.(18) with respect to t using k = 2 and then substituting t = 0 to be c1,2 =
1
2 , c2,2 = 2 and

c3,1 =
1
2 . By applying the same proceeder, the following order of the RPSM series approximate

solutions will be

u1,k(t) = 1+ t +
1
2

t2 +
1
3!

t3 +
1
4!

t4 +
1
5!

t5 +
1
6!

t6 +
1
7!

t7 +
1
8!

t8 + · · · ,

u2,k(t) = 1+2t +2t2 +
4
3

t3 +
2
3

t4 +
4

15
t5 +

4
45

t6 +
8

315
t7 +

2
315

t8 + · · · ,

u3,k(t) = 1− t +
1
2

t2− 1
3!

t3 +
1
4!

t4− 1
5!

t5 +
1
6!

t6− 1
7!

t7 +
1
8!

t8 + · · · ,(28)

which is converge to the exact solution in the limit of infinity terms of the order of the approx-

imate solutions, i.e (limx→∞ ui(t)) = tsin(t), tan(t) and tcos(t),∀i = 1,2,3, respectively. To

obtain high accuracy, we use powerful and effective technique based on RPSM truncated series

solutions by applying the laplace transform to the first ten terms of Eq. (28) as follows

L{u1,k(t)} =
1
s9 +

1
s8 +

1
s7 +

1
s6 +

1
s5 +

1
s4 +

1
s3 +

1
s2 +

1
s
,

L{u2,k(t)} =
256
s9 +

128
s8 +

64
s7 +

32
s6 +

16
s5 +

8
s4 +

4
s3 +

2
s2 +

1
s

L{u3,k(t) =
1
s9 −

1
s8 +

1
s7 −

1
s6 +

1
s5 −

1
s4 +

1
s3 −

1
s2 +

1
s
.(29)

For the purpose of simplicity, let s = 1
z , yields to

L{u1,k(t)} = z9 + z8 + z7 + z6 + z5 + z4 + z3 + z2 + z,

L{u2,k(t)} = 256z9 +128z8 +64z7 +32z6 +16z5 +8z4 +4z3 +2z2 + z,

L{u3,k(t)} = z9− z8 + z7− z6 + z5− z4 + z3− z2 + z.(30)

Now, we use the Pade approximants of [5
5 ]

L{u1} =
z

1− z

L{u2} =
z

1−2z
.

L{u3} =
z

z+1
.

(31)
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FIGURE 1. Absolute errors related to u1(t), u2(t) and u3(t) of example 1
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FIGURE 2. Absolute errors related to u1(t), u2(t) and u3(t) of example 2

Consider z = 1
s , and applying the inverse of the Laplace transform, yields to

u1(t) = et

u2(t) = e2t .(32)

u3(t) = e−t .

which is the exact solution.

The obtained results, show that the proposed technique give us high accurate solutions iden-

tical to the exact solution. This obtained throughout using a few number’s of truncated series

solution of the standard RPSM, this advantage overcomes the difficulties and efforts of evalu-

ated more terms of the solutions order. Figs. 1 and 2, are displayed to represent the absolute

errors of the standard RPSM solutions, from these figures we observed that high accuracy will

be obtained by evaluating more and more terms of the approximation.
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4. CONCLUSIONS

In this research paper, an accurate and efficient modified procedure is presented and em-

ployed to handle linear and nonlinear system of algebraic differential equations based on the

RPSM. The obtained results confirmed that the presented procedure is precise, convenient and

straightforward for the solution of such systems of algebraic equations.
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