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Abstract. Let G be a finite group. The intersection graph of G is a graph whose vertex set is the set of all proper

non-trivial subgroups of G and two distinct vertices H and K are adjacent if and only if H ∩K 6= {e}, where e is

the identity of the group G. In this paper, we investigate some properties and exploring the metric dimension and

the resolving polynomial of the intersection graph of D2p2 . We also find some topological indices such as Wiener,

Hyper-Wiener, first and second Zagreb, Schultz, Gutman and eccentric connectivity indices of the intersection

graph of D2n for n = p2, where p is prime.

Keywords: intersection graph of subgroups; Wiener index; Zagreb indices; Schultz index; resolving polynomial
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2010 AMS Subject Classification: 05C25, 05C12.

1. INTRODUCTION

The notion of intersection graph of a finite group was introduced by Csákány and Pollák in

1969 [1]. For a finite group G, associate a graph Γ(G) with it in such away that the set of

vertices of Γ(G) is the set of all proper non-trivial subgroups of G and join two vertices if their

intersection is non-trivial. For more studies about intersection graphs of subgroups and related

topics, we refer the reader to see [2, 3, 6, 7, 9, 16, 17, 18].
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Suppose that Γ is a simple graph, which is undirected and contains no multiple edges or

loops. We denote the set of vertices of Γ by V (Γ) and the set of edges of Γ by E(Γ). We write

uv ∈ E(Γ) if u and v form an edge in Γ. The size of the vertex-set of Γ is denoted by |V (Γ)|

and the number of edges of Γ is denoted by |E(Γ)|. The degree of a vertex v in Γ, denoted

by deg(v), is defined as the number of edges incident to v. The distance between any pair of

vertices u and v in Γ, denoted by d(u,v), is the shortest u− v path in Γ. For a vertex v in Γ, the

eccentricity of v, denoted by ecc(v), is the largest distance between v and any other vertex in Γ.

The diameter of Γ, denoted as diam(Γ), is defined by diam(Γ) = max{ecc(v) : v ∈ V (Γ)}. A

graph Γ is called complete if every pair of vertices in Γ are adjacent. If S ⊆ V (Γ) and no two

elements of S are adjacent, then S is called an independent set. The cardinality of the largest

independent set is called an independent number of the graph Γ. A graph Γ is called bipartite if

the set V (Γ) can be partitioned into two disjoint independent sets such that each edge in Γ has

its ends in different independent sets. A graph Γ is called split if V (Γ) can be partitioned into

two different sets U and K such that U is an independent set and the subgraph induced by K is

a complete graph.

Let W = {v1,v2, · · · ,vk} ⊆ V (Γ) and let v be any vertex of Γ. The representation of v with

respect to W is the k-vector r(v|W ) = (d(v,v1),d(v,v2), · · · ,d(v,vk)). If distinct vertices have

distinct representations with respect to W , then W is called a resolving set for Γ. A basis of Γ is

a minimum resolving set for Γ and the cardinality of a basis of Γ is called the metric dimension

of Γ and denoted by β (Γ) [8]. Suppose ri is the number of resolving sets for Γ of cardinality

i. Then the resolving polynomial of a graph Γ of order n, denoted by β (Γ,x), is defined as

β (Γ,x) = ∑
n
i=β (Γ) rixi. The sequence (rβ (Γ),rβ (Γ)+1, · · · ,rn) formed from the coefficients of

β (Γ,x) is called the resolving sequence.

For a graph Γ, the Wiener index is defined by W (Γ) = ∑{u,v}⊆V (Γ) d(u,v) [5]. The hyper-

Wiener index of Γ is defined by

WW (Γ) = 1
2W (Γ)+ 1

2 ∑{u,v}⊆V (Γ)(d(u,v))2 [10]. The Zagreb indices are defined by M1(Γ) =

∑v∈V (Γ)(deg(v))2 and M2(Γ) = ∑uv∈E(Γ) deg(u)deg(v) [13]. The Schultz index of Γ, denoted

by MT I(Γ) is defined in [14] by MT I(Γ) = ∑{u,v}⊆V (Γ) d(u,v)[deg(u)+ deg(v)]. In [15, 11]

the Gutman index has been defined by Gut(Γ) = ∑{u,v}⊆V (Γ) d(u,v)[deg(u)×deg(v)]. Sharma,
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Goswami and Madan defined the eccentric connectivity index of Γ, denoted by ξ c(Γ), in [12]

by ξ c(Γ) = ∑v∈V (Γ) deg(v)ecc(v).

For an integer n≥ 3, the dihedral group D2n of order 2n is defined by

D2n = 〈r,s : rn = s2 = 1,srs = r−1〉.

In [6], Rajkumar and Devi studied the intersection graph of subgroups of some non-abelian

groups, especially the dihedral group D2n, quaternion group Qn and quasi-dihedral group QD2α .

They were only able to obtain the clique number and degree of vertices. It seems difficult to

study most properties of the intersection graph of subgroups of these groups. In this paper, the

focus will be on the intersection graph of subgroups of the dihedral group D2n for the case when

n = p2, p is prime. It is clear that when n = p, then the resulting intersection graph of subgroups

is a null graph, which is not of our interest. For n = p2, the intersection graph Γ(D2p2) of the

group D2p2 has p2 + p+2 vertices. We leave the other possibilities for n open and we might be

able to work on them in the future. So, all throughout this paper, the considered dihedral group

is of order 2p2, and by intersection graph we mean intersection graph of subgroups.

This paper is organized as follows. In Section 2, some basic properties of the intersection

graph of D2p2 are presented. We see that the intersection graph Γ(D2p2) is split. In Section 3,

we find the metric dimension and the resolving polynomial of the intersection graph Γ(D2p2).

In Section 4, we find some topological indices of the intersection graph Γ(D2p2) of D2p2 such

as the Wiener, hyper-Wiener and Zagreb indices.

2. SOME PROPERTIES OF THE INTERSECTION GRAPH OF D2n

In [6], all proper non-trivial subgroups of the group D2n has been classified as shown in the

following lemma.

Lemma 2.1. The proper non-trivial subgroups of D2n are:

(1) cyclic groups Hk = 〈r n
k 〉 of order k, where k is a divisor of n and k 6= 1,

(2) cyclic groups Hi = 〈sri〉 of order 2, where i = 1,2, · · · ,n, and

(3) dihedral groups H i
k = 〈r

n
k ,sri〉 of order 2k, where k is a divisor of n, k 6= 1,n and i =

1,2, · · · , n
k .
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The total number of these proper subgroups is τ(n)+σ(n)− 2, where τ(n) is the number

of positive divisors of n and σ(n) is the sum of positive divisors of n. We mentioned that we

only focus on the case when n = p2, p is prime. Recall that, for n = p2, the intersection graph

Γ(D2p2) of the group D2p2 has p2 + p+2 vertices. The vertex set of Γ(D2p2) is V (Γ(D2p2)) =

(∪p2

i=1{Hi})∪ (∪p
i=1{H i

p})∪{H p}∪{H p2}, where

(1) Hi = 〈sri〉, where i = 1,2, · · · , p2,

(2) H i
p = 〈rp,sri〉, where i = 1,2, · · · , p,

(3) H p = 〈rp〉 and H p2
= 〈r〉.

The following theorem is given in [6] to compute the degree of any vertex in Γ(D2n). Since

we only consider the case n = p2, we restate it as follows:

Theorem 2.2. In the graph Γ(D2p2),

deg(v) =


1, if v = Hi for i = 1,2, · · · , p2 ,

2p+1 if v = H i
p for i = 1,2, · · · , p ,

p+1, if v = H p or H p2
.

The following theorem gives the exact number of edges in Γ(D2p2) which can be used in

Section 4 to compute the second Zagreb index.

Theorem 2.3. In the graph Γ(D2p2), |E(Γ(D2p2))|= 1
2(3p2 +3p+2).

Proof. It follows from Theorem 2.2 that there are p2 vertices of degree 1, p vertices of degree

2p+1 and 2 vertices of degree p+1. Thus, |E(Γ(D2p2))|= 1
2 ∑v∈V (Γ(D2p2)) deg(v) = 1

2(p2 ·1+

p · (2p+1)+2 · (p+1)) = 1
2(3p2 +3p+2). �

Theorem 2.4. Let Γ = Γ(D2p2) be an intersection graph on D2p2 . Then diam(Γ) = 3. In

particular, Γ is connected.

Proof. Suppose u and v are two distinct vertices of Γ(D2p2). If u and v are adjacent, then

d(u,v) = 1. Otherwise, let u∩ v = {e}. Then there are three possibilities: u = Hi and v = H j

for i 6= j, u = Hi and v = H j for j = p or p2, and u = Hi and v = H j
p for i 6≡ j(mod p). For the

first case, if i≡ j(mod p), then there exists w = Hk
p where k≡ i(mod p) such that uw,wv ∈ E(Γ)
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and so d(u,v) = 2. But if i 6≡ j(mod p), then no such w exist such that uw,vw ∈ E(Γ). Then take

w = Hk1
p where k1 ≡ i(mod p) and w′ = Hk2

p where k2 ≡ j(mod p), and so uw,ww′,w′v ∈ E(Γ).

Hence d(u,v) = 3. For the second case, there exists w = Hk
p, where k ≡ i(mod p), such that

uw,wv ∈ E(Γ). Hence d(u,v) = 2. For the last case, there exists w = Hk
p, where k ≡ i(mod p),

such that uw,wv ∈ E(Γ) and then d(u,v) = 2. �

From Theorem 2.4, one can see that the maximum distance between any pair of vertices in

Γ(D2p2) is 3. In order to explore the exact distance between any pair of vertices in Γ(D2p2) ,

we state the following corollary which can be used in the next section to find some topological

indices of Γ(D2p2).

Corollary 2.5. In the graph Γ(D2p2),

d(u,v) =



1 if u = Hi,v = H j
p where i≡ j(mod p) for i = 1,2, · · · , p2

and j = 1,2, · · · , p,

1 if u = H p or H p2
,v = H j

p where j = 1,2, · · · , p,

1 if u = H p,v = H p2
,

1 if u = H j
p,v = H l

p where j 6= l and j, l = 1,2, · · · , p,

2 if u = Hi,v = H p or H p2
for i = 1,2, · · · , p2,

2 if u = Hi,v = H j
p where i 6≡ j(mod p) for i = 1,2, · · · , p2

and j = 1,2, · · · , p,

2 if u = Hi,v = H j where i 6= j and i≡ j(mod p)

for i, j = 1,2, · · · , p2, and

3 if u = Hi,v = H j where i 6≡ j(mod p) for i, j = 1,2, · · · , p2

Theorem 2.6. Let Γ = Γ(D2p2) be an intersection graph on D2p2 . Then ∪p2

i=1{Hi} is an inde-

pendent set.

Proof. From Corollary 2.5, d(u,v) 6= 1 for every distinct pairs of vertices u,v ∈ ∪p2

i=1{Hi} and

so uv /∈ E(Γ). Therefore, ∪p2

i=1{Hi} is an independent set for each i. �

Corollary 2.7. The independent number of the graph Γ(D2p2) is p2 +1.
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Proof. From Theorem 2.6, the independent set ∪p2

i=1{Hi} is of size p2. Also, from Corollary

2.5, one can see that none of the vertices of H p or H p2
is adjacent to vertices in ∪p2

i=1{Hi}. So,

in total the size of the largest independent set is p2 +1. �

Theorem 2.8. Let H ⊆V (Γ(D2p2)). Then the intersection graph Γ(H) is complete if and only

if H = ∪p
i=1{H i

p}∪{H p}∪{H p2}.

Proof. Suppose H =∪p
i=1{H i

p}∪{H p}∪{H p2}. By Corollary 2.5, d(u,v) = 1 for every distinct

pairs of vertices u,v∈H. Then the graph Γ(H) is complete. The converse follows directly from

Corollary 2.5. �

The complete graph in the previous theorem is the largest complete subgraph of Γ(D2n). As

a consequence, the clique number of Γ(D2n) is p+2 which coincides with Theorem 2.3 in [6].

Theorem 2.9. Let H ⊆ V (Γ(D2p2)). Then Γ(H) = K1,p if and only if H = ∪p
i=1{Hi}∪ {H j

p}

where i≡ j(mod p).

Proof. The proof follows from Theorems 2.6 and 2.8. �

As a consequence of the above theorem, we have the following corollary.

Corollary 2.10. The graph Γ(D2p2) is split.

Theorem 2.11. In the graph Γ(D2p2),

ecc(v) =

 3 if v = Hi for i = 1,2, · · · , p2

2 otherwise.

Proof. Let v = Hi for some i. By Corollary 2.5, d(u,v) = 3 if u = H j where i 6≡ j(mod p),

otherwise d(u,v) < 3. Thus, ecc(v) = 3 for every v ∈ ∪p2

i=1{Hi}. If v 6= Hi for any i, then

again from Corollary 2.5, the maximum distance between v and any other vertex is 2, and so

ecc(v) = 2 for each v /∈ ∪p2

i=1{Hi}. �
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3. METRIC DIMENSION AND RESOLVING POLYNOMIAL OF INTERSECTION GRAPH

ON D2p2

For a vertex u of a graph Γ, the set N(u) = {v ∈V (Γ) : uv ∈ E(Γ)} is called the open neigh-

borhood of u and the set N[u] = N(u)∪{u} is called the closed neighborhood of u. If u and

v are two distinct vertices of Γ, then u and v are said to be adjacent twins if N[u] = N[v] and

non-adjacent twins if N(u) = N(v). Two distinct vertices are called twins if they are adjacent or

non-adjacent twins. A subset U ⊆V (Γ) is called a twin-set in Γ if every pair of distinct vertices

in U are twins.

Lemma 3.1. Let Γ be a connected graph of order n and U ⊆ V (Γ) be a twin set in Γ with

|U |= m. Then every resolving set for Γ contains at least m−1 vertices of U.

Corollary 3.2. [4] Let Γ be a connected graph, U resolves Γ and u and v are twins. Then u ∈U

or v ∈U. In addition, if u ∈U and v /∈U, then (U \{u})∪{v} also resolves Γ.

Theorem 3.3. Let Γ(D2p2) be an intersection graph on D2p2 . Then

β (Γ(D2p2)) = p2− p+1.

Proof. Let W = ((∪p2

i=1{Hi})∪{H p})− S, where S = {H1,H2, · · · ,Hp} with the property that

Hi and H j are in S if and only if i 6≡ j(mod p). One can see that W is a resolving set for Γ(D2p2)

of cardinality p(p−1)+1. Then β (Γ(D2p2))≤ p2− p+1. On the other hand, ∪p2

i=1{Hi} is the

union of p twin sets each of cardinality p such that Hi and H j belong to the same set if and only

if i≡ j(mod p). Also, {H p,H p2} is a twin set of cardinality 2. Then by Lemma 3.1, we see that

β (Γ(D2p2))≥ p(p−1)+1. �

The following is a useful property for finding a resolving polynomial of a graph of order n.

Lemma 3.4. If Γ is a connected graph of order n, then rn = 1 and rn−1 = n.

Theorem 3.5. Let Γ = Γ(D2p2) be an intersection graph on D2p2 . Then

β (Γ,x) = xp2−p+1
((2

1

)( p
p−1

)p
+∑

p
q=1 rp2−p+1+qxq +∑

2p−1
k=p+1 rp2−p+1+kxk +(p2 + p+ 1)x2p +

x2p+1
)
,
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where

rp2−p+1+q =
(p

i

)( p
p−1

)p−i(2
1

)(p
j

)
+
( p

i−1

)( p
p−1

)p−(i−1)(2
2

)(p
j

)
+
(p

i

)( p
p−1

)p−i(2
2

)( p
j−1

)
; q = i+ j,

rp2−p+1+k =
( p

k1

)( p
p−1

)p−k1
(2

1

)( p
k2

)
+
( p

k2

)( p
p−1

)p−k2
(2

1

)( p
k1

)
+( p

k1−1

)( p
p−1

)p−(k1−1)(2
2

)( p
k2

)
+
( p

k1

)( p
p−1

)p−k1
(2

2

)( p
k2−1

)
+
( p

k2−1

)( p
p−1

)p−(k2−1)(2
2

)( p
k1

)
+
( p

k2

)( p
p−1

)p−k2
(2

2

)( p
k1−1

)
,

k = k1 + k2,k1 6= k2,k1−1 6= k2,k1 6= k2−1 and 1≤ k j ≤ p for j = 1,2.

Proof. By Theorem 3.3, β (Γ) = p2 − p + 1. It is required to find the resolving sequence

(rβ (Γ),rβ (Γ)+1, · · · ,rβ (Γ)+2p+1) of length 2p+2.

To find rβ (Γ). For the reason that ∪p2

i=1{Hi} is the union of p twin sets and {H p,H p2} is also a

twin set, then by Corollary 3.2 and the principal of multiplication, we see that there are

(
p

p−1

)(
p

p−1

)
· · ·
(

p
p−1

)
︸ ︷︷ ︸

p−times

(
2
1

)
= 2pp

possibilities of resolving sets of cardinality β (Γ), that is, rβ (Γ) = 2pp.

For 1≤ l ≤ 2p−1, we aim to find rβ (Γ)+l .

First, we try to find rβ (Γ)+q, where 1 ≤ q ≤ p. Suppose u1,u2, · · · ,uq be q distinct vertices

of Γ that do not belong to any resolving set of cardinality β (Γ)+ q− 1. Recall the set S =

{H1,H2, · · · ,Hp} and Hi,H j ∈ S if and only if i 6≡ j(mod p). Then there are three possibilities to

consider: i vectors in S and j vectors in ∪p
j=1{H

j
p}; i−1 vectors in S, one vector in {H p,H p2}

and j vectors in ∪p
j=1{H

j
p}; or i vectors in S, one vector in {H p,H p2} and j− 1 vectors in

∪p
j=1{H

j
p}, where i+ j = q. Altogether, by principals of addition and multiplication, there are(p

i

)( p
p−1

)p−i(2
1

)(p
j

)
+
( p

i−1

)( p
p−1

)p−(i−1)(2
2

)(p
j

)
+
(p

i

)( p
p−1

)p−i(2
2

)( p
j−1

)
possibilities of resolving

sets of cardinality β (Γ)+q, where i+ j = q.

Second, to find rβ (Γ)+k, where p+ 1 ≤ k ≤ 2p− 1. Take the set of vertices v1,v2, · · · ,vk in Γ

that do not belong to any resolving set of cardinality β (Γ)+k−1. Since k > p, then we assume

that k = k1 + k2 such that k1 6= k2,k1− 1 6= k2 and k1 6= k2− 1, where 1 ≤ k j ≤ p for j = 1,2.

Then there are the following possibilities:
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k1 vertices of the set {v1,v2, · · · ,vk} are in S and k2 vertices of the set {v1,v2, · · · ,vk} are in

∪p
j=1{H

j
p},

k2 vertices of the set {v1,v2, · · · ,vk} are in S and k1 vertices of the set {v1,v2, · · · ,vk} are in

∪p
j=1{H

j
p},

k1 vertices of the set {v1,v2, · · · ,vk} are in S ∪ {H p,H p2} and k2 vertices of the set

{v1,v2, · · · ,vk} are in ∪p
j=1{H

j
p},

k1 vertices of the set {v1,v2, · · · ,vk} are in S and k2 vertices of the set {v1,v2, · · · ,vk} are in

∪p
j=1{H

j
p}∪{H p,H p2},

k2 vertices of the set {v1,v2, · · · ,vk} are in S ∪ {H p,H p2} and k1 vertices of the set

{v1,v2, · · · ,vk} are in ∪p
j=1{H

j
p} or

k2 vertices of the set {v1,v2, · · · ,vk} are in S and k1 vertices of the set {v1,v2, · · · ,vk} are in

∪p
j=1{H

j
p}∪{H p,H p2}.

Again, by the principal of addition and multiplication, there are( p
k1

)( p
p−1

)p−k1
(2

1

)( p
k2

)
+
( p

k2

)( p
p−1

)p−k2
(2

1

)( p
k1

)
+
( p

k1−1

)( p
p−1

)p−(k1−1)(2
2

)( p
k2

)
+( p

k1

)( p
p−1

)p−k1
(2

2

)( p
k2−1

)
+
( p

k2−1

)( p
p−1

)p−(k2−1)(2
2

)( p
k1

)
+
( p

k2

)( p
p−1

)p−k2
(2

2

)( p
k1−1

)
possible resolving sets of cardinality β (Γ)+ k, where p < k ≤ 2p−1.

By Lemma 3.4, rβ (Γ)+2p = p2 + p+1 and rβ (Γ)+2p+1 = 1. �

In the following remark, some additional possibilities of rβ (Γ)+k, where p < k ≤ 2p−1, are

given.

Remark 3.6. In Theorem 3.5, we have the following additional possibilities:

(1) if k1 = k2, then rβ (Γ)+k =( p
k1

)( p
p−1

)p−k1
(2

1

)( p
k2

)
+
( p

k1−1

)( p
p−1

)p−(k1−1)(2
2

)( p
k2

)
+
( p

k1

)( p
p−1

)p−k1
(2

2

)( p
k2−1

)
,

(2) if k1−1 = k2, then rβ (Γ)+k =( p
k1

)( p
p−1

)p−k1
(2

1

)( p
k2

)
+
( p

k2

)( p
p−1

)p−k2
(2

1

)( p
k1

)
+
( p

k1−1

)( p
p−1

)p−(k1−1)(2
2

)( p
k2

)
+( p

k1

)( p
p−1

)p−k1
(2

2

)( p
k2−1

)
+
( p

k2−1

)( p
p−1

)p−(k2−1)(2
2

)( p
k1

)
, and

(3) if k1 = k2−1, then rβ (Γ)+k =( p
k1

)( p
p−1

)p−k1
(2

1

)( p
k2

)
+
( p

k2

)( p
p−1

)p−k2
(2

1

)( p
k1

)
+
( p

k1−1

)( p
p−1

)p−(k1−1)(2
2

)( p
k2

)
+( p

k1

)( p
p−1

)p−k1
(2

2

)( p
k2−1

)
+
( p

k2

)( p
p−1

)p−k2
(2

2

)( p
k1−1

)
.
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4. SOME TOPOLOGICAL INDICES OF INTERSECTION GRAPH ON D2p2

In this section, some topological indices, such as the Wiener index, Hyper-Wiener index,

Zagreb indices, the Schultz index, the Gutman index and the eccentric connectivity index, of

the intersection graph for the dihedral group D2n, where n = p2, are computed.

Theorem 4.1. Let Γ = Γ(D2n) be an intersection graph on D2n. Then

W (Γ) =
1
2
(3p4 +3p3 +5p2 +3p+2).

Proof. Let u,v∈V (Γ). It follows from Corollary 2.5 that the number of possibilities of d(u,v)=

1 is p2 +
(p+2

2

)
, the number of possibilities of d(u,v) = 2 is p ·

(p
2

)
+ p · p · (p+ 1) and the

number of possibilities of d(u,v) = 3 is
(p

2

)(p
1

)(p
1

)
. Thus, W (Γ(D2n)) = (p2 + 1

2(p+ 1)(p+

2)) ·1+(1
2(3p3 + p2)) ·2+(1

2(p4− p3)) ·3 = 1
2(3p4 +3p3 +5p2 +3p+2). �

Theorem 4.2. Let Γ(D2n) be an intersection graph on D2n. Then

WW (Γ(D2n)) =
1
2
(6p4 +3p3 +6p2 +3p+2).

Proof. From Theorem 4.1 and Corollary 2.5, we can see that WW (Γ(D2n)) =
1
2

(
1
2(3p4+3p3+

5p2+3p+2)
)
+ 1

2

((
p2+ 1

2(p+1)(p+2)
)
·12+

(
1
2(3p3+ p2)

)
·22+

(
1
2(p4− p3)

)
·32
)
=

1
2(6p4 +3p3 +6p2 +3p+2). �

In the next two theorems, the first and second Zagreb indices for the intersection graph Γ(D2n)

are presented.

Theorem 4.3. Let Γ(D2n) be an intersection graph on D2n. Then

M1(Γ(D2n)) = 4p3 +7p2 +5p+2.

Proof. The proof is similar to the proof of Theorem 2.3. It follows from Theorem 2.2 that

M1(Γ(D2n)) = p2 ·12 + p · (2p+1)2 +2 · (p+1)2 = 4p3 +7p2 +5p+2. �

Theorem 4.4. Let Γ(D2n) be an intersection graph on D2n. Then

M2(Γ(D2n)) = 2p4 +6p3 +
13
2

p2 +
7
2

p+1.



6724 SANHAN MUHAMMAD SALIH KHASRAW

Proof. By Theorem 2.3, Γ has 1
2(3p2 + 3p+ 2) edges in which p2 edges with one end-vertex

of degree 1 and the other end-vertex of degree 2p+ 1, p(p−1)
2 edges where end-vertices have

degree 2p+1, 2p edges with one end-vertex of degree 2p+1 and the other end-vertex of degree

p+ 1 and one edge where end-vertices have degree p+ 1. Thus, M2(Γ(D2n)) = p2 · (1)(2p+

1)+ p(p−1)
2 · (2p+1)2 +2p · (2p+1)(p+1)+1 · (p+1)2 = 2p4 +6p3 + 13

2 p2 + 7
2 p+1. �

Theorem 4.5. Let Γ(D2n) be an intersection graph on D2n. Then

MT I(Γ(D2n)) = 7p4 +6p3 +5p2 +5p+2.

Proof. By Theorem 2.2 and Corollary 2.5,

MT I(Γ(D2n)) =

(
∑

u=Hi,v=H j
p,i≡ j(mod p)

i=1,2,··· ,p2; j=1,2,··· ,p

d(u,v)[deg(u)+deg(v)]

+ ∑
u,v∈∪p

j=1{H
j
p}

d(u,v)[deg(u)+deg(v)]

+ ∑
u,v∈{H p,H p2}

d(u,v)[deg(u)+deg(v)]

+ ∑
u∈{H p,H p2},v∈∪p

j=1{H
j
p}

d(u,v)[deg(u)+deg(v)]
)

+

(
∑

u=Hi,v∈H j,i≡ j(mod p)
i, j=1,2,··· ,p2

d(u,v)[deg(u)+deg(v)]

+ ∑
u=Hi,v=H j

p,i 6≡ j(mod p)
i=1,2,··· ,p2; j=1,2,··· ,p

d(u,v)[deg(u)+deg(v)]

+ ∑
u=Hi,v∈{H p,H p2}

i=1,2,··· ,p2

d(u,v)[deg(u)+deg(v)]
)

+

(
∑

u=Hi,v=H j,i6≡ j(mod p)
i, j=1,2,··· ,p2

d(u,v)[deg(u)+deg(v)]
)
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=

(
p2 ·1 · [1+(p+1)]+

(
p
2

)
·1 · [(2p+1)+(2p+1)]

+1 ·1 · [(p+1)+(p+1)]

+

(
2
1

)
·
(

p
1

)
·1 · [(p+1)+(2p+1)]

)
+

(
p ·
(

p
2

)
·2 · [1+1]

+ p · p · (p−1) ·2 · [1+(2p+1)]

+ p · p ·2 ·2 · [1+(p+1)]
)
+

((
p
1

)
·
(

p
1

)
·
(

p
2

)
·3 · [1+1]

)
= 7p4 +6p3 +5p2 +5p+2.

�

Theorem 4.6. Let Γ(D2n) be an intersection graph on D2n. Then

Gut(Γ(D2n)) =
1
2(15p4 +13p3 +15p2 +7p+2).

Proof. Again by Theorem 2.2 and Corollary 2.5,

Gut(Γ(D2n)) =

(
∑

u=Hi,v=H j
p,i≡ j(mod p)

i=1,2,··· ,p2; j=1,2,··· ,p

d(u,v)[deg(u)×deg(v)]

+ ∑
u,v∈∪p

j=1{H
j
p}

d(u,v)[deg(u)×deg(v)]

+ ∑
u,v∈{H p,H p2}

d(u,v)[deg(u)×deg(v)]

+ ∑
u∈{H p,H p2},v∈∪p

j=1{H
j
p}

d(u,v)[deg(u)×deg(v)]
)

+

(
∑

u=Hi,v∈H j,i≡ j(mod p)
i, j=1,2,··· ,p2

d(u,v)[deg(u)×deg(v)]

+ ∑
u=Hi,v=H j

p,i 6≡ j(mod p)
i=1,2,··· ,p2; j=1,2,··· ,p

d(u,v)[deg(u)×deg(v)]
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+ ∑
u=Hi,v∈{H p,H p2}

i=1,2,··· ,p2

d(u,v)[deg(u)×deg(v)]
)

+

(
∑

u=Hi,v=H j,i 6≡ j(mod p)
i, j=1,2,··· ,p2

d(u,v)[deg(u)×deg(v)]
)

=

(
p2 ·1 · [1× (p+1)]+

(
p
2

)
·1 · [(2p+1)× (2p+1)]

+1 ·1 · [(p+1)× (p+1)]

+

(
2
1

)
·
(

p
1

)
·1 · [(p+1)× (2p+1)]

)
+

(
p ·
(

p
2

)
·2 · [1×1]+ p · p · (p−1) ·2 · [1× (2p+1)]

+ p · p ·2 ·2 · [1× (p+1)]
)
+

((
p
1

)
·
(

p
1

)
·
(

p
2

)
·3 · [1×1]

)
=

1
2
(15p4 +13p3 +15p2 +7p+2).

�

Theorem 4.7. Let Γ(D2n) be an intersection graph on D2n. Then

ξ
c(Γ(D2n)) = 7p2 +6p+4.

Proof. By Theorems 2.2 and 2.11, we see that

ξ
c(Γ(D2n))

= ∑
v∈∪p2

i=1{Hi}

deg(v)ecc(v)+ ∑
v∈∪p

j=1{H
j
p}

deg(v)ecc(v)+ ∑
v∈{H p,H p2}

deg(v)ecc(v)

=
p2

∑
i=1

1×3+
p

∑
j=1

(2p+1)×2+
2

∑
k=1

(p+1)×2

= p2×1×3+ p× (2p+1)×2+2× (p+1)×2

= 7p2 +6p+4.

�
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