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INTUITIONISTIC (¢, 5)-FUZZY H,~-SUBMODULES
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Abstract. The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization of

2

the notion of fuzzy sets. Using the notion of “belongingness (€)” and “quasi-coincidence (q)” of fuzzy

points with fuzzy sets, we introduce the concept of an intuitionistic (a, 8)-fuzzy H,-submodules of an
H,-modules, where o € {€,q}, B € {€,q,€ Vg, € Aq} and, then we investigate the basic properties of
these notions.
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1. Introduction

The notion of a hypergroup introduced by Marty in 1934 [16]. Algebraic hyperstruc-
tures are a suitable generalization of classical algebraic structures. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic hyper-

structure, the composition of two elements is a set. Since then, hundreds of papers and
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several books have been written on this topic, see [11, 12, 19]. Vougiouklis [19] intro-
duced a new class of hyperstructures, the so-called H,-structures. The H,-structures are
hyperstructures where equality is replaced by non-empty intersection.

The notion of a fuzzy subset introduced by Zadeh in 1965 [21] as a function from a

nonempty set H to unit real interval I = [0, 1].
After the introduction of fuzzy sets by Zadeh, there have been a number of generaliza-
tions of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by
Atanassov [2, 3] is one among them. An intuitionistic fuzzy set gives both a membership
degree and a non-membership degree. The membership and non-membership values in-
duce an indeterminacy index, which models the hesitancy of deciding the degree to which
an object satisfies a particular property. Many concepts in fuzzy set theory were also ex-
tended to intuitionistic fuzzy set theory, such as intuitionistic fuzzy relations, intuitionistic
L-fuzzy sets, intuitionistic fuzzy implications, intuitionistic fuzzy grade of hypergroups,
intuitionistic fuzzy logics, and the degree of similarity between intuitionistic fuzzy sets,
etc., [1, 9, 10]. In [4] Biswas applied the concept of intuitionistic fuzzy sets to the the-
ory of groups and studied intuitionistic fuzzy subgroups of a group. Davvaz et al. [14]
considered the intuitionistic fuzzy sets for H,-modules.

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in
[17], played a vital role to generate some different types of fuzzy subgroups. Bhakat and
Das [6, 7] gave the concepts of («a, §)-fuzzy subgroups by using the notion of ”belongingness
(€)” and " quasi-coincidence (q)” between a fuzzy point and a fuzzy subgroup, where a, 8
are any two of {€,q,€ Vg, € Aq} with a #€ Aq, and introduced the concept of an
(€, € Vq)-fuzzy subgroup. In [8] (€, € Vq)- fuzzy subrings and ideals defined. In [15]
Jun and Song initiated the study of («, 5)-fuzzy interior ideals of a semigroup. In [5]
Bhakat defined (€ Vq)-level subsets of a fuzzy set. In [18] Shabir, Jun et al. studied
characterizations of regular semigroups by (a, 3)-fuzzy ideals. In [20] Yuan, Li et al.
redefined (a, B)-intuitionistic fuzzy subgroups. Davvaz and Corsini initiated the study of

(e, B)-Fuzzy H,-Ideals of H,-Rings in [13]. This paper continues this line of research.
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The paper is organized as follows: in Section 2 some fundamental definitions on H,-
structures and fuzzy sets are explored, in Section 3 we define intuitionistic («, 3)-fuzzy

with H,-submodules and then establish some useful theorems.
2. Preliminaries

Let H be a nonempty set and let p*(H) be the set of all nonempty subsets of H. A
hyperoperation on H is a map o : H x H — ©*(H) and the couple (H,o) is called a
hypergroupoid (or hyperstructure).

If A and B are nonempty subsets of H, then we denote

AoB= U aob, roA={x}oA and Aoz = Ao {zx}.
a€A,beB

A hypergroupoid (H, o) is called a semihypergroup if for all x,y, z of H, we have (z o
y)oz =z o (yoz), which means that

U woe= | wow

ucxroy vEYoz

We say that a semihypergroup (H, o) is a hypergroup if for all x € H, we have x o H =
Hox=H.

A hyperstructure (H, o) is called an H,-semigroup if

(woy)oz)N(zo(yoz)) #0,
for all z,y,2z € H.

Definition 2.1. [19] An H,-ring is a system (R, +,.) with two hyperoperations satisfying
the following axioms:
(i) (R,+) is an H,-group, i.e.,
(@) +2)N @+ (y+2) A0, forall z,y.2€ R,
r+R=R+x=R, foral z€R;
(i) (R,.) is an H,-semigroup;

(i) “.” is weak distributive with respect to “+7, i.e., for all z,y,z € R,
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(2.(y + 2) N (g +2.2) 0,
(2 +9).2) N (02 +y.2)) £ 0.

An H,-group (R, +) is called a weak commutative H,-group if (x +y) N (y + x) # O for
all x,y € R.

Definition 2.2. [19] A nonempty set M is called an H,-module over an H,-ring R if

(M, +) is a weak commutative H,-group and there exists a map

G RXM— (M), (r,x)—rx

such that for all a,b € R and x,y € M, we have

(a.(z+y)) N (a.x +ay) #0,
(a.(z+y)) N (a.x +ay) #0,
(a.(b.x)) N ((ab).x) # 0.

We note that an H,-module is a generalization of a module. For more definitions,
results and applications on H,-ring, we refer the reader to [19]. Note that by using fuzzy

sets, we can consider the structure of H,-module on any ordinary module.

Definition 2.3. [14] An intuitionistic fuzzy set A = (u,, A,) in M is called an intu-
itionistic fuzzy H,-submodule of M if

(1) pa(@) Ay (y) < Ny 1 (2) forall z,y € M,

(2) for all x,a € M, there exist y,z € M such that x € (a +y) N (2 + a) and

pa(@) Ay (a) < p(y) Ay (2),

(3) 14 (y) < Neyy 114 (2) for ally € M and x € R,

(4) Ve, M(2) S (@) VA, (9) for all a,y € M,
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(5) for all x,a € M, there exist y,z € M such that © € (a +y) N (z + a) and
M)V AL(2) <A (@) v AL (a),

(6) V.cay Aa(2) <A, (y) for ally € M and x € R.
The concept of a fuzzy set in a non-empty set was introduced by Zadeh [21] in 1965.
Let H be a non-empty set. A mapping p: H — [0;1] is called a fuzzy set in H. The

complement of p, denoted by u¢, is the fuzzy set in H given by uf(z) = 1 — p(z) for all
reH.

Definition 2.4. An intuitionistic fuzzy set A in a non-empty set X is an object hav-
ing the form A = {(x,pn,(z), A\, (z))|x € X}, where the functions p, : X — [0;1] and
A, 1 X — [0;1] denote the degree of membership (namely p,(x)) and the degree of non-
membership (namely A ,(x)) of each element x € X with respect to the set A, respectively,
and 0 < p,(z) + A\, (z) <1 for all x € X. For the sake of simplicity, we shall use the
symbol A = (u,,\,) for the intuitionistic fuzzy set A = {(x,p,(x),\,(z))|x € X}.

Definition 2.5. [2] Let A= (u,,\,) and B = (u,, A,) be intuitionistic fuzzy sets in X.
Then

(1) AC B iff p,(z) < py(z) and Ma(z) > N, (x) for allz € X,

(2) 4° = {(w, M, (&), ()2 € X},

(3) AN B = {(z,min{u, (x), i, ()}, maxc{A, (2), A, ()l € X},

(4) AU B = {(z, masc{ju, (2), 1, ()}, minfA, (2), Ay () )] € X},

(5) GA = {(2, X5, (2), A, ()| € X},

3. Intuitionistic («, §)-Fuzzy H,-Submodules

Definition 3.1. [6] Let u be a fuzzy subset of R. If there exist at € (0,1] and an z € R
such that

t ify==xa
n(y) =
0 otherwise.

Then p is called a fuzzy point with support x and value t and is denoted by x;.
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Definition 3.2. [6] Let pu be a fuzzy subset of R and x; be a fuzzy point.

(1) If u(x) > t, then we say x; belongs to u, and write x; € .
(2) If u(x) +t > 1, then we say x; is quasi-coincident with p, and write x,qjL.
(3) zy € Vqu <= x4 € 1 or T4qU.
(4)

4) xy € Nqu <= x4 € p and Tqu.

In what follows, unless otherwise specified, o and [ will denote any one of €, ¢, € Vq

or € Aq with o #€ Ag, which was introduced by Bhakat and Das [7].

Definition 3.3. [13] Let R be an H,-ring. A fuzzy subset A of R is said to be an
(e, B)-fuzzy left (right) H,-ideals of R if for all t,r € (0, 1],

1) zaA, y.aA implies zipBA for all z € x 4y,
2) z A, a,aA implies Yy LA for some y € R with © € a+ vy,
3) xaA, a.aA implies zipnBA for some z € R with x € z + a,
4) yaA and x € R imply z,SA for all z € z.y

(xyaA and y € R imply 2 A for all z € z.y).

In what follows, let M denote an H,-module over an H,-Ring R unless other wise

specified. We start by defining the notion of intuitionistic («, 5)-fuzzy H,-submodules.

Definition 3.4. An intuitionistic fuzzy set A = (ua, Aa) in M is said to be an intu-

itionistic («, 8)-fuzzy left (right) H,-submodule of M if for all t,r € (0, 1],

(1) For all z,y € M, x¢,yrau, implies zn B, for all z € x + vy,

(2) For all x,a € M, x,arap, implies (y A\ 2)in B, for some y,z € M with x €
(a+9)N(+a),

(3) Forally € M, x € R, yrap, implies zfu, for all z € x.y
(For ally € M, x € R, yrap, implies zBu, for all z € y.x),

(4) For all x,y € M, x;, y,a\, implies zin BN, for all z € v +y,

(5) For all x,a € M, x;,a,@\, implies (y A 2)ineB\, for some y,z € M with x €
(a+y)N(z+a),

(6) For ally € M, x € R, y;a\, implies z3\, for all z € z.y
(For ally € M, x € R, y;a\, implies 26\, for all z € y.xz),
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where (Y A 2)inearh, (YA 2)ineBA, ), d.€., Yonrart, and zowogi, (YerrBA, and zipBA,).
And, the symbol 3 means B does not hold for all B € {€,q,€ Vq, € Aq}.

Let R be an H,-ring. Then a fuzzy subset A4 of M is said to be an anti («, 8)-fuzzy
left (right) H,-submodule of M if it satisfies the conditions (4)-(6) of Definition 3.4 for all
t,r € (0,1].

In this paper we present all the proofs for left H,-submodules. Similar results hold for

right H,-submodules.

Example 3.5. Let M = {a,b,c,d} and R = {a,b,c}. Let operation “.” and hyperopera-
tion “+7 and defied by the following tables

a b c d +la b c d
ala a a a ala b c d
bla b b b and b|b {ab} d c
cla ¢ ¢ ¢ cle d AHac} b
dla d d d d|d ¢ b {a,d}

Let o and X be two fuzzy subset of M such that p(a) = 0.6, u(b) = u(c) = p(d) = 0.8
and MNa) = A(b) = Mc) = A(d) = 0.3. Then (u, \) is an intuitionistic (€, € Vq)-fuzzy
H,-submodule of M.

Proof. p is an (€, € Vq)-fuzzy H,-ideal of M (see [13]). So, it is easy to see that A
satisfies the conditions (4)-(6) of Definition 3.4.

Lemma 3.6. Let A= (u,, \,) be an intuitionistic fuzzy set in M. Then for all x € M
and r € (0, 1], we have
(1) zeqp, = TEQS;
(2) x4 € Vau,, <= 1€ Aqus,.
Proof. (1) Let x € M and r € (0,1]. Then, we have
Tpqp, <=, () +t>1
= 1—pu, ()<t

= p(r) <t

> T ENS.
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(2) Let x € M and r € (0, 1]. Then, we have
e VQu, <= Ti€EW, O Tiqp,
< u,(r)>t or p,(r)+t>1
= 1—p(r) >t or 1—pS(x)+t>1
< 1qu, or TENS
S xte—/\qu.
If A= (u,, A,) is an intuitionistic («, §)-fuzzy H,-submodule of M. Since o #€ Aq,
by Lemma 3.6(2) and the Definition 3.4, we have o #€ Vgq.

Let =€, q, € Aq, € Vq. We write §' = q, €, € Vq, € Aq, respectively. It is obvious
that g = p.

Theorem 3.7. If A = (u,, \,) is an intuitionistic (€, €)-fuzzy H,-submodule of M,

then A = (p,, \,) is an intuitionistic fuzzy H,-submodule of M.

Proof. Condition(1). Let z,y € M and p,(z) A u,(y) = t. Then z;,y; € p,. By

condition (1) of Definition 3.4, we have
zep, forall z € x 4y,

and so u,(z) >t for all z € x 4+ y. Consequently
pa@) Apy(y) =t < N\ pa(2)
z€x+y

for all z,y € M.
Condition(2). Now, let x,a € M and p,(x) A u,(a) =t. Then x4, a; € p,. It follows
from condition (2) of Definition 3.4 that

(yAz) €p,, for some y,z € M with z € (a+y) N (z+a).

Thus

Yt, 2t € u, for some y,z € M with z € (a +y) N (z + a).

So, for all x,a € M, there exist y, z € M such that x € (a+y) N (z + a) and

pa(x) Ay (a) =t <, (y) Ap,(2).
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Condition(3). Let y € M, x € R and p,(y) =t. Thus y € pu,. From condition (3) of

Definition 3.4, we have

2z € p, for all z € 2.y,

and so

w,(z) >tforall z € z.y.

This proves that

for all y € M and x € R.
Condition(4). Let z,y € M and A, (z) VA, (y) =s. If s =1, then A\,(z) <1 = s for

all z € x +y. It is easy to see that

\/ A2) <A (x) VA, (y) for all 2,y € M.

z€x+y

If s < 1, there exists a t € (0, 1] such that
A @)V (y) =s<t.
Then x4, y,€X,. By condition (4) of Definition 3.4, we have
2€N,, forall z € x4y,

and so A, (z) < t. Consequently
V' AuG) S A @) VL)
z€aty
for all z,y € M.
Condition(5). Let x,a € M and A, (x) VA, (a) = s. If s < 1, there exists a t € (0,1]
such that A, (x) V A, (a) = s < t. Then z;,a;€\,. By condition (5) of Definition 3.4, we

have

y N z)EN, for some y,z € M withx € (a+y)N(z+a).
A

Hence,

A (y) <tand A, (2) <t.
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Thus
M) VAL(2) <t
This implies that, for all z,a € M, there exist y,z € M such that € (a +y) N (z + a)
and

Ay VAL (2) S A () VA, (a),

If s =1, the proof is obvious.
Condition(6). Let y € M, v € R and \,(y) = s. If s < 1, there exists a t € (0, 1] such
that A\, (y) = s < t. Thus y,€\,. From condition (6) of Definition 3.4, we have

z€N, for all z € z.y,
and so
A, (z) <tforall z € x.y.

Then A, (2) < A,(y). This proves that
\/ )\A(Z) S >\A(y)7

for all y € M and x € R. If s = 1, the proof is obvious.

Theorem 3.8. If A = (u,, \,) is an intuitionistic (€, € Vq) and (€,€ Aq)-fuzzy H,-

submodule of M, then A = (u,, A,) is an intuitionistic fuzzy H,-submodule of M.
Proof. The proof is similar to the proof of Theorem 3.7.

Theorem 3.9. UA = (u,, p) is an intuitionistic (o, 8)-fuzzy H,-submodule of M if
and only if OA = (u,, p<) is an intuitionistic (o, B')-fuzzy Hy-submodule of M, where

ae{e,q}, B e{e,q € Vg, € N}

Proof. (=) We only prove the case of (o, 5) = (€, € Vq). The others are analogous.

Let OA = (p,, p) is an intuitionistic (€, € Vq)-fuzzy H,-submodule of M.
Condition(1). Let z,y € M, t,r € (0,1] be such that =, y,qu . It follows from Lemma

3.6 that x;,y.€p. Since p¢ is an anti (€, € Vq)-fuzzy H,-submodule of M. Thus, by

condition (4) of Definition 3.4, we have

2ine € Vaus, for all z € x +y.
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By Lemma 3.6, this is equivalence with
2in€ Nquy, for all z € x 4.

Thus condition (1) of Definition 3.4 is valid.
Condition(2). Suppose that z,a € M and t,r € (0,1] be such that =, a,.qu,. By
Lemma 3.6, we have x4, a,qu, if and only if x;,a,€uS. By hypotheses, ¢ is an anti

(€, € Vq)-fuzzy H,-submodule of M. Thus, from condition (5) of Definition 3.4, we have
(y A z)t/\re—\/q,uia
for some y,z € M with x € (a +y) N (2 4+ a). This is equivalence with
yt/\re—\/Q/JJZ and ZtAre—\/qMZ:
for some y,z € M with € (a +y) N (2 4+ a). By Lemma 3.6, it is easy to see that

Yinr€ Aqpt, and 2, € AL,

for some y,z € M with z € (a +y) N (z + a) if and only if

(y A Z)t/\r6 /\q,uAa

for some y, z € M with x € (a+y)N(z+a). Thus condition (2) of Definition 3.4 is valid.
Condition(3). Let y € M,z € R and t € (0, 1] be such that yqu,. It follows from
Lemma 3.6 that y,€u¢. Since OA = (u,, p9) is an intuitionistic (€, € Vq)-fuzzy H,-

submodule of M. From condition (6) of Definition 3.4, we have
%€ Vqu', for all z € z.y.

It is equivalence with
z€ Nqp, for all z € z.y.
Which verify conditions (3) of Definition 3.4.

Condition(4). Suppose that x,y € M and ¢,r € (0, 1] be such that z,, y.qu¢,. It follows

from Lemma 3.6 that x,y.qu if and only if z;,y, € p,. Since OA = (u,, p) is an
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intuitionistic (€, € Vq)-fuzzy H,-submodule of M. By condition (1) of Definition 3.4, we
have

Zine € Vau, for all z € x 4.

This is equivalence with

zinr € Aqus, for all z €  +y.

Thus condition (4) of Definition 3.4 is valid.

Condition(5). Suppose that x,a € M and t,r € (0,1] be such that x,a,qu¢. This
is equivalence with z;, a,€u,. By hypotheses, p, is an (€, € Vq)-fuzzy H,-submodule of
M. From condition (2) of Definition 3.4, we have

(Y N 2)inr€ Vap,,

for some y, z € M with z € (a +y) N (2 + a), and so

Yinr € Vau, and 2 € VaiLy,,

for some y,z € M with x € (a +y) N (2 + a). It follows from Lemma 3.6 that
Yenr€ /\QMZ and zip, € /\QHZa
for some y,z € M with z € (a +y) N (z + a) if and only if

(y A z)t/\re /\q,uia

for some y,z € M with x € (a+y)N(z+a). Thus condition (5) of Definition 3.4 is valid.
Condition(6). Let y € M,z € R and t € (0,1] be such that y,qu‘. Then, we have

c
A

yEp,. Since JA = (u,, p) is an intuitionistic (€, € Vq)-fuzzy H,-submodule of M, by

condition (3) of Definition 3.4, we have
z€ Vaqu, for all z € z.y.

It is equivalence with

%€ Aqus, for all z € z.y.

Which verify conditions (6) of Definition 3.4.
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(«<=) The proof is similar to the proof of above.

Theorem 3.10. ¢A = (X%, \,) is an intuitionistic («, (8)-fuzzy H,-submodule of M if

and only if GA = (X%, X,) is an intuitionistic (o, B')-fuzzy H,-submodule of M, where
a€{€,q}, Be{€,q,€ Vg € Ng}.

Proof. The proof is similar to the proof of Theorem 3.9.

Theorem 3.11. A = (u,, A,) is an intuitionistic («, 5)-fuzzy H,-submodule of M if and
only if p, is an (a, B)-fuzzy H,-submodule of M and X is an (o, 3')-fuzzy H,-submodule
of M, where a € {€,q}, 5 € {€,q,€ Vg, € Nq}.

Proof. We only prove the case of (o, 5) = (€,€ Vq). The others are analogous. It is

sufficient to show that, X is an (¢, € Aq)-fuzzy H,-submodule of M if and only if A, is

an anti (€, € Vq)-fuzzy H,-submodule of M. This is true, because
T, = TEN,

and
Ty € NG, == 1€ Vg,

for all x € M and ¢ € (0, 1].
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