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1. Introduction 

Definition1.1. Let :T E E  be a mapping, 0x E  be a given point, 

   , ,n n  be two sequences in  0,1 , and      , , ,n n nu v r be three bounded 

sequences in E. 

1. the sequence  nx E  defined by:  

1 (1 )n n n n n nz z Tz r                                           (1.1)             

is called the Mann iteration with errors. 

2. the sequence  nx E  defined by: 
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1 (1 )

(1 )

n n n n n n

n n n n n n

x x Ty u

y x Tx v

 

 

    

   
                                     (1.2) 

 is called the Ishikawa iteration with errors. 

3. the sequence  nx E  defined by: 

1 (1 ) n

n n n n n nz z T z r                                         (1.3)                                       

is called the modified Mann iteration with errors. 

4. the sequence  nx E  defined by: 

1 (1 )

(1 )

n

n n n n n n

n

n n n n n n

x x T y u

y x T x v

 

 

    

   
                                   (1.4)                                        

is called the modified Ishikawa iteration with errors. 

Now we give the stability definition of the sequence  
1n n

x



 defined by (1.1) and 

(1.2) 

Definition1.2. Let  
1n n

x



 be the sequence defined by (1.1), (1.2) and such that 

 nx p F T  ,  F T  denotes the set of fixed point of T. Let  ns  nq be any 

bounded sequence in E by: 

(i)  1 1 , 0n n n n n n nq q Tq r n                              (1.5)                         

(ii) 
 

 

1 1 ,

1 , 0

n n n n n n n

n n n n n n

s s Ty u

y s Ts v n

  

 

    

      
                          (1.6)                               

If 0n   implies that nq p , then the Mann iterative sequence  nx is said to be 

T  stable; 0n   implies that ns p , then the Ishikawa iterative sequence  nx is 

said to be T  stable; if 
0

n

n






   implies that nq p ,then the Mann sequence 

 nx is said to be almost T  stable;
0

n

n






   implies that ns p ,then the 

Ishikawa sequence  nx is said to be almost T  stable. 

The equivalence between the Ishikawa iteration and Mann iteration for several 
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classes of maps has been studied in [1-5], and proved the equivalence between 

T-stable of (1.1) and (1.2). In this paper, we shall prove the equivalence between 

T-stable and almost T-stable of (1.3) and (1.4). Throughout this paper, we shall 

assume that X is a normed space. T is a map on X with a bounded range and assume 

that both Mann and Ishikawa iterations with errors converge to a fixed point of T.  

 

2. The equivalence between T-stabilities 

Theorem2.1. Let X be a normed space and :T X X be a map with a bounded 

range. For all{ } (0,1),{ } (0,1)n n   ,{ },nu { },nr satisfy  

lim 0, lim 0, 0, 0n n n n
n n

u r 
 

    , as n  

The following are equivalent: 

(i) the Ishikawa iteration sequence with errors (1.2) is T-stable.  

(ii) the Mann iteration sequence with errors (1.1) is T-stable.  

Proof: 

We first prove (ii) (i) In (1.6), let n ns q , we have: 

1

1

1

1

(1 )

(1 )

(1 )

(1 )

n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n

q q Tq r

q q Ty u Ty u Tq r

q q Ty u Ty Tq u r

q q Ty u Ty Tq u r

 

   

   

  









   

        

        

        

  

  

  

           (2.1) 

from the definition, we can know { }ns X  are bounded sequence such that { }nTs is 

bounded so we can let 

 : max sup{ ( ) },sup{ ( ) },sup{ ( ) },n n n
n N n N n N

M T y T s T p
  

   

then M   . Then we obtain:  

1

1

(1 )

(1 ) 2 0 ( )

n n n n n n

n n n n n n n n n

q q Tq r

q q Ty u M u r n

 

  





   

           
 

We have 1lim lim (1 ) 0 limn n n n n n n n
n n n

q q Tq r q p  
  

         by the 

condition (ii), thus , for { }nq X  satisfying  
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1lim lim (1 ) 0n n n n n n n
n n

q q Ty u  
 

      , we have lim n
n

q p


  i.e. (ii) (i). 

Then we prove (i) (ii).  In (1.5), Let n nq s , we have: 

1

1

1

1

1

(1 )

(1 )

(1 )

(1 )

(1 ) 2 0 ( )

n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n

s s Ty u

s s Ts r Ty u Ts r

s s Ts r Ty Ts u r

s s Ts r Ty Ts u r

s s Ts r M u r n

 

   

   

  

  











   

        

        

        

         

  

  

  

    

         (2.2)  

We have 1lim lim (1 ) 0 limn n n n n n n n
n n n

s s Ty u s p  
  

         by the condition 

(i), thus, for { }ns X  satisfying 1lim lim (1 ) 0n n n n n n n
n n

s s Ts r  
 

      , we 

have lim n
n

s p


  i.e.(i) (ii). 

3. Main results 

Theorem3.1. Let X be a normed space and :T X X be a map with a bounded 

range. For all { } (0,1),{ } (0,1)n n   { },nu { },nr  satisfy 

1 1 1 1

, , , ,n n n n

n n n n

u r 
   

   

            

The following are equivalent: 

(i) the Ishikawa iteration with errors (1.2)is almost T-stable.  

(ii) the Mann iteration with errors (1.1) is almost T-stable.  

 

Proof: in (2.1), we have 

  

1

1

(1 )

(1 ) 2

2

n n n n n n

n n n n n n n n n

n n n n

q q Tq r

q q Ty u M u r

M u r

 

  

 





   

       

   

   

   
                 (3.1) 

Because
1

,n

n

M




    , 
1 1

,n n

n n

u r
 

 

      and we have 

We have 1

0 0

(1 ) limn n n n n n n n
n

n n

q q Tq r q p  
 




 

          by the 
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condition (ii), thus, for { }nq X  satisfying  

1

0 0

(1 )n n n n n n n

n n

q q Ty u  
 



 

        , we have lim n
n

q p


  i.e. (ii) (i). 

Conversely, In (2.2) we have: 

1

1

(1 )

(1 ) 2

n n n n n n

n n n n n n n n n

s s Ty u

s s Ts r M u r

 

  





   

                              (3.2) 

Because
1

,n

n

M




    ,
1 1

,n n

n n

u r
 

 

      and we have 

We have 1

0 0

(1 ) limn n n n n n n n
n

n n

s s Ty u s p  
 




 

          by the  

condition(i),thus, for { }ns X  satisfying 

1

0 0

(1 )n n n n n n n

n n

s s Ts r  
 



 

        ,  

We have lim n
n

s p


  i.e. (i) (ii). 

In (1.1) and (1.2), set : nT T , we can obtain the modified Mann and Modified 

Ishikawa iteration with errors (1.3) (1.4). We also suppose that the modified Mann and 

Modified Ishikawa iteration with errors converge to a fixed point of T. Note that 

Definition1.2 and Theorem 2.1 and Theorem 3.1 hold in this case too. 

 

Theorem3.2. Let X be a normed space and :T X X be a map with a bounded 

range.  For all{ } (0,1),{ } (0,1)n n   , { },{ },n nu v satisfy 

lim 0, lim 0, 0, 0n n n n
n n

u r 
 

     as nThe following are equivalent: 

(i) the modified Ishikawa iteration with errors is T-stable.  

(ii) the modified Mann iteration with errors is T-stable.  

Theorem3.3. Let X be a normed space and :T X X be a map with a bounded 

range. .for all { } (0,1),{ } (0,1)n n   { },nr { },nu satisfy    
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1 1 1 1

, , ,n n n n

n n n n

u r 
   

   

            

The following are equivalent: 

(i) the modified Ishikawa iteration with errors is almost T-stable.  

(ii). the modified Mann iteration with errors is almost T-stable.  
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