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Abstract. We propose a stochastic model for the population dynamics of COVID-19 with vaccine. The model

allows for waning immunity. We start off with a deterministic model in terms of ordinary differential equations

(ODEs), which afterwards are stochastically perturbed to form a system of stochastic differential equations (SDEs).

The ODE system and the SDE system have global positive solutions. We discuss the equilibrium points of the ODE

system. For the SDE model we obtain a stability result in terms of almost sure exponential stability theorem for the

disease-free equilibrium of the stochastic model. Our theoretical results are illustrated by numerical simulations.
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1. INTRODUCTION

COVID-19 has caused serious damage in public health sectors and economies of many coun-

tries. By January 2021, there have been more than 85 million cases and 1.8 million deaths

reported worldwide [5]. As also for HIV, South Africa has become the epicenter for COVID-19

over the African continent with an estimated 1.56 millions cases and 53 498 related death cases

[22] by April 2021. This crisis has led to a variety of urgent interventions across the world, such
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as lock-down, limited travel or travel ban and online work and schooling. These strategies well-

planned have succeeded in suppressing the spread of the viral infection over populations. One

way to mitigate the COVID-19 outbreak is to develop vaccine and supply it in big volumes for

all the countries. A vaccine could prevent a susceptible person from being infected at least for

a time period or even for life. Recently, several candidate vaccines has been developed around

the globe [16]. Such long-term solutions of vaccines that protect against COVID-19 infection

remain urgently needed [3]. The benefits of a highly effective vaccine for individuals and their

communities have resulted in widespread demand. Therefore it is critical that decision-making

on vaccine distribution is well motivated, particularly in the initial phases when vaccine avail-

ability is limited [6]. Currently, due to a large demand of vaccines worldwide, policy-makers

and researchers have been seriously challenged to consider the best scenario of vaccination for

suppressing the mortality and morbidity of COVID-19 in the long run.

Mathematical models can provide valuable insights into the population dynamics of COVID-19.

These models provide essential information for the public health sector for decision-making and

to formulate policies. Already at this stage, a number of research papers on COVID-19 models

with vaccine can be found in the literature. The paper [1], for instance, proposes a vaccination

model and derives threshold conditions for preventing the spread of infection in the case of

imperfect vaccines. In [11], the authors studied fair allocation of COVID-19 vaccines using an

optimization-based strategy for case study in Mexico. They considered different scenarios of

the availability of potential COVID-19 vaccines in order to identify fair solutions. Quantifying

early COVID-19 outbreak transmission in South Africa and exploring vaccine efficacy scenarios

has been studied in [9]. The paper estimates the percentage reduction in effective contacts due

to the social distancing measures implemented in South Africa. In [4] is presented a model for

the transmission dynamics of the COVID-19 Pandemic in South Africa with emphasis on the

importance of surveillance testing and contact tracing in curtailing the disease in South Africa.

In this research, we propose an SEIRS compartmental model with vaccination. Immunity may

wane with time, and some variants may be able to evade the protection provided by COVID-19

vaccine. In the current model, the vaccination is only introduced to vulnerable susceptible indi-

viduals who are exposed to the virus. In real life, epidemic models experiences environmental
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disturbance. In order to capture the effect of such disturbances it is advantageous to introduce

stochastic perturbations into the deterministic model. Therefore from the deterministic model

we shall build a stochastic model for novel COVID-19. There are SDE models in the literature,

such as [2] for instance. One of the differences between the model of [2] and ours, is that the

current model includes vaccination.

The remainder of this paper resumes as follows. In Section 2 we present the deterministic

model and prove the existence of global positive solutions. We briefly study the equilibrium

points in Section 3. In Section 4 we present the stochastic model for novel COVID-19, we

show the existence of global positive solutions and we prove an extinction theorem. We provide

numerical simulations to illustrate our theoretical results in Section 5. In Section 6 we present

some concluding remarks.

2. MODEL DESCRIPTION

2.1. A deterministic model. We consider a population of size N(t) at time t which is subdi-

vided into the class of Susceptibles S(t), the Exposed class E(t), the Infectious class I(t) and

the Removed class R(t). The population size N(t) is given by

N(t) = S(t)+E(t)+ I(t)+R(t).

Flow diagram of COVID-19 model
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These assumptions give rise to the following mathematical model
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dS
dt

= µK− βSI
K
− (µ +θv)S+δR,

dE
dt

=
βSI
K
− (µ +ξ1)E,

dI
dt

= ξ1E− (µ +ξ2 + γ)I,

dR
dt

= θvS+ξ2I− (µ +δ )R.(1)

S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0 > 0.

The parameter θ measures the ability of the vaccine to protect the vaccinee against the disease.

However, new variants of the virus may evade the protection provided by a vaccine, and then

vaccinated individuals may be exposed to the virus at the rate δ .

There are many models in the literature that are very close to the model above, for instance

[10, 8] can be viewed as special cases of the model of (1).

2.2. Feasible solutions and invariant regions. Let us introduce the set Ω,

(2) Ω =
{

x ∈ R4| xi > 0, i = 1,2,3,4 and x1 + x2 + x3 + x4 < K
}
.

Since model (1) describes a human population, all state variables and parameters of the model

are assumed to be positive at all times t > 0. We deal with this positivity in the next two results,

similarly as in [24] or [13] for instance.

Proposition 2.1. Given any t0 > 0, suppose that X(t) is a local solution for which X(t) ∈ R4
+

for 0 < t < t0 and that N(0)< K. Then N(t)< K for all 0 < t ≤ t0.

Proof. Given any local solution with X(t) ∈ R4
+ for all 0 < t ≤ t0, we have

(3)
d(N(t)−K)

dt
= µK−µN(t)− γI ≤−µ [N(t)−K] .

Therefore N(0)< K implies that N(t)< K for all 0 < t ≤ t0. This completes the proof. �

Theorem 2.2. For any point X0 ∈ Ω, there exists a unique solution X(t) with X(0) = X0 and

X(t) ∈Ω for each t ∈ [0,∞).
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Proof. Consider any point y ∈Ω. Then there exists a local solution X(t) in Ω with initial value

X(0) = y. Suppose that t1 is the exit time. We shall show by contradiction that t1 = ∞.

Let us define the following function for 0≤ t ≤ t1.

V0(X) =V0(S,E, I,R) = ln
K
S
+ ln

K
E
+ ln

K
I
+ ln

K
R
.(4)

Then each of the terms in V1(X) is a positive-valued function. In particular, we know that for a

constant K > 0 if any of the Xi(t) tends to 0 as t→ t1, then V0(t)→ ∞. We shall prove that this

cannot happen if t1 is finite.

We calculate the derivative:

dV0

dt
= −1

S

[
µK− βSI

K
− (µ +θv)S+δR

]
− 1

E

[
βSI
K
− (µ +ξ1)E

]
−1

I
[ξ1E− (µ +ξ2 + γ)I]− 1

R
[θvS+ξ2I− (µ +δ )R] .(5)

After cancellation of some terms which are obviously negative, we obtain an inequality V ′0(t)≤

F0, with F0 being the constant

(6) F0 = β +4µ +θv+ξ1 +ξ2 + γ +δ .

Therefore, over the bounded interval [0, t1), V0(t) is bounded. We can conclude that X(t) never

exits the set Ω. �

3. EQUILIBRIUM AND STABILITY

The model system (1) permits a disease-free equilibrium

E0 = (Sv,0,0,Rv) .

where

Sv =
K(µ +δ )

(µ +δ +θv)
and Rv =

Kθv
(µ +δ +θv)

.
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We now follow the method illustrated in [19] to find the basic reproduction number for model

(1), which represents the expected average number of new infections produced by a single

infected individual when in contact with a completely susceptible population. Thus, we have

R =
βξ1(µ +δ )

u1u2(µ +δ +θv)

where

u1 = (µ +ξ1) and u2 = (γ +µ +ξ2).

Theorem 3.1. A unique endemic equilibrium point exists if and only if R > 1. The coordinates

are as follows:

I∗ =
µK[ξ1β (µ +δ )−u1u2(µ +δ +θv)]

β [u1u2(µ +δ )−ξ1ξ2δ ]
,

E∗ =
u1

ξ1
I∗, S∗ =

u1u2K
ξ1β

and R∗ =
u1u2Kθv

ξ1β (µ +δ )
+

ξ2I∗

(µ +δ )
.

Proof. From the system (1), one can readily deduce the expressions appearing in the formulation

of the theorem for S∗, E∗ and R∗ in terms of I∗. We substitute the S∗, E∗ and R∗ values into the

first equation (at equilibrium) and after simplification we obtain the expression for I∗. Regarding

the denominator, note that u1 > ξ1, u2 > ξ2, and so, u1u2(µ + δ ) > ξ1ξ2δ . Therefore the

denominator is positive. The numerator is positive if and only if R > 1. �

We shall now prove global stability of the disease-free equilibrium point. In the special

case when we assume no transfer from the R-class back to the S-class, we can ignore the

R′(t)-equation. The other compartments will still follow the same trajectories when we restrict

to the resulting SEI-model. In this case, we can prove the following global stability theorem.

Theorem 3.2. If δ = 0 and R < 1, the disease-free equilibrium of the resulting SEI model is

globally asymptotically stable.

Proof. Since R < 1, the following inequality holds:

β
Sv

K
− u1u2

ξ1
< 0
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with

Sv =
µK

(µ +θv)
.

We can find z > 0 with z < 1, such that β
Sv
K − zu1u2

ξ1
< 0. Now let a = zu1

ξ1
. We define a function

V2(S(t),E(t), I(t)) =
[

S(t)−Sv−Sv ln
Sv

S(t)

]
+E(t)+aI(t).

Note that V2(t) is positive-definite at the equilibrium point (Sv,0,0).

The time derivative of V2(t) is:

V ′2(t) = −(µ + vθ)

S(t)
(Sv−S(t))2− (S−Sv)

K
β I

+E[(µ +ξ1)−aξ1]+ I
[βS

K
−a(µ +ξ2 + γ)

]
= −(µ + vθ)

S(t)
(Sv−S(t))2 +Q1E(t)+Q2I(t)

where

Q1 = aξ1−u1 and Q2 = β
Sv

K
−au2.

Then

(7) Q1 = z
u1

ξ1
ξ1−u1 = u1(z−1)< 0 since z < 1.

Also, from the inequality (7) it follows that Q2 < 0. Therefore, V ′2(t) is negative-definite with

respect to the disease-free equilibrium point. Thus, V2(t) is a Lyapunov function of SEI-model

at disease-free equilibrium and this completes the proof. �

4. STOCHASTIC MODEL FOR COVID-19

Under this approach, we assume to have a complete probability space (Ω,F ,P) with a filtration,

{Ft}t≥0, that is right continuous and with F0 containing all the subsets having measure zero.

In this regard, we let W (t) = (W0(t),W1(t),W2(t),W3(t)) be a 4-dimensional Wiener process

defined on this probability space. The components of W introduced in the stochastic model are

assumed to be mutually independent and the non-negative constants σ0,σ1,σ2 and σ3 symbolize

the intensities of the stochastic perturbations which we shall introduce into our stochastic model.

We recall the formal multiplication rule below:
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dtdt = 0,dWidt = 0,dWidWi = dt and dWidW j = 0 if i 6= j.

We now have the following model

dS = [µK− βSI
K
− (µ +θv)S+δR]dt +σ0SdW0(t),

dE = [
βSI
K
− (µ +ξ1)E]dt +σ1EdW1(t),

dI = [ξ1E− (µ +ξ2 + γ)I]dt +σ2IdW1(t)

dR = [θvS+ξ2I− (µ +δ )R]dt +σ3RdW1(t)(8)

Similar to the underlying deterministic model, we now prove that the solutions of (8) exist

globally and are positive. This proof has been used popularly by many scholars, see for instance

[7, 14, 15].

Let us denote by Rn
+ (resp. Rn

++) the set of points in Rn having only non-negative (resp. strictly

positive) coordinates.

Theorem 4.1. For model (8) and any initial value (S(0),E(0), I(0),R(0)) ∈ R4
++, there is a

unique solution (S(t),E(t), I(t),E(t)) on t ≥ 0 which remains in R4
++ with probability one.

Proof. Note that the coefficients of the system (8) are locally Lipschitz continuous. Thus there

exists a unique local solution on t ∈ [0,τe), where τe is the explosion time. We need to show

that this solution is global almost surely (a.s) ; that is, τe = ∞ a.s.

Let m0 > 0 be sufficiently large so that S(0),E(0), I(0), and R(0) sits within the interval

[1/m0,m0]. For each integer m≥ m0, define a sequence of stopping times by

τm = inf
{

t ∈ [0,τe) : S(t) /∈
( 1

m ,m
)

or E(t) /∈
( 1

m ,m
)

or I(t) /∈
( 1

m ,m
)

or R(t) /∈
( 1

m ,m
)}

where we set inf /0 = ∞. Now since the sequence (τm) is non-decreasing, the following limit

exists:

τ∞ = lim
m→∞

τm,
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and τ∞ ≤ τe (a.s.). Now we need to show τ∞ = ∞ (a.s.). If this statement is violated, then there

exist T > 0 and ε ∈ (0,1) such that

P{τ∞ ≤ T}> ε.

Thus, there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε ∀m≥ m1.

Consider the function V3 defined by

V3(S,E, I,R) =
(

S−a0−a0 ln
S
a0

)
+
(

E−1− lnE
)
+
(

I−1− ln I
)

+
(

R−1− lnR
)

(9)

Note that each of the four bracketed terms are non-negative while (S(t),E(t), I(t),R(t))∈R4
++.

We also note that,

lim
x→0+

[x−1− lnx] = ∞ and lim
x→∞

[x−1− lnx] = ∞.

By applying Itô’s formula we have,

dV3(S,E, I,R) = LV3dt +(S−1)σ0dW0(t)+(E−1)σ1dW1(t)

+(I−1)σ2dW2(t)+(R−1)σ3dW3(t),

where

LV3 =
[(

1−a0
1
S

)(
µK− βSI

K
− (µ +θv)S+δR

]
+
[(

1− 1
E

)(βSI
K
− (µ +ξ1)E

)]
+
[(

1− 1
I

)(
ξ1E− (µ +ξ2 + γ)I

)]
+
[(

1− 1
R

)(
θvS+ξ2I− (µ +δ )R

]
+

1
2
(a0σ

2
0 +σ

2
1 +σ

2
2 +σ

2
3 )

≤ µK +a0
β I
K
−µI +4µ +θv+ξ1 +ξ2 +δ + γ +

1
2
(
a0σ

2
0 +σ

2
1 +σ

2
2 +σ

2
3 ).
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We can choose a0 > 0 sufficiently small such that

I[a0
β

K
−µ]< 0.

Therefore,

LV3 ≤ F3

where F3 = µK +4µ +θv+ξ1 +ξ2 +δ + γ + 1
2

(
a0σ2

0 +σ2
1 +σ2

2 +σ2
3
)

is a constant.

The rest of the proof follows readily, similarly as in [7], [23] or [14], and we omit the details.

We can conclude that the solution of model (8) is positive and will not explode in finite time,

with probability one. �

Consider an equation of the form (10) below, for an k-dimensional Brownian motion B(t) on Ω.

(10) dx(t) = f (t,x)dt +g(t,x)dB(t) t ≥ 0.

A solution with initial value x(0) = x0 is denoted by x(t,x0). Assume that f (t,0) = g(t,0) = 0

for all t ≥ 0, so as to have the origin point as an equilibrium of (10).

By L we denote the infinitesimal generator of an equation of the form (10), see [18] of

Øksendal, defined for a function V (t,x) ∈C1,2(R+×Rk).

Definition 4.2. (see [7]). The equilibrium x = 0 of the system (10) is said to be almost surely

exponentially stable if for all x0 ∈ Rn,

limsup
t→∞

1
t

ln |x(t,x0)|< 0 a.s.

Notation: For a stochastic process {x(t)}t>0 we shall write:

〈x〉t =
1
t

∫ t

0
x(s)ds.

In what follows we prove an extinction theorem for COVID-19 in an applicable population, and

for this purpose we restrict ourselves to the case in which σ0 = σ3 = 0, and with δ = 0. For this

special case, we introduce the following stochastic processes, for a positive constant a.
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(11) U = S−Sv +Sv ln(Sv/S)+E +aI.

and

V4 = lnU(t) (where U(t)> 0 ∀t > 0).

We note that S, E and I are positive (a.s.), and so V4 is well-defined (a.s.). In particular here

we are interested in

Γ := limsup
t→∞

〈V4〉t .

Let us also introduce the following notation.

limsup
〈
(S−Sv)

2

SU

〉
t
= q0, limsup

〈
E
U

〉
t
= q1, limsup

〈
I
U

〉
t
= q2.

Proposition 4.3. Consider the special case of model 8, when σ0 = σ3 = δ = 0. The disease-free

equilibrium of model system 8 is almost surely exponentially stable if

limt→∞ sup〈V4(t)〉t < 0 (a.s.).

Proof. The stochastic process V4(t) can be expressed as

V4(t) =V4(0)+
∫ t

0
LV4(s)ds+ J1(t)+ J2(t)

where

J1(t) =
∫ t

0
σ1

E(s)
U(s)

dW1(s),

and

J2(t) =
∫ t

0
aσ2

I(s)
U(s)

dW2(s).

Note that E(t)
U(t) < 1 and a I(t)

U(t) < 1 for all t > 0. Therefore, the assertion of the proposition follows

by the strong law of large numbers for martingales

lim
t→∞

sup
1
t
[(J1(s)+ J2(s)] = 0 (a.s).
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Now we also note that

lim
t→∞

sup
V4(0)

t
= 0.

This completes the proof. �

Now we compute LV4.

LV4 =
1
U

(
1− Sv

S

)[
µK− (µ + vθ)S− βSI

K

]
+

1
U

[
βSI
K
− (µ +ξ1)E

]
+

a
U

[
ξ1E− (µ +ξ2 + γ)I

]
− 1

2U2 [(σ1E)2 +(aσ2I)2]

= −(µ + vθ)

SU
(S−Sv)

2 +
1
U

[
βSvI− (µ +ξ1)E +a(ξ1E− (µ +ξ2 + γ)I)

]
− 1

2U2 [(σ1E)2 +(aσ2I)2]

= −(µ + vθ)

SU
(S−Sv)

2 +Q1
E
U

+Q2
I
U
− 1

2U2 [(σ1E)2 +(aσ2I)2]

with

Q1 = aξ1− (µ +ξ1),

and

Q2 = βSv−a(µ +ξ2 + γ).

In particular then

(12) LV4 ≤−
(µ + vθ)

SU
(S−Sv)

2 +Q1
E
U

+Q2
I
U

(a.s).

Proposition 4.4. For K and Sv as in the model, let us define the following functions, all having

the interval (0,K) as domain. Let F(x) = x(1− Sv/x)2, G(x) = x− Sv + Sv ln(Sv/x) and

H(x) = F(x)−G(x).

Then H(x)≥ 0 for every 0 < x < K.
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Proof. We note that H ′(x) = 0 if and only if x = Sv. Next we observe that H ′′(Sv) = 1/Sv >

0. Therefore H has a local minimum at x = Sv. Further we note that for 0 < x < K, H is

differentiable. Therefore H has an absolute minimum at x = Sv. Consequently, H(x)≥ 0 for all

0 < x < K. �

In particular we can deduce the following.

Corollary 4.5. For any positive constant a, the following two inequalities hold:

(a)
S(1−Sv/S)2 +E +aI

S−Sv +Sv ln(Sv/S)+E +aI
≥ 1.

(b) q0 +q1 +aq2 ≥ 1.

Theorem 4.6. Consider the special case of model 8, when σ0 = σ3 = δ = 0. If R < 1, then the

disease-free equilibrium is almost surely exponentially stable.

Proof. Since R < 1, it follows that

βSv−
(

µ +ξ1

ξ1

)
(µ +ξ2 + γ)< 0.

There exist ε > 0 such that

βSv−
(

µ +ξ1− ε

ξ1

)
(µ +ξ2 + γ)< 0.

Now let U(t) and V (t) be the stochastic processes as in equation (11), with

a =
µ +ξ1− ε

ξ1
.

Then from equation (12) we obtain:

(13) Γ≤−(µ + vθ)q0 +Q1q1 +Q2q2.

From inequality (13), the coefficient of q2 is negative, and by the choice of a, the coefficient of

q1 is negative. From Corollary 4.5 we have

q0 +q1 +aq2 ≥ 1.
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Therefore the limits qi cannot all be zero. Since at least one of the qi is non-zero, it follows that

Γ < 0 and the theorem is proved. �

5. NUMERICAL SIMULATION

There is a rapidly increasing number of papers on compartmental modeling of population dy-

namics of COVID-19. Consequently, it is possible to obtain or deduce numerical values for

most of the parameters in model (1) and model (8). At this relatively early stage with respect

to vaccination, we can only experiment with different values of v and θ since there has not

been the opportunity to collect population data on vaccine roll-out and its results, at least not in

South Africa, where the vaccination process started relatively late. Otherwise, we shall deduce

numerical values for the parameters of our model from the existing literature. This will enable

us to present a number of explorative sample simulations. We list these numerical values and

the sources in the Table (1) below. In the paper [4] the effective contact rate β is estimated as

ranging between 0.002-0.75. Of course, β depends on human behaviour and living conditions,

and therefore it varies from dramatically between populations. Even in a given population, β

may vary over time, due to variation in lock-down conditions. In our simulations, we take the

value of β a little bit higher. In South Africa, the first case of COVID-19 was confirmed in

March 05 2020. Later in March 19 2020, the country had 150 COVID-19 confirmed cases [4].

In May 01 2021, South Africa has reached 1581210 cases of COVID-19, 54350 deaths and

1505620 recovered. This means that the number of active cases was just the difference, which

is 21240. We take K to be 58.56 millions as the total population in South Africa [20].

The initial values for our simulations will be taken as:

I0 = 0.02124 million R0 = 1.5 million

Thus, we can technically search the initial values for S and E using a routine method which

entails finding the equilibrium point of the model (1), and then to split the current total between

these classes. This consideration leads us to assign initial values to S0 and E0, and thus our

initial state for these two initial values are taken as:

S0 = 51.36 million, E0 = 5.12 million .
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TABLE 1. Description of parameters and their estimate values

Parameter Description Numerical value Reference/comment

µ Birth and mortality rates by

natural causes

1
365×64.6 per day [20]

γ COVID-19 induced mortality

rate

0.09 per day cf. [21]

K Population size when disease-

free

58.56 million [20]

µK Recruitment rate of the sus-

ceptibles

0.00248 million per day [20]

ξ1 Progression rate from E to I 0.000712 per day Estimate

ξ2 Progression rate from I to R 0.08(0.01,0.5) per day [12]

θ Vaccine efficacy θ = 100%,80%,70% Estimate

δ Rate of transfer from R to S

due to immunity loss

0.0001 per day Estimate

v Proportion of susceptible vac-

cinated

0.0005 per day Estimate
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FIGURE 1. Trajectory of I-class for COVID-19 deterministic model
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FIGURE 2. Exploring Theorem (4.6) with small values for σi. (a small value)
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FIGURE 3. Exploring Theorem (4.6) with bigger values for the σi.
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In Figure 1(a), we assume a highly effective vaccine, that is θ = 100%, β = 0.8189 and we

plot the I-class with v = 0.0005 (the line in blue) and on the other when there is no vaccine

at all (see the line in green). The basic reproduction number R is found to be R = 4.56 for

v = 0, and R = 1.0076 for v = 0.0005. We observe in these simulations how a highly effective

vaccine has the potential to reduce the number of infected cases.

In Figure 1 (b), we show a different case scenario of the force of vaccine coverage, for in-

stance, 100%, 80% and 70%. In the following figures we extend the time period to inves-

tigate the long term behavior of the stochastic model. In Figure 2, we choose v = 0.005,

σ0 = 0.01,σ1 = 0.02,σ2 = 0.01 and σ3 = 0.01. In this case, there does not seem to be a

strong convergence of the stochastic model to the disease-free equilibrium. In Figure 3 for

σ0 = 0.02,σ1 = 0.03,σ2 = 0.04,σ3 = 0.02. It is noticed that increasing stochastic perturba-

tions leads to a strong convergence of the stochastic model to the disease-free equilibrium of

the underlying deterministic model.

6. CONCLUSION

In this research we present a stochastic model for COVID-19 with a highly effective vaccine

measured by θ . However, immunity wanes with time or some variants of COVID-19 may be

able to evade the protection provided by a vaccine. Therefore vaccinated individuals may be

exposed to some extent to the virus. Starting off with a deterministic compartmental model,

we proved global stability of the disease-free equilibrium. In the stochastic version, we study

almost exponential stability theorem. We use the Euler-Maruyama scheme to run our numeral

simulations with data applicable to South Africa. Our results show that a highly effective vac-

cine has the potential to reduce the number of infected cases as observed in Figure 1(a) and (b).

Thus, the number of new cases will continue to grow if a highly effective vaccine is not made

available in the long run as observed in the simulations.

Theorem 4.6 discusses extinction of the disease in the stochastic model. Our simulations sug-

gest that there might be extinction almost surely, even if R is increased slightly above unity.

In other words, it may be possible to prove a slightly stronger extinction theorem, such as for

instance in [23] and other articles cited therein.
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The model can be extended to allow the direct inflow and outflow rates of COVID-19 cases into

the system. Stochastic stability in the mean or other stability results, for the case of the endemic

equilibrium, is another interesting theme for future investigation.
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