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Abstract. In this paper, we present a new insight of C∗−algebra valued rectangular b−metric spaces in the perspec-

tive of the fixed point theory using contractive mapping. Using contractive mapping in the rectangular b−metric

spaces, we discussed the existence and the uniqueness of the fixed point with mapping satisfying a contractive

condition. As a result, we obtained an interesting and important result for the general case of C∗−algebra valued

metric spaces. In particular, we study some fixed point theorems in the C∗−algebra valued rectangular b−metric

spaces using a positive function.
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1. INTRODUCTION

C∗−algebra theory is a critical subject in functional analysis and operator theory that plays a

central role in fixed point theory and applications.

In this context, several researchers have obtained fixed point results for mapping under mul-

tiple contractive conditions in the framework of different types of metric spaces.
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In 1989 Bakhtin [5] introduced the concept of b−metric spaces. Later, Czerwik [6] extended

the results of the renowned Banach fixed point theorem in the b−metric spaces.

In 2000, Branciari [4] introduced the notion of rectangular metric spaces where the trian-

gle inequality of metric spaces was replaced by another inequality, the so-called rectangular

inequality. In [8], George et al. established the concept of rectangular b−metric space which

generalizes the concept of rectangular metric space and b−metric space.

Ma et al. [11] introduced the concept of C∗−algebra valued metric space and studied some

fixed point theorems. The notion of C∗−algebra valued metric spaces generalized to that of

C∗−algebra rectangular b− metric space, where b− is an element of C∗− algebra greater than

I, and the triangle inequality is modified into

d(x,y)� b[d(x,u)+d(u,v)+d(v.y)].

Then, various fixed point theorems are obtained for self-map with contractive condition [9,10].

In this paper, inspired by the work done in [13], we introduce the notion of ψ−contractive

mapping in C∗−algebra valued rectangular b−metric and establish some new fixed point theo-

rems. Moreover, an illustrative example is presented to support the obtained results.

2. PRELIMINARIES

Throughout this paper, we denote A by an unital (i.e. unity element I) C∗-algebra with linear

involution ∗, such that for all x,y ∈ A,

(xy)∗ = y∗x∗ and x∗∗ = x.

We call an element x ∈ A a positive element, denote it by x � θ if x ∈ Ah = {x ∈ A : x = x∗}

and σ(x)⊂ R+, where σ(x) is the spectrum of x.

Using positive element, we can define a partial ordering � on Ah as follows:

x� y if and only if y− x� θ

where θ means the zero element in A.

We denote A+ = {a ∈ A,θ � a} and A′ = {a ∈ A,ab = ba; ∀b ∈ A} and |x|= (x∗x)
1
2

Remark 2.1. When A is a unital C∗-algebra, then for any x ∈ A+ we have

x� I⇐⇒‖x‖ ≤ 1
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Definition 2.2. [14] Let X be a non-empty set and b ∈ A such that b� I. Suppose the mapping

d : X×X → A+ satisfies:

(i) d(x,y) = θ if and only if x = y;

(ii) d(x,y) = d(y,x) for all distinct points x,y ∈ X;

(iii) d(x,y) � b[d(x,u)+ d(u,v)+ d(v,y)] for all x,y ∈ X and for all distinct points u,v ∈

X−{x,y}.

Then (X ,A+,d) is called a C∗-algebra valued rectangular b−metric space.

Definition 2.3. [11] Let (X ,A+,d) be a C∗-algebra valued rectangular b−metric space. Sup-

pose that {xn} ⊂ X and x ∈ X.

If for any ε > 0 there is N such that for all n > N ,‖d(xn,x)‖ ≤ ε , then {xn} ⊂ X is said to

be convergent with respect to A and {xn} ⊂ X converges to x and x is the limit of {xn} ⊂ X. We

denote it by limn−→∞xn = x.

If for any ε > 0 there is N such that for all n,m > N ,‖d(xn,xm)‖ ≤ ε ,then {xn}n∈N is called

a Cauchy sequence with respect to A.

We say (X ,A+,d) is a complete C∗-algebra valued rectangular b− metric space if every

Cauchy sequence with respect to A is convergent.

It is obvious that if X is a Banach space, then (X ,A+,d) is a complete C∗-algebra valued

rectangular b−metric space if we set

d(x,y) = ‖x− y‖I

Example 2.4. Let X = {1
n

;n ∈ N}∪N. Let A = M2(R) of all 2× 2 matrices with the usual

addition, scalar multiplication and multiplication. Define partial ordering on A as a1 a2

a3 a4

 �
 b1 b2

b3 b4

⇔ ai ≥ bi for i = 1,2,3,4

For any A ∈ A we define its norm as ,‖A‖= max1≤i≤4|ai|

Define d : X×X → A such that d(x,y) = d(y,x) for all x,y ∈ X and
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d(x,y) =



 0 0

0 0

 i f x = y 2α 0

0 2α

 , i f x,y ∈ {1
n

;n ∈ N∗} α

2n
0

0
α

2n

 , i f x ∈ {1
n

;n ∈ N∗} , y ∈ {2,3}

 α 0

0 0

 ,otherwise

where α > 0 is a constant.

Then (X ,A+,d) is a C∗-algebra valued rectangular b− metric space with

coefficient A =

 2 2

2 2

 and ‖A‖= 2 > 1.

Let A be a C∗-algebra and suppose that ϕ is a linear functional on A. Define

ϕ∗(a) = ϕ(a∗) for all a ∈ A.

Then ϕ∗ is also a linear function on A .

If ϕ∗ = ϕ the function ϕ is called self- adjoint.

Every linear function on A can be represented in the form ϕ = ϕ1 + iϕ2 where ϕ1,ϕ2 are

self-adjoint. Specifically (ϕ1 =
1
2
(ϕ +ϕ∗);ϕ2 =

1
2i
(ϕ−ϕ∗)).

A linear function ϕ on A is called positive if ϕ(a∗a)� θ for all a ∈ A.

We denote the positivity of ϕ by ϕ � θ . For two self-adjoint linear function ϕ1,ϕ2, we have

(ϕ2−ϕ1 � θ) when ϕ2 � ϕ1.

Definition 2.5. [15] If ϕ : A→ B is a linear mapping in C∗-algebra, it is said to be positive if

ϕ(A+)⊆ B+. In this case ϕ(Ah)⊆ Bh, and the restriction map ϕ : Ah→ Bh is increasing.

Proposition 2.6. [15] Let A be a C∗-algebra with 1 then a positive functional is bounded and

ϕ(1) = ‖ϕ‖.

Proposition 2.7. [15] Let A be a C∗-algebra with 1 and let ϕ be a bounded linear functional on

A, such that ϕ(a) = ‖ϕ‖‖a‖. There exists positive element a ∈ A such that ϕ is a positive linear

functional.
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Definition 2.8. [12] Let the function ψ : A+ → A+ be positive if having the following con-

straints:

(i) ψ is continous and nondecrasing

(ii) ψ(a) = θ if and only if a = θ

(iii) limn−→∞ψn(a) = θ

Definition 2.9. [12] Suppose that A and B are C∗-algebra .

A mapping ψ : A→ B is said to be C∗- homomorphism if :

(i) ψ(ax+by) = aψ(x)+bψ(y) for all a,b ∈ C and x,y ∈ A

(ii) ψ(xy) = ψ(x)ψ(y) for all x,y ∈ A

(iii) ψ(x∗) = ψ(x)∗ for all x ∈ A

(iv) ψ maps the unit in A to the unit in B.

Definition 2.10. [12] Let A and B be C∗-algebra spaces and let ψ : A→ B be a homomorphism,

then ψ is called an ∗− homomorphism if it is one to one ∗− homomorphism.

A C∗-algebra A is ∗−isomorphic to a C∗-algebra B if there exists ∗− isomorphism of A onto B.

Lemma 2.11. [16] Let A and B be C∗-algebra spaces and ψ : A→ B

is a C∗− homomorphism for all x ∈ A we have

σ(ψ(x))⊂ σ(x) and ‖ψ(x)‖ ≤ ‖ψ‖.

Corollary 2.12. [12] Every C∗− homomorphism is bounded.

Corollary 2.13. [12]Suppose that ψ is C∗− isomorphism from A to B,

then σ(ψ(x)) = σ(x) and ‖ψ(x)‖= ‖ψ‖ for all x ∈ A.

Lemma 2.14. [12] Every ∗− homomorphism is positive.

3. MAIN RESULTS

In this part, we give some fixed point theorems in C∗-algebra valued rectangular b−metric

space using a positive function.
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Theorem 3.1. Let (X ,A,d) be a complete C∗-algebra valued rectangular b−metric space.

Let T : X → X satisfy the following condition:

d(T x,Ty)� a∗d(x,y)a−ψ(d(x,y))

where ψ is ∗−homomorphism and lima−→∞ψ(a) = ∞ and ‖b‖‖a‖2 < 1.

Then T has a unique fixed point.

Proof. : Let xn+1 = T xn.for each n≥ 1, then:

d(xn+1,xn+2) = d(T xn,T xn+1)

� a∗d(xn,xn+1)a−ψ(d(xn,xn+1))

� a∗d(xn,xn+1)a

� ...

� a∗nd(x0,x1)an

then

‖d(xn+1,xn+2)‖ � ‖a‖n‖d(x0,x1)‖

Letting n→ ∞ we obtain d(xn+1,xn+2)→ θ

Then for m≥ 1 and p≥ 1 :

d(xm+p,xm)� b[d(xm+p,xm+p−1)+d(xm+p−1,xm+p−2)+d(xm+p−2,xm)]

� bd(xm+p,xm+p−1) + bd(xm+p−1,xm+p−2) + b[b[d(xm+p−2,xm+p−3) + d(xm+p−3,xm+p−4) +

d(xm+p−4,xm)]]]

= bd(xm+p,xm+p−1)+ bd(xm+p−1,xm+p−2)+ b2d(xm+p−2,xm+p−3)+ b2d(xm+p−3,xm+p−4)+

b2d(xm+p−4,xm)

� bd(xm+p,xm+p−1)+ bd(xm+p−1,xm+p−2)+ b2d(xm+p−2,xm+p−3)+ b2d(xm+p−3,xm+p−4)+

....+b
p−1

2 d(xm+3,xm+2)+b
p−1

2 d(xm+2,xm+1)+b
p−1

2 d(xm+1,xm)

� b[(am+p−1)∗d(x1,x0)(am+p−1) + (am+p−2)∗)d(x1,x0)(am+p−2)] +

b2[(am+p−3)∗)d(x1,x0)(am+p−3) + (am+p−4)∗d(x1,x0)(am+p−4)] + .... +

b
p−1

2 [(am+2)∗)d(x1,x0)(am+2) + (am+1)∗d(x1,x0)(am+1)] + b
p−1

2 (am)∗d(x1,x0)(am) −

b[ψm+p−1(d(x1,x0) − ψm+p−2(d(x1,x0)] − b2[ψm+p−3(d(x1,x0) − ψm+p−4(d(x1,x0)] −

......−b
p−1

2 [ψm+2(d(x1,x0)−ψm+1(d(x1,x0)]−b
p−1

2 ψm(d(x1,x0)

= ∑

p−1
2

k=1 bk(a∗)m+p−(2k−1)d(x1,x0)(am+p−(2k−1) + ∑

p−1
2

k=1 bk(a∗)m+p−2kd(x1,x0)(am+p−2k) +
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b
p−1

2 (a∗)md(x1,x0) − ∑

p−1
2

k=1 bkψm+p−(2k−1)(d(x1,x0)) − ∑

p−1
2

k=1 bkψm+p−2k(d(x1,x0)) −

b
p−1

2 ψm(d(x1,x0))

= ∑

p−1
2

k=1(d(x1,x0)
1
2 b

k
2 am+p−(2k−1))∗(d(x0,x1)

1
2 b

k
2 am+p−(2k−1))+

∑

p−1
2

k=1(d(x1,x0)
1
2 b

k
2 am+p−2k)∗(d(x0,x1)

1
2 b

k
2 am+p−2k)+(d(x0,x1)

1
2 b

p−1
4 am)∗(d(x0,x1)

1
2 b

p−1
4 am)−

∑

p−1
2

k=1 bkψm+p−(2k−1)(d(x1,x0))−∑

p−1
2

k=1 bkψm+p−2k(d(x1,x0))−b
p−1

2 ψm(d(x1,x0))

� ∑

p−1
2

k=1 ‖b
k
2 (a∗)m+p−(2k−1)d(x1,x0)

1
2‖2I +∑

p−1
2

k=1 ‖b
k
2 (a∗)m+p−2kd(x1,x0)

1
2‖2I +

|| (d(x0,x1)
1
2 b

p−1
4 am ||2 I �|| d(x0,x1) || ∑

p−1
2

k=1 || b ||
k
2 || a ||2(m+p−(2k−1)) I +

|| d(x0,x1) || ∑
p−1

2
k=1 || a ||

2(m+p−2k) I+ || d(x0,x1) |||| b ||
p−1

2 || a ||2m I

=|| d(x0,x1) || || b || || a ||2(m+p−1) [
|| b ||

p−1
2 || a ||2(−p+1) −1
|| b |||| a ||−4 −1

]I || d(x0,x1) ||

|| b || || a ||2(m+p−2) [
|| b ||

p−1
2 || a ||2(−p+1) −1
|| b |||| a ||−4 −1

]I+ || d(x0,x1) || || b ||
p−1

2 || a ||2m I

� || d(x0,x1) || || b ||
p+1

2 || a ||2(m+2)

|| b || − || a ||4
+

|| d(x0,x1) |||| b ||
p+1

2 || a ||2(m+1)

|| b || − || a ||4
+

|| d(x0,x1) || || b ||
p−1

2 || a ||2m I→ θ(m→ ∞)

→ θ(m→ ∞)

Therefore xn is a Cauchy sequence with respect to A.By the completness of (X ,A,d) there

exists an x ∈ X such that

limn→∞xn = limn→∞T xn−1 = x = T x.

Let y be another fixed point of T where:

θ � d(x,y) = d(T x,Ty)� a∗d(x,y)a−ψ(d(x,y))� a∗d(x,y)a

we have

0≤|| d(x,y) ||=|| d(T x,Ty) ||

≤|| a∗d(x,y)a ||

≤|| a∗‖‖d(x,y)‖‖a‖

= ‖a‖2‖d(x,y)‖

< ‖d(x,y)‖ .

wich is a contradiction Hence d(x,y) = θ and x = y,wich implies that the fixed point is unique.

�
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Lemma 3.2. [13] Let (X ,A,d) be a C∗-algebra valued rectangular b−metric space such that

d(x,y) ∈ A+, for all x,y ∈ X where x 6= y.

Let φ : A+ −→ A+ be a function with the following propreties:

(i) φ(a) = θ if a = θ

(ii) φ(a)≺ a for a ∈ A+

(iii) Either φ(a)� d(x,y) or d(x,y)� φ(a) where a ∈ A+ and x,y ∈ X.

Theorem 3.3. Let (X ,A,d) be a complete C∗− algebra valued rectangular b−metric space.

Let T : X −→ X be a mapping function:

ψ(d(T x,Ty))� φ(d(x,y))

where ψ is a ∗−homomorphism and φ : A+−→A+ is a continuous function with the constraint

ψ(a)≺ φ(a). Then, T has a fixed point.

Proof. Let x0 ∈ X , we define :

x1 = T x0,x2 = T x1, ......,xn = T xn−1.

ψ(d(xn+1,xn)) = ψ(d(T xn,T xn−1))� φ(d(xn,xn−1))

We have d(xn+1,xn)� d(xn,xn−1) then || d(xn+1,xn) ||�|| d(xn,xn−1) ||

Hence, the sequence d(xn+1,xn) is norm decreasing,from the condition of the condition of the

theorem we have d(xn+1,xn)−→ θ this implies || d(xn+1,xn) ||→ 0

Then for m≥ 1 and p≥ 1 :

d(xm+p,xm)� b[d(xm+p,xm+p−1)+d(xm+p−1,xm+p−2)+d(xm+p−2,xm)]

� bd(xm+p,xm+p−1) + bd(xm+p−1,xm+p−2) + b[b[d(xm+p−2,xm+p−3) + d(xm+p−3,xm+p−4) +

d(xm+p−4,xm)]]]

= bd(xm+p,xm+p−1)+ bd(xm+p−1,xm+p−2)+ b2d(xm+p−2,xm+p−3)+ b2d(xm+p−3,xm+p−4)+

b2d(xm+p−4,xm)

� bd(xm+p,xm+p−1)+ bd(xm+p−1,xm+p−2)+ b2d(xm+p−2,xm+p−3)+ b2d(xm+p−3,xm+p−4)+

....+b
p−1

2 d(xm+3,xm+2)+b
p−1

2 d(xm+2,xm+1)+b
p−1

2 d(xm+1,xm)

ψ(d(xm+p,xm)) � ψ(bd(xm+p,xm+p−1)) + ψ(bd(xm+p−1,xm+p−2)) +

ψ(b2d(xm+p−2,xm+p−3))+ ...+ψ(b
p−1

2 d(xm+1,xm))
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= ψ(b)ψ(d(xm+p,xm+p−1))+ψ(b)ψ(d(xm+p−1,xm+p−2))+ ...+ψ(b
p−1

2 )ψ(d(xm+1,xm))

|| ψ(d(xm+p,xm)) ||�|| φ || || b || || d(xm+p,xm+p−1) || + || φ || || b || || d(xm+p−1,xm+p−2) ||

+ || φ || || b2 || || d(xm+p−2,xm+p−3) || +.....+

|| φ || || b
p−1

2 || || d(xm+1,xm) ||→ 0(m→ ∞)

Then {xn} is a Cauchy sequence. Since X is complete, then there exists x ∈ X such that

limn→∞xn = x. Due to the continuity of T ,

limn→∞xn = x = limn→∞T xn−1 = T x.

�

Example 3.4. Let X = [0,2] and A= C with a norm || z ||=| z |

be a C∗− algebra.

We define C+ = {z = (x,y) ∈ C;x = Re(z)≥ 0,y = Im(z)≥ 0} .

The partial order ≤ with respect to the C∗− algebra C i s the partial order in C, z1 ≤ z2 if

Re(z1)≤ Re(z2) and Im(z1)≤ Im(z2) for any two elements z1,z2 in C.

Let d : X×X → C

Suppose that d(x,y) = (2 | x− y |,2 | x− y |) for x,y ∈ X. Then, (X ,C,d) is a C∗− algebra

valued rectangular b− metric space where b = 1 with the required propreties of theorem 3.3.

Let ψ,φ : C+→ C+ such that they can defined as follows: for t = (x,y) ∈ C+,

ψ(t) =



(x,y) i f x≤ 2 and y≤ 2

(x2,y) i f x > 2,y≤ 2

(x,y2) i f x≤ 2 and y > 2

(x2,y2) i f x > 2 and y > 2
and for s = (s1,s2) ∈ C+ with v = min{s1,s2},

φ =


(
v2

4
,
v2

4
) i f v≤ 2

(
1
4
,
1
4
) i f v > 2
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Then ψ and φ have the propreties mentioned in definitions 2.8 and 2.9.

Let T : X → X be defined as follows : T (x) =


0 i f 0≤ x≤ 1

1
8

i f 1 < x≤ 2
Then ,T has the required properties montioned in theorem 3.3 we show that 0 is a fixed point

of T

Theorem 3.5. Let (X ,A,d) be a complete C∗− algebra valued rectangular b−metric space.

Let T : X −→ X be a mapping function and :

ψ(d(T x,Ty))� ψ(M(x,y))−φ(d(x,y))

and

M(x,y) = a1d(x,y)+a2[d(T x,y)+d(Ty,x)]+a3[d(T x,x)+d(Ty,y)]

where b ∈ A′+ , a1,a2,a3 ≥ 0 , a1 +2a2b+(2+b)a3 ≤ 1 ,

ψ and φ are ∗− homomorphisms and with the constraint ψ(a)< φ(a).

Then, T has a fixed point.

Proof. Let x0 ∈ X and define

x1 = T x0,x2 = T x1, ...,xn = T xn−1

We have

ψ(d(xn+2,xn+1)) = ψ(d(T xn+1,T xn))

� ψ(M(xn+1,xn))−φ(d(xn+1,xn))

= ψ(a1d(xn+1,xn)+a2[d(xn+2,xn)+d(xn+1,xn+1)]+a3[d(xn+2,xn+1)+d(xn+1,xn)])−

φ(d(xn+1,xn)).

Using a proprety of φ , we have

ψ(d(xn+2,xn+1)) � ψ(a1d(xn+1,xn) + a2[d(xn+2,xn) + d(xn+1,xn+1)] + a3[d(xn+2,xn+1) +

d(xn+1,xn)]

Using the strongly monotone proprety of ψ , we have

d(xn+2,xn+1) � a1d(xn+1,xn) + a2[d(xn+2,xn) + d(xn+1,xn+1)] + a3[d(xn+2,xn+1) +

d(xn+1,xn)]
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that is (1−a2b−a3b)d(T xn+1,T xn)� (a1 +a2b+a3(2+b))d(xn+1,xn)

Therefore

d(xn+2,xn+1)�
a1 +a2b+a3(2+b)

1−a2b−a3b
d(xn+1,xn)

wich implies that

d(xn+2,xn+1)� d(xn+1,xn)

since

a1 +a2b+a3(2+b)
1−a2b−a3b

< 1

Therefore {d(xn+1,xn)} is monotone decreasing sequence.

Hence by lemma 3.2 there exists u ∈ A+ such that d(xn+1,xn)→ u as n→ ∞.

Taking n→ ∞ in

ψ(d(xn+2,xn+1)) = ψ(a1d(xn+1,xn)+a2[d(xn+2,xn)+d(xn+1,xn+1)]+a3[d(xn+2,xn+1)+

d(xn+1,xn)])−φ(d(xn+1,xn))

Using the continuities of ψ and φ , we have

ψ(u)� ψ((a1 +2a2 +2a3)u)−φ(u) wich implies that ψ(u)� ψ(u)−φ(u) (since a1 +2a2 +

2a3 ≤ 1 and ψ is strongly monotonic increasing) which is a contradiction unless u = θ . Hence

d(xn+1,xn)→ θ as n→ ∞ (1).

Next we show that {xn} is a Cauchy sequence .If {xn} is not a Cauchy sequence then by lemma

3.2 ,there exists c∈A such that ∀n0 ∈N, ∃n,m∈N with n>m≥ n0 φ(c)� d(xn,xm). Therefore

there exists sequences {mk} and {nk} in N such that for all positive integers k, nk > mk > k and

d(xn(k),xm(k))� φ(c) and d(xn(k)−1,xm(k) � φ(c)

then

φ(c)� d(xn(k),xm(k))� b[d(xn(k),xn(k)−1)+d(xn(k)−1,xn(k)−2)+d(xn(k)−2,xm(k))]

that is

φ(c)� d(xn(k),xm(k))� b[d(xn(k),xn(k)−1)+d(xn(k)−1,xn(k)−2)+φ(c)]

letting k→ ∞ we have

limk→∞d(xn(k),xm(k)) = bφ(c) (2)
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again

d(xn(k),xm(k))� b[d(xn(k),xn(k)+1)+d(xn(k)+1 ,xm(k)+1)+d(xm(k)+1,xm(k))]

and

d(xn(k)+1,xm(k)+1)� b[d(xn(k)+1,xn(k))+d(xn(k),xm(k))+d(xm(k),xm(k)+1)]

letting k→ ∞ in above inequalities , we have

limk→∞d(xn(k)+1,xm(k)+1) = bφ(c) (3)

Again

d(xn(k),xm(k)+1)� b[d(xn(k),xn(k)+1)+d(xn(k)+1,xm(k))+d(xm(k),xm(k)+1)]

and

d(xn(k)+1,xm(k))� b[d(xn(k)+1,xn(k))+d(xn(k),xm(k)+1)+d(xm(k)+1,xm(k))]

Further,

d(xn(k)+1,xm(k))� b[d(xn(k)+1,xn(k))+d(xn(k),xm(k)+1)+d(xm(k)+1,xm(k))]

and

d(xn(k),xm(k))� b[d(xn(k),xn(k)+1)+d(xn(k)+1 ,xm(k)+1)+d(xm(k)+1,xm(k))]

Letting k→ ∞ in the above four inequalities we have

limk→∞d(xn(k),xm(k)+1) = bφ(c) (4)

limk→∞d(xn(k)+1,xm(k)) = bφ(c) (5)

Using (1), (2), (4), and (5) we have

limk→∞M(xn(k),xm(k)) = limk→∞a1d(xn(k),xm(k))+a2[d(xn(k)+1,xm(k))+d(xm(k)+1 ,xn(k))]+

a3[d(xn(k)+1,xn(k))+d(xm(k)+1,xm(k))]

= (a1 +2a2)bφ(c) (6)

Clearly xmk � xnk .Putting x = xn(k) ,y = xm(k)

ψ(d(xn(k)+1 ,xm(k)+1)) = ψ(d(T xn(k),T xm(k)))

� ψ(M(xn(k),xm(k)))−φ(xn(k),xm(k))
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Letting k→ ∞ in the above inequality using (2), (3)and(6) and the continuities of ψ and φ we

have

ψ(bφ(c))� ψ((a1 +2a2)bφ(c))−φ(bφ(c))

that is

ψ(bφ(c))� ψ(φ(c))−φ(φ(c)) ,(since (a1 +2a2)b < 1) and ψ is strongly monotonic increas-

ing. Which a contradiction by virtue of a proprety of φ . Hence {xn}is a Cauchy sequence. From

the completness of X , there exists z ∈ X such that xn→ z as n→ ∞. Since T is continous and

T xn→ T z as n→ ∞ that is limn→∞xn+1 = T z, that is z = T z. Hence z is a fixed point of T . �

Example 3.6. Let X = [0,1] and A= C with a norm || z ||=| z | be a C∗− algebra.

We define C+ = {z = (x,y) ∈ C;x = Re(z)≥ 0,y = Im(z)≥ 0} .

The partial order ≤ with respect to the C∗− algebra C is the partial order in C, z1 ≤ z2 if

Re(z1)≤ Re(z2) and Im(z1)≤ Im(z2) for any two elements z1,z2 in C.

Let d : X×X → C

Suppose that d(x,y) = (| x− y |, | x− y |) for x,y ∈ X .

Then, (X ,C,d) is a C∗− algebra valued rectangular b− metric space where b = 1 with the

required propreties of theorem 3.5.

Let ψ,φ : C+→ C+ such that they can defined as follows:

for t = (x,y) ∈ C+ ,

ψ(t) =



(x,y) i f x≤ 1 and y≤ 1

(x2,y) i f x > 1,y≤ 1

(x,y2) i f x≤ 1 and y > 1

(x2,y2) i f x > 1 and y > 1
and for s = (s1,s2) ∈ C+ with v = min{s1,s2},

φ =


(
v2

2
,
v2

2
) i f v≤ 1

(
1
2
,
1
2
) i f v > 1



6520 HAFIDA MASSIT, MOHAMED ROSSAFI

Then ψ and φ have the propreties mentioned in definitions 2.8 and 2.9.

Let T : X → X be defined as follows : T (x) =


0 i f 0≤ x≤ 1

2

1
16

i f
1
2
< x≤ 1

Then ,T has the required properties mentioned in theorem 3.5.

Let a1 =
1
2

,a2 =
1
8

and a3 =
1
8

. It can be verified that

ψ(d(T x,Ty))� ψ(M(x,y))−φ(d(x,y)) for all x,y ∈ X with y� x

the conditions of theorem 3.5 are satisfied .Here it is seen that 0 is a fixed point of T
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