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Abstract. In this paper, quasi-variational inclusions and fixed point problems are considered. A general
iterative algorithm is introduced for finding a common element in the zero set of the sum of two monotone
operators and the fixed point set of a nonexpansive mapping. Furthermore, strong convergence results

for common elements in two sets mentioned above are established in real Hilbert space.
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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner
product (-,-) and norm | - ||, C' is a nonempty closed convex subset of H. Let A: C' — H
be a single-valued nonlinear mapping and let B : H — 27 be a multi-valued mapping.

The ”so-called” quasi-variational inclusion problem [1-3] is to find an u € H such that

0 € Au+ Bu. (1.1)
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The set of solution to quasi-variational inclusion problem is denoted by (A + B)~'0. It is
known that (1.1) provides a convenient framework for the unified study of optimal solu-
tions in many optimization-related areas including mathematical programming, comple-
mentarity, variational inequalities, optimal control, mathematical economics, equilibria,

game theory, and so on. see, for instance,[4-6].
The problem (1.1) includes many problems as special cases:

(a) If B = 090¢ : H — 2% where ¢ : H — R U {+00} is a proper convex lower
semi-continuous function and 0¢ is the subdifferential of ¢, then the variational inclusion

problem (1.1) is equivalent to find u € H such that
<AU, Y- U> + ¢(y) - ¢(u) > 0, v ye H7 (12>

which is called the mixed quasi-variational inequality; see Noor [7].

(b) If B = 9d¢, where C' is nonempty closed convex subset of H and d¢ : H — [0, o]

is the indicator function of C', that is,

0, x e’
oc = (1.3)

+o00, x ¢ C.

Then the variational inclusion problem (1.1) is equivalent to find u € C such that
(Au,v —u) >0, VwveCd. (1.4)

This problem is called Hartman-Stampacchia variational inequality; see [8].

Recently, Takahashi et al. [5] introduced a new iterative algorithm for finding a common
element of the set of solutions to the inclusion problem (1.1) with set-valued maximal
monotone mapping and inverse strongly monotone mappings, and the set of fixed points
of a nonexpansive mapping in Hilbert spaces. Then, they prove a strong convergence
theorem using their iterative algorithm. Further, they give some interesting applications.

For some more related works, see [1-3,7-9] and the references therein.

In this paper, inspired and motivated by Takahashi et al. [5] and Liou [6], we introduce

a new iterative scheme for finding a common element of the set of solution to the inclusion
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problem (1.1) and the set of fixed points of a nonexpansive mapping. The results presented
in this paper improve and extend the related results announced by S. Takahashi et al. [5]

and Liou [6] and others.
2. Preliminaries
Let C be a nonempty closed convex subset of H. The nearest point projection of H
onto C' is denoted by Pc, that is,
|z = Poz|| < [z =yl

for all x € H and y € C. The operator P is called the metric projection of H onto C'. It

is known that the metric projection Pg is firmly nonexpansive, that is,
|Pox — Poy||® < (Pox — Pey,x — y)
for all x, y € H. Further, for x € H and z € C,
z=PFPex e (x—z,y—2) <0 (2.1)
for all y € C; see [10]. Next, recall the following definitions:
(1) A mapping S : C' — C' is said to be nonexpansive iff
1Sz =Syl <z —yl, Va yel.

(2) A mapping A : C' — H is said to be a—inverse strongly monotone iff there exists a

constant a > 0 such that
<AI—Ay,ZL’—y> ZQHAZE—Ay||27 VZE, ?JEC
It is known that if A is an a—inverse strongly monotone mapping, then
1
Az~ Ayl < Sl —yl, Vo yeC.

Let B be a mapping of H into 2. The effective domain of B is denoted by dom(B),
that is,

dom(B) = {x € H : Bz # (}.
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(3) A multi-valued mapping B is said to be a monotone operator on H iff
(x —y,u—v) >0

for all x, y € dom(B), u € Bx and v € By.

(4) A monotone operator B on H is said to be maximal iff its graph is not strictly

contained in the graph of any other monotone operator on H.

Let B be a maximal monotone operator on H and let B~'0 = {z € H : 0 € Bxz}. For

A > 0, we may define a single-valued operator:
JP = +AB)™: H— dom(B),

which is called the resolvent of B for A. It is well known that the resolvent J£ is firmly

nonexpansive and B~10 = F(JP) for all A. It is also known that

M p
JPr = Jf(xx +(1-— X)fo) (2.2)

holds for all A, >0 and x € H.
In order to prove our main results, we need the following lemmas:

Lemma 2.1 (see [11]) Let B be a uniformly convex Banach space, C' be a nonempty closed
convex subset of B and S : C — B be a nonexpansive mapping with a fixed point, then
I — T is demi-closed in the sense that if {x,} is a sequence in C' such that x, — x and

(I —T)x, — 0, then (I —T)x =0.

Lemma 2.2 (see [12]) Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping A : C — H be a—inverse strongly monotone and let X > 0 be a

constant. Then, the following inequality
I(7 = AA)z — (I = AA)y|* < llz — ylI* + AX = 20) || Az — Ay|*

holds for all x, y € C. In particular, if 0 < X\ < 2a, then I — AA is nonexpansive.
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Lemma 2.3 (see [13]) Let {z,} and {y,} be bounded sequences in a Banach space B and
let {B,} be a sequence in [0, 1] with

0 < liminf 8, < limsup 3, < 1.
n—oo

n—o0
Suppose that
Tnt1 = (1 = Bn)yn + Bnn
for allm >0 and
tim sup (|1 — Yu | = 71 — 20 ) < 0.

n—oo

Lemma 2.4 (sce [14]) Assume that {a,} is a sequence of nonnegative real numbers such
that
Any1 S (]— - bn)an + bncna
where {b,} is a sequence in (0,1) and {c,} is a sequence such that
(1) 2202 bn = 005
(2)limsup,, .o cn <0 or > 07 | |byey| < 0.

Then lim,,_,o a, = 0.
3. Main results

Now, we will give our main result in this paper.

Theorem 3.1. Let C' be a nonempty, closed and convex subset of a real Hilbert space H.
Let A be an a—inverse strongly monotone mapping of C' into H and let B be a maximal
monotone operator on H, such that the domain of B is included in C. Let JP = (I+\B)™!
be the resolvent of B for A > 0 and let S be a nonexpansive mapping of C into itself, such
that F = F(S)N(A+B) 0 # 0. Foru € C and given xg € C, let {x,} C C be a sequence

generated by
Tpt1 = Bpxy + (1 — Bn)San(anu + (1 — ap)(zp — AAxy,)) (3.1)

for all n > 0, where {\,} C (0,2a), {a,} C (0,1) and {B,} C (0,1) satisfy
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(i) lim, oo v, = 0 and 7y, = 00;
(1) 0 < liminf, o B, < liminf, , 8, < 1;
(111) a < N\, < b where [a,b] C (0,2a) and lim, o0 (Apr1 — An) = 0.
Then the sequence {x,} converges strongly to a point 11, (u), where I is the generalized

projection from C' onto F .
Proof. First, we show that the sequence {z,} is bounded. We choose any z € (A +
B)~'0 N F(S). Note that
z=J{ (2 = M1 — ap)Az) = T (a2 4+ (1 — o) (2 — Ay A2)) (3.2)
for all n > 0. Since J¥ is nonexpansive for all A > 0, we have
173, (e + (1 = a) (@0 — AnAan)) — 2|
= |72 (anu+ (1 — ) (2 — AnAy)) — I (anz + (1 — an)(z — A, A2))| )2
< | + (1 — ) (@ — MpAzy)) — (anz + (1 — an) (2 — M A2))|? >
= |(1 = an)((2p — AMAzy) — (2 — M\A2)) + an(u — 2)|°.
And since A is a—inverse strongly monotone, we get
1(1=aw)((wn = AnAzn) = (2 = AnA2)) + an(u — 2)|*
< (1= a)ll(@n — AnAzy) = (2 = M A2) [ + o flu — 2)|*
= (1= )l (@n — 2) = An(Azn — A2) | + o ||u — 2)*
= (1 —an)(||zn — 2||* = 2A\(Am, — Az, 2, — 2) + N2|| Az, — AZ|?) + anllu — 2)|)?
< (1= an)([lon — 2l* = 200 ]| Azy — Az|* + X} Az, — A2?) + anllu = 2)|?

= (1= ) ([lon = 2[I* + Aa(An — 20)[| Az, — Az]]*) + o flu — 2)|1*.

(3.4)
By (3.3) and (3.4), we obtain
[T (a4 (1 — o) (@ — AnAay,)) — 2|
< (L= an)(lzn = 21" + Aa(An — 20) | Az, — Az]]*) + o fJu — 2)|* (3.5)

< (1= an)llzn — 2II* + anllu = 2)|*
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It follows from (3.1) and (3.5) that

1 = 2" = [1Ba(zn — 2) + (1 = Ba) (S (anu + (1 = an) (2 — AnAzn)) — 2)|?
< Buallen = 2I* + (1 = Bu)IS T3, (e + (1 = ) (zn — AnAzy)) — S2|?
< Bullza — 21 + (1= Bu) 175, (anu + (L = o) (@0 — AnAwy)) — 2]*
< Bullzn — 21 + (1 = Bu)(L = an) |z — 2]* + cwnflu — 2)|1%)
= [1 = (1= Ba)anlllzn = 2[I* + (1 = Ba)anlu — z]*

< max{|z, — 2| [lu — 2[*}.

(3.6)

By mathematical induction, we have
[2n+1 = 2] < max{[lzo — 2], [lu — 2] }. (3.7)

Therefore, the sequence {x,} is bounded. We deduce immediately that {Az,} is also
bounded. Set u,, = a,u+ (1 —ay,)(x, — A\ Az,) and v, = anun for all n > 0. Then {u,}
and {v,} are also bounded.

In the other hand, we compute that

1Svar1 = Svall < vnsr = vall = 15, w1 — T, unll

<% (w4 (1= i) (@1 = Anr ATpgr))
— I (u+ (1 — ap) (zn — MAzy))||

< ”Jﬁﬂ(anﬂu + (1 = an1)(Tn1 — Ang1ATn41))
— anﬂ(anu + (1 — ap)(zp — MAxy,))
+ ||Jﬁ+1(oznu + (1 = ap)(z, — \Axy))
— I (u+ (1 = ap) (2 — MAzy))||

< emsru + (1 = ) (@1 — Anp1Aznga)) — (anu + (1 — ap) (@ — AnAwy))

+ HJ/{BnHun — JﬁunH
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= (I = M1 A)znrs — (I = A1 )|l + [Angr — Al Az |
+ anpr(Jlull + llzna | + Ansal[Aznal]) + an(lfull + [lznll + Anl Azn])
+ ||J/€L+1un — I .
Since I — \,41A is nonexpansive for A1 € (0,2«), we have
(1 = A1) zni1 — (I = A1 A)zn|| < (|@psn — 20|

By the resolvent identity (2.2), we have

An An
inbﬂu” = ‘]ﬁ(mun + (1 -

B
)\n-}—l )J)\n+1u”)

It follows from (3.10) that

An
)\n—f—l

An
||JB Uy — JﬁunH = ||in(—un—|— (1-—

B B
Ang1 Un Mot )y Un) — J/\nunH

n+1 n

An An
<t + (L= =) 3 ) — |

)‘n+1 /\n+1
Apit — A
S W

Therefore, from (3.8), (3.9) and (3.11), we have
[Svn1 = Svpll < [[vnt1 — vl

< ”xn—i—l - xn“ + | Ang1 — /\n|||Amn||

(3.8)

(3.9)

(3.10)

(3.11)

+ anp([[ull + [Jznia | + Ana Az ) + an(llull + [[zn]] + Anll Azn]])

A +1 — A B
R oy I
Thus,
lim sup(||Svpq1 — Svn|| = [[Zns1 — 20||) <0
n—oo
and
lim sup(||vns1 — Vnl| = ||Tns1 — zal]) 0.
n—oo

From Lemma 2.3, we obtain

lim ||Sv, —z,||=0 and lim |v, —z,| = 0.
n—oo

n—oo

(3.12)

(3.13)

(3.14)

(3.15)
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Then, from (3.1), we get
lim ||z,11 — z,|| = lim (1 — 3,)||Sv, — z,|| = 0. (3.16)
n—oo n—oo

And from (3.15), we also learn that

lim || Sz, — z,|| < lim (||Sz, — Sva|| + ||Svn — zal|)
n—oo n—oo

< lim (|2 = vall + 100 — zal)) (3.17)
< lim |z, — vyl + lim [|Sv, — 2,[| =0
n—00 n—0oo

Since {z,} is bounded. we see that there exists a subsequence {z,,} of {z,} which
converges weakly to some point Z. By virtue of Lemma 1.2, it follows that z € F(S).

Further we show that z € (A + B)~'0. In fact, notice that
vy = J (anu+ (1 — o) (@0 — AnAxy,)),
we have that
apu+ (1 — ay)(x, — N\ Azy,) € v, + A\, Buy,.

Let £ € Bn. Since B is monotone, we get

apu+ (1 — ay)x, — vy,

{ "

(1—ay)Az, — & v, —n) > 0.

In view of (i), (iii) and (3.15), we obtain

(—Az — &, —n) > 0.

It follows that —Az € Bz, that is, 7 € (A + B)~10.
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On the other hand, from (3.5) and (3.6), we have

n41 = 2l1* < Ballzn — 21> + (1 = Ba)|STR, (nu + (1 = ) (25 — Ay Azy)) — 2|
< (1= B3 (anu + (1 = an) (0 — AnAzy)) = 2[1° + Ball2n — 2|
< (1= B = an)(lzn = 2)* + M(An = 20)[| Az, — Az]*) + a[lu — 2]*}
+ Bullzn — 2|
=[1 = (1= Ba)an]llzn — 2[* + (1 = Bu)An(An — 20) | Ay, — Az]|?
+ (1= B)aw|lu — 2|

<l = 21 + (1= Ba) dn(An — 20) | Ay — Az + (1 = Bn)awnflu — 2.
It follows that

(1= Bp) (200 — /\n)”AIn - AZ”2 < Hxn - ZH2 - ||xn+1 - 2”2 + (1 - Bn)annu - 2“2

< (lon = 21l = llznss = 2D |21 = @all + (1 = Ba)awnllu — 2]

Since lim,, o v, = 0, liminf,, (1 — 8,)A\n(2a — A\,,) > 0 and (3.16), we have
lim || Az, — Az|| = 0. (3.18)
n—oo

Put p = Pru. Set y, = x, — A\y(Azx, — Ap) for all n > 0. Next, we show that

lim sup(u — p, y, —p) < 0.
n—oo
In fact, take z = pin (3.18) to get || Az, —Ap|| — 0. We easily see from y,, that ||z, —y,|| —
0, as n — oo. Therefore, there exists a subsequence {y,,} C {y,} which converges weakly

to r € F, such that

limsup(u — p, y, — p) = im(u — p,yn, —p) = (u —p, 7 —p) < 0.

n—00 100
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Finally, we prove that x, — p, as n — oo. From (3.1), we have
1 = I* < Ballzn — plI* + (1 = Bu) 1SN, un — pl?
< Ballzn = pII* + (1 = Bu) 15 wn — pII*
= Bullzn = pl* + (1 = B) I3 un = T3 (0 = (1 = )X Ap) ||
< Bullen = plI* + (1 = Ba)llun — (0 — (1 — cn) X Ap)||”
< Ballzn = plI* + (1 = Bu)llanu + (1 — an) (@ — AnAzn) — (p — (1 = cn) A Ap)||*
< Ballzn = plI* + (1 = Bu)lI(1 = an) (@0 = AeAzn) = (p = AuAp) + an(u = p)|*
< Ballwn = plI* + (1 = B) x {(1 = an)?|[(20 = AaAzy) = (p = X Ap)||*
+ 200 (1 = an)(u = p, (20 = MuAz) = (p = AuAp)) + aqllu —p||*}
< Ballzn = plI* + (1= Ba) x {(1 = aw)[lza — pl”
+ 200 (1 — ) (u = P, 2 — An(Az — Ap) = p) + ag|lu — pl|*}
< [1= (1= Ba)an]llzn = pl* + (1 = B)an{2(1 = an){u = p,ya — p) + anflu — pl*}.

Notice that Y >7 (1= f,)a, = oo and limsup,,_, . (2(1— ) (u—p, Y, —p) +a |u—pl||?) < 0.

It follows from Lemma 2.4 that z,, — p, as n — o0o. This completes the proof. []

Remark 3.2. The iterative algorithm (3.1) is different from the one in Theorem 3.1 in

[5], but the two algorithms deal with the same problem in different angle.
When S =1 in (3.1), we can get the following corollary by using Theorem 3.1:

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let A be an a—inverse strongly monotone mapping of C' into H and let B be a maximal
monotone operator on H, such that the domain of B is included in C. Let JP = (I+\B)™*
be the resolvent of B for A > 0 such that (A+ B)™'0 # 0. For u € C and given xq € C,

let {x,} C C be a sequence generated by
Tpi1 = Bpxn + (1 — Bn)Jﬁ (apu+ (1 — ) (T — \pAxy,)) (3.1)

for all n > 0, where {\,} C (0,2a), {a,} C (0,1) and {B,} C (0,1) satisfy

(i) lim, oo v, = 0 and Y 2 @, = 00;
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(i1) 0 < liminf, o, B, < liminf, . 3, < 1;
(111) a < N\, < b where [a,b] C (0,2a) and lim, o0 (Ans1 — An) = 0.
Then the sequence {x,} converges strongly to a point Il aypy-19(u), where Il a1p)-19 is

the generalized projection from C onto (A + B)~10.

Remark 3.4. Corollary 3.3 is just the main result in Liou [6].

4. Applications

Let H be a Hilbert space and f : H — (—o0, +00] be a proper convex lower semi—continuous

function. Then the subdifferential Of of f is defined as follows:
Of(@)={yeH:f(z) > fla)+(z—xy), VzeH} Vazekl

From Rockafellar [15, 16], we know that Jf is maximal monotone. It is easy to verify

that 0 € 9f () iff f(x) = mingey f(y). Let d¢ be the indicator function of C, i.e.,

0, x e,
5o = (4.1)

+o0, x ¢ C.
Since d¢ is a proper lower semi-continuous convex function on H, we see that the subdif-
ferential 0o of d¢ is a maximal monotone operator.
The following result is introduced by Takahashi et al [5]:

Lemma 4.1 (see [5]) Let C be a nonempty closed convex subset of a real Hilbert space H,
Pc be the metric projection from H onto C, 0d¢c be the subdifferential of 6c and Jy be the
resolvent of dd¢ for X > 0 where §¢ is as defined in (4.1) and Jy = (I + X\dd¢c)~*. Then

y=Jhaxey=PFPx, VYazeH yel.

Now, we introduce an iterative scheme for approximating a common element of the set

of solutions to variation inequality (1.4) and the set of fixed points of a nonexpansive

mapping:
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Theorem 4.2. Let C be a nonempty, closed and convexr subset of a real Hilbert space
H. Let A be an a—inverse strongly monotone mapping of C' into H and let S be a
nonexpansive mapping of C into itself such that F = F(S)NVI(C,A) # 0. For u € C

and given xy € C, let {x,} C C be a sequence generated by
Tnt1 = Bpxn + (1 = B,)SPo(anu + (1 — ay) (2, — \Axy,))

for all n > 0, where {\,} C (0,2a), {a,} C (0,1) and {B,} C (0,1) satisfy
(i) lim, oo o, = 0 and Y2, = 00;
(1) 0 < liminf, o B, < liminf, , 8, < 1;
(111) a < N\, < b where [a,b] C (0,2q) and lim, 00 (Apt1 — An) = 0.
Then the sequence {x,} converges strongly to a point 11, (u), where I is the generalized

projection from C' onto F .

Proof. Put B = 0§c. Next, we show that VI(C, A) = (A + 36c)~'0. Notice that

€ (A+050)1(0) <=0 € Az + ddcx
— — Az € Jdcx
— (Az,y—z) >0, (Vyel)
— e VI, A).

From Lemma 4.1, we know that J,, = P¢ for all A, with 0 <a <\, < b < 2a. So, we

can obtain that the desired result by Theorem 3.1. this completes the proof. [J

As another application of Theorem 3.1, we consider the problem for finding a common
element of the set of solutions to equilibrium problems and the set of fixed points of a

nonexpansive mapping.
Let F': C' x C'— R be a bifunction satisfying the following conditions:

(A1) F(z,x) =0 for all x € C;

(A2) F' is monotone, that is, F(x,y) + F(y,z) <0 for all z, y € C,
(A3) for all x, y,z € C, limsup,, F(tz + (1 —t)z,y) < F(x,y);
(Aa)

Ay) for all x € C, F(xz,-) is convex and lower semicontinuous.
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Then, the mathematical model related to equilibrium problem (with respect to C) is

to find £ € C such that

F(z,y) >0 (4.2)
for all y € C. The set of solutions to equilibrium problem is denoted by EP(F'). The
following lemma was introduced by Blum and Oettli [17]:
Lemma 4.3 (see [17]) Let C be a nonempty closed conver subset of a real Hilbert space
H, F be a bifunction of C x C into R satisfying (A1) — (Ays). Letr >0 and x € H. Then,

there exists z € C such that

1
Fzy)+ {y—22-2)20, yeC

The following lemma was given by Combettes and Hirstoaga [18]:
Lemma 4.4 (sce [18]) Assume that F': C x C — R satisfying (A1) — (A4) and z € H,
define a mapping T, : H — C' as follows:
Tr(x):{ZEC:F(z,y)—i-%(y—z,z—@20,yEC’} (4.3)
for all x € H. Then, the following holds:
(B1) T, is single valued;
(Bs) T, is a firmly nonexpansive mapping, that is, for all x, y € H,

”Trx - TryH2 S <Tr$ - Trya T — y>

(Bs) F(T;) = EP(F);
(By) EP(F) is closed and conver.

The following lemma appears in Takahashi et al.[5]:

Lemma 4.5 (see [5]) Let C' be a nonempty closed convex subset of a real Hilbert space
H, F be a bifunction of C x C into R satisfying (A1) — (A4). And Ap be a set-valued
mapping of H into itself defined by

{zeH:F(z,y)>(y—w2), Vyel}, zeC,
AFl':

®7 ZL’%C
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Then A is a mazimal monotone operator with the domain D(Ap) C C, EP(F) = Az'(0)
and

To=(I+7rAp) 'z, YaxeH, r>0,
where T, is defined as in (4.3).
Applying Lemma 4.5 and Theorem 3.1, we can obtain the following result immediately.

Theorem 4.6. Let C' be a nonempty, closed and convex subset of a real Hilbert space H.
Let F' be a bifunction from C x C' — R satisfying (A1) — (A4) and let T, be the resolvent
of F for r > 0. Suppose that F = F(S)NEP(F) # 0. For u € C and given xy € C, let

{z,} C C be a sequence generated by
Tpt1 = Bpxn + (1= 5,)ST,, (apu + (1 — ay)xy,)

for all n > 0, where {r,} C (0,2a), {a,,} C (0,1) and {B,} C (0,1) satisfy
(i) lim, oo v, = 0 and Y2 0y, = 00;
(i1) 0 < liminf, ., B, < liminf, . £, < 1;
(111) a < r, < b where [a,b] C (0,2a) and lim, oo (1 — rn) = 0.
Then the sequence {x,} converges strongly to a point 11, (u), where I is the generalized

projection from C' onto F .
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