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Abstract. In this paper, we study the concept of an interval valued fuzzy almost (m,n)- bi-ideals. We investigate

properties of an interval valued fuzzy almost (m,n)-bi- ideal in semigroups.
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1. INTRODUCTION

The theory of fuzzy set was presented in 1965 by Zadeh [12]. The theory of fuzzy semigroups

contained by Kuroki in 1979 [8]. Later the theory of interval valued fuzzy sets was introduced

in 1975 by Zadeh [13], as a generalization of the notion of fuzzy sets. Interval valued fuzzy sets

have various applications in several areas like medical science [3], image processing [2], deci-

sion making [14], etc. In 2006, Narayanan and Manikantan [7] developed the theory of interval

valued fuzzy subsemigroup and studied types interval valued fuzzy ideals in semigroups. In

1961, Lajos [5] studied the concepts of (m,n)-ideals in semigroups which generalized of ideals

of semigroups. The reseach of (m,n)-ideals of semigroups has interested many such as Akram

et al. [1], N. Yaqoob and M. Aslam [10] and many others. In 2020 Ahsan et al. [6] extened
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the idelas of (m,n)-ideals in semigroups to fuzzy sets in semigroup and they characterize the

regular semigroup by using fuzzy (m,n)-ideals.

In this paper, we give the concept of an interval valued fuzzy almost (m,n)-bi-ideals. We

prove properties of an interval valued fuzzy almost (m,n)-bi-ideal in semigroups.

2. PRELIMINARIES

In this section, we give some definition and theory helpful in later sections.

A non-empty subset L of a semigroup G is called

(1) a subsemigroup of G if L2 ⊆ L,

(2) a left (right) ideal of G if GL⊆ L (LG⊆ G),

(3) an ideal of a semigroup G we mean a left ideal and a right ideal of G,

(4) a almost bi-ideal of G if L is a subsemigroup and LgL∩L 6= /0.

A non-empty subset L of a semigroup G. We denote the

[L](m,n) =
m+n⋃
r=1

Lr∩LmGLn is principal (m,n)-ideal,

[L](m,0) =
m⋃

r=1

Lr∩LmG is principal (m,0)-ideal,

[L](0,n) =
n⋃

r=1

Lr∩GLn is the principal (0,n)-ideal,

i.e., the smallest (m,n)-ideal, the smallest (m,0)-ideal and the smallest (0,n)-ideal of G con-

taining L, respectively.

Lemma 2.1. [4] Let G be a semigroup and m,n positive integers, [π](m,n) the principal (m,n)-

ideal generated by the element π. Then

(1) ([π](m,0))
mG = πmG.

(2) G([π](0,n))
n = Gπn.

(3) ([π](m,0))
mG([π](0,n))

n = πmGπn.

For any pi ∈ [0,1], where i ∈A , define

∨
i∈A

pi := sup
i∈A
{pi} and ∧

i∈A
pi := inf

i∈A
{pi}.

We see that for any p,q ∈ [0,1], we have
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p∨q = max{p,q} and p∧q = min{p,q}.

A fuzzy set of a non-empty set T is a function ω : L→ [0,1].

Definition 2.2. [6] A fuzzy set ω of a semigroup G is said to be

(1) a fuzzy subsemigroup of G if ω(e1e2)≥ ω(e1)∧ω(e2) for all e1,e2 ∈ G,

(2) a fuzzy left (right) ideal of G if ω(e1e2)≥ ω(e2) (ω(e1e2)≥ ω(e1)) for all e1,e2 ∈ G,

(3) a fuzzy ideal of G if it is both a fuzzy left ideal and a fuzzy right ideal of G,

(4) a fuzzy (m,n)-ideal of G if ω(e1e2 . . .embd1d2 . . .dn) ≥ ω(e1) ∧ ω(e2) ∧ ·· · ∧ ω(en) ∧

ω(d1)∧ω(d2)∧ ·· · ∧ω(dn) for all e1,e2, ...,em,d1,d2, ...,dn,b ∈ G and m,n are positive

integers.

Definition 2.3. [11] A fuzzy set ω of a semigroup G such that ω 6= 0 is called fuzzy almost

bi-ideal of G if (ω ◦χG ◦ω)∩ω 6= 0.

Let Ω[0,1] be the set of all closed subintervals of [0,1], i.e.,

Ω[0,1] = {p = [p−, p+] | 0≤ p− ≤ p+ ≤ 1}.

We note that [p, p] = {p} for all p∈ [0,1]. For p = 0 or 1 we shall denote [0,0] by 0 and [1,1]

by 1.

Let p = [p−, p+] and q = [q−,q+]∈Ω[0,1]. Define the operations�, =, f andg as follows:

(1) p� q if and only if p− ≤ q− and p+ ≤ q+

(2) p = q if and only if p− = q− and p+ = q+

(3) pfq = [(p−∧q−),(p+∧q+)]

(4) pgq = [(p−∨q−),(p+∨q+)].

If p� q, we mean q� p.

For each interval pi = [p−i , p+i ] ∈Ω[0,1], i ∈A where A is an index set, we define

f
i∈A

pi = [ ∧
i∈A

p−i , ∧i∈A
p+i ] and g

i∈A
pi = [ ∨

i∈A
p−i , ∨i∈A

p+i ].

Definition 2.4. [9] Let L be a non-empty set. Then the function f : L→Ω[0,1] is called interval

valued fuzzy set (shortly, IVF set) of T .
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Definition 2.5. [9] Let L be a subset of a non-empty set G. An interval valued characteristic

function of L is defined to be a function χL : T →Ω[0,1] by

χL(e) =


1 if e ∈ L,

0 if e /∈ L

for all e ∈ G.

For two IVF sets ω and ϖ of a non-empty set G, define

(1) ω v ϖ ⇔ ω(e)� ϖ(e) for all e ∈ G,

(2) ω = ϖ ⇔ ω v ϖ and ϖ v ω,

(3) (ω uϖ)(e) = ω(e)fϖ(e) for all e ∈ G,

(4) (ω tϖ)(e) = ω(e)gϖ(e) for all e ∈ G.

For two IVF sets ω and ϖ in a semigroup G, define the product ω ◦ϖ as follows : for all

e ∈ G,

(ω ◦ϖ)(e) =


g

(t,h)∈Fe
{ f (t)fϖ(h)} if Fe 6= /0,

0 if Fu = /0,

where Fe := {(t,h) ∈ G×G | e = th}.

Next, we shall give definitions of various types of IVF subsemigroups.

Definition 2.6. [7] An IVF set ω of a semigroup G is said to be an IVF subsemigroup of G if

ω(e1e2)� ω(e1)fω(e2) for all e1,e2 ∈ G.

Definition 2.7. [7] An IVF set ω of a semigroup G is said to be an IVF left (right) ideal of G if

ω(e1e2)� ω(e2) (ω(e1e2)� ω(e1)) for all e1,e2 ∈ G. An IVF subset ω of G is called an IVF

ideal of G if it is both an IVF left ideal and an IVF right ideal of G.

Theorem 2.8. [7] Let L be a non-empty subset of a semigroup G. Then χL is an IVF subsemi-

group of G if and only if L is a subsemigroup of G.

Theorem 2.9. Let ω be an IVF set of a semigroup G. Then ω is a subsemigroup of G if and

only if sup(ω) is an IVF subsemigroup of G.

Let ω be an IVF set of a semigroup G and m ∈ Z. Then
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(1) ω0 := χg and ω
0 ◦χG ◦ω

0 := χG,

(2) ω
m := ω ◦ω ◦ · · · ◦ω︸ ︷︷ ︸

m−times

,

(3) ω
m ◦χG ◦ω

0 := ω
m ◦χG,

(4) ω
0 ◦χG ◦ω

m ◦ω
0 := χG ◦ω

m.

The following theorem we can easy to prove.

Theorem 2.10. Lef ω,ϖ and κ be IVF set of a semigroup G. Then the following statements

hold:

(1) If ω v ϖ then ω
m v ϖ

m for all m ∈ Z.

(2) If ω v ϖ then ω ◦κ v ϖ ◦κ.

(3) If ω v ϖ then ω ◦κ uϖ ◦κ.

Definition 2.11. An IVF set ω of a semigroup G is called an IVF almost (m,n)-ideal of G if

(ωm ◦G◦ω
n)uω 6= 0 for all m,n ∈ Z.

3. ON INTERVAL VALUED FUZZY ALMOST (m,n)-BI-IDEAL IN SEMIGROUPS

In this section, we give the concept of an interval valued fuzzy almost (m,n)-bi-ideals and

investigate properties of an interval valued fuzzy almost (m,n)-bi-ideal in semigroups.

Definition 3.1. An IVF subsemigroup ω of a semigroup G is called an IVF almost (m,n)-bi-

ideal of G if (ωm ◦G◦ω
n)uω 6= 0 for all m,n ∈ Z.

Theorem 3.2. Suppose that ω is an IVF almost (m,n)-bi-ideal and ϖ is an IVF subsemigroup

of a semigroup G and m,n ∈ Z. Then the following statements hold:

(1) If ω v ϖ , then ϖ is an IVF almost (m,n)-bi-ideal of G.

(2) ω tϖ is an IVF almost (m,n)-bi-ideal of G.

Proof. (1) Suppose that ω v ϖ . Then 0 6= (ωm ◦G◦ω
n)uω v (ϖm ◦G◦ϖ

n)uϖ . Thus ϖ is

an IVF almost (m,n)-bi-ideal of G.

(2) Clearly ω v ω tϖ . By (1) we have ω tϖ is an IVF almost (m,n)-bi-ideal of G.

�

Note that for a subset L of G, define L0 := G.
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Lemma 3.3. Let L be a non-empty subset of a semigroup G and m ∈ Z. Then

(χL)
m = χ

m
L .

Theorem 3.4. Let L is a non-empty subset of a semigroup G. Then L is an almost (m,n)-bi-

ideal of G if and only if the characteristic function χL is an IVF almost (m,n)-bi-ideal of G for

all m,n ∈ Z.

Proof. Suppose that L is an almost (m,n)-bi-ideal of G. Then L is a subsemigroup of G. Thus

by Theorem 2.11, χL is an IVF subsemigroup of G. Let d ∈G. Then by assumtion, there exists

e ∈ (LmGLn)∩L such that [(χm
L ◦G◦χ

n
L)uχL](e) 6= 0. By Lemma 3.3,

[((χL)
m ◦G◦ (χL)

n)uχL](e) 6= 0.

Thus χL is an IVF almost (m,n)-bi-ideal of G.

Conversely, suppose that χL is an IVF almost (m,n)-bi-ideal of G. Then χL is an IVF sub-

semigroup. Thus by Theorem 2.11, L is a subsemigroup of G. Let d ∈ G. Then

[((χL)
m ◦G◦ (χL)

n)uχL] 6= 0.

Thus there exists e ∈ G such that [((χL)
m ◦G◦ (χL)

n)uχL](e) 6= 0. By Lemma 3.3,

[(χm
L ◦G◦χ

n
L)uχL](e) 6= 0.

Thus e ∈ LmGLn∩L. Hence LmGLn∩L 6= /0.

We conclude that L is an almost (m,n)-bi-ideal of G. �

For IVF set ω of a semigroup G, defined supp(ω) := {e ∈ G | ω(e) 6= 0}.

Theorem 3.5. Let ω be an IVF set of a semigroup G. Then ω is an almost (m,n)-bi-ideal of G

if and only if sup(ω) is an IVF almost (m,n)-bi-ideal of G for all m,n ∈ Z.

Proof. Suppose that ω is an almost (m,n)-bi-ideal of G. Then ω is a subsemigroup of G. Thus

by Theorem 2.9, sup(ω) is an IVF subsemigroup of G. Let d ∈ G. Then there exists e ∈ G

such that [(ωm ◦G ◦ω
n)uω](e) 6= 0. Thus ω(r) 6= 0 and e = c1c2 . . .cmde1e2 . . .en for some

c1,c2, . . . ,cm,e1,e2, . . . ,en ∈ G such that

ω(c1) 6= 0, ω(c2) 6= 0, . . . ,ω(cm) 6= 0, ω(e1) 6= 0, ω(e2) 6= 0, . . . ,ω(en) 6= 0.
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So c1,c2, . . . ,cm,e1,e2, . . . ,en,d ∈ supp(ω). It implies that

[(χsupp(ω))
m ◦G◦ (χsupp(ω))

n](e) 6= 0 and χsupp( f )(e) 6= 0.

Hence [(χsupp(ω))
m ◦G◦ (χsupp(ω))

nuχsupp(ω)](e) 6= 0. Thus χsupp(ω) is an IVF almost (m,n)-

bi-ideal of G. By Theorem 3.4, supp(ω) is an almost (m,n)-bi-ideal of G.

Conversely, suppose that supp(ω) is an IVF almost (m,n)-bi-ideal of G. Then (ω) is an IVF

subsemigroup of G. Thus by Theorem 2.9, (ω) is a subsemigroup of G. Let r ∈ G. Then by

Theorem 3.4, χsupp(ω) is an IVF almost (m,n)-bi-ideal of G. Thus

[(χsupp(ω))
m ◦G◦ (χsupp(ω))

nuχsupp(ω)] 6= 0.

So there exists e ∈ S such that [(χsupp( f ))
m ◦G◦ (χsupp(ω))

nuχsupp(ω)](r) 6= 0.

Hence (χsupp(ω))
m ◦G◦ (χsupp(ω))

n(e) 6= 0 and χsupp(ω)(e) 6= 0.

Thus there exist c1,c2, . . . ,cm,e1,e2, . . . ,en,d ∈ G supp(ω) and e = c1c2 . . .cmde1e2 . . .en. So

ω(c1) 6= 0, ω(c2) 6= 0, . . . ,ω(cm) 6= 0, ω(e1) 6= 0, ω(e2) 6= 0, . . . ,ω(en) 6= 0.

Hence [(ωm ◦G◦ω
n)](e) 6= 0 implies [(ωm ◦G◦ω

n)uω](e) 6= 0.

Therefore ω is an almost (m,n)-bi-ideal of G. �

Definition 3.6. An IVF almost bi-ideal ω is called minimal if for all nonzero IVF almost bi-

ideals ϖ of a semigroup G such that ϖ v ω implies supp(ω) =supp(ϖ).

Definition 3.7. An IVF almost (m,n)-bi-ideal ω is called minimal if for all nonzero IVF almost

(m,n)-bi-ideals ϖ of a semigroup G such that ϖ v ω implies supp(ω) =supp(ϖ).

Theorem 3.8. Let L be a non-empty subset of a semigroup G. Then L is a minimal almost

(m,n)-bi-ideal of G if and only if χL is a minimal IVF almost (m,n)-bi-ideal of G.

Proof. Suppose that L is a minimal almost (m,n)-bi-ideal of G. Then by Theorem 3.4, χL is an

IVF almost (m,n)-bi-ideal of G. Let ω be an IVF almost (m,n)-bi-ideal of S such that ω v χL.

Then supp(ω)v supp(χL) = L. By Theorem 3.5, sup(ω) is an almost (m,n)-bi-ideal of G. By

supposition, supp(ω) = L = supp(χL). Hence χL is a minimal IVF almost (m,n)-bi-ideal of G.

Conversely, suppose that χL is a minimal IVF almost (m,n)-bi-ideal of G and let D be an

almost (m,n)-bi-ideal of G such that D ⊆ L. Then χD is an IVF almost (m,n)-bi-ideal of G
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such that χD v χL. Thus D = supp(χB) = supp(χL) = L. Therefore L is a minimal almost

(m,n)-bi-ideal of G. �

Corollary 3.9. Let G has no proper almost (m,n)-bi-ideal if and only if for all IVF almost

(m,n)-bi-ideal ω of G, supp(ω) = G.

Proof. It follows from Theorem 3.8. �
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