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Abstract. In this paper, we derive conformable fractional Kamal transform from the classical Kamal transform

and we present their properties. We discuss the conformable fractional kamal transform of some functions and

relationship with conformable fractional Laplace transform. Moreover we solve the general analytical solution of

a general conformable Bernoulli’s fractional differential equation by this new transform and Adomain polynomial

method. Also we use this method to find the solution of linear and nonlinear conformable fractional differential

equations.
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1. INTRODUCTION

The theory of fractional derivation has known great importance in mathematical research

these last decades. The definition of fractional derivative don’t have a standard form. But the

most used definitions are those from the integration. Caputo definition, Riemann– Liouville,
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Hadamard, Grunwald [22, 23, 24]. Here, these fractional derivatives do not provide some prop-

erties of algebra of derivative. To overcome these difficulties, Khalil et al.[18], came up with

an idea that extends the limit definition of the derivative. He derived some results of fractional

derivative by using his new definition of fractional derivative. Almeida et al[7]. introduced

different definition of the fractional derivative. He also discussed some important results of

fractional derivative by using his definition if fractional derivative.

Definition 1.1. [18] If φ : [0,∞)→ R be a function and ∀ α ∈ (0,1), then the conformable

fractional derivative of φ of order α is defined as

Dα(φ)(t) = lim
µ→0

φ
(
t +µt1−α

)
−φ(t)

µ
, t > 0 (1.1)

If Dα(φ(t)) and limµ→0+ φ (α)(t) is exist in (0,c), where c > 0, then α-derivative is defined as

φ (α)(0) = limt→0+ φ (α)(t).

Definition 1.2. [18] Let φ : [0,∞)→ R and α ∈ (n,n+ 1] be an n-differentiable at t, where

t > 0. Then conformable fractional derivative of φ is defined as

Dnα(φ)(t) = lim
µ→0

φ dαe−1
(

t +µtdαe−α

)
−φ dαe−α(t)

µ
, n−1 < α ≤ n, t > 0 (1.2)

where n ∈ N and dαe is the smallest integer number greater than or equal to

α. Provided Dnα(φ)(0) = limµ→0 Dnα(φ)(t),φ(t) is n-differentiable and Dnα(φ)(0) =

limµ→0 Dα(φ)(t),φ(t) exists.

Definition 1.3. [18] Let , 0≤ γ ≤ t and φ be a function defined on (γ, t], then New α-fractional

integral is defined by

Iα
φ(t) =

∫ t

0
φ(t)tα−1dt, 0 < α ≤ 1

provided integral exists.

Remark 1.4. [18] The most useful result is that

Dnα(φ)(t) = tdαe−α
φ
dαe(t). (1.3)

where α ∈ (n,n+1] and φ is an (n+1)-differentiable function at t > 0.

Recently introduced Kamal transform by Abdelilah Kamal and H. Sedeeg [2] . It is defined for
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functions of exponential order in the set A by:

A = {φ(t) : ∃M,λ1,λ2 > 0, |φ(t)|< Me
|t|
λi , i f t ∈ (−1)i× [0,∞), i = 1,2} (1.4)

where M is a constant but finite number, λ1,λ2 are finite or infinite. The Kamal transform is

defined by the integral equation and it is denoted by K(.)

K{φ(t)}= G(v) =
∫

∞

0
e
−t
v φ(t)dt, v > 0. (1.5)

The most useful rules of classical Kamal transform are [2]

(1) Shifting property: If the Kamal transform of functions φ(t) is G(v), then Kamal trans-

form of functions eatφ(t) is

K(eat
φ(t)) = G

(
v

1−av

)
. (1.6)

(2) Kamal transform of tφ(t): If K{φ(t)}= G(v), then

K(tφ(t)) = v2 d
dv

G(v). (1.7)

(3) Kamal transform of the derivatives of the function φ(t): If K{φ(t)}= G(v), then

K{(φ(t)′}= 1
v

G(v)−φ(0). (1.8)

(4) Convolution property: If the Kamal transform of functions φ(t) and ψ(t) are Φ(v) and

Ψ(v) respectively, then the convolution of their

K{(φ ∗ψ)(t)}= Φ(v)Ψ(v), (1.9)

where φ ,ψ : [0,∞)→ R are given functions, φ ∗ψ is the convolution product of φ and ψ,

K{φ(t)}= Φ(v) and K{ψ(t)}= Ψ(v).

The conformable fractional Laplace transform (CFLT) for a given function φ : [0,∞)→ R at

t > 0 is defined by [1, 11]

Lα{φ(t)}= Φα(s) =
∫

∞

0
e−s tα

α φ(t)tα−1dt, 0 < α ≤ 1. (1.10)
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In particular, if α = 1, then Eq. (1.10) is convert to the definition of the fractional Laplace

transform:

L{φ(t)}= Φ(s) =
∫

∞

0
e−st

φ(t)dt. (1.11)

Note: The relationship between Kamal transform G(v) = K{φ(t)} and Laplace transform

Φ(s) = L{φ(t)} [6, 29]

G
(

1
v

)
= Φ(s), (1.12)

and also between conformable fractional laplace transform (CFLT) Lα{φ(t)} = Φα(s) and

Laplace transform Φ(s) = L{φ(t)} is given by [1]

Φα(s) = L
{

φ

(
(αt)

1
α

)}
. (1.13)

The most important results for the conformable fractional laplace transform (CFLT) are [1,

11].

If φ : [0,∞)→ R is a given function and 0 < α ≤ 1, then following are

(1) If φ : [0,∞)→ R be real valued differentiable function and 0 < α ≤ 1, then

Lα{Dα
φ(t)}= sΦα(s)−φ(0), s > 0, (1.14)

(2) If φ : [0,∞)→ R be the function and 0 < α ≤ 1, then

Lα{Iα
φ(t)}= Φα(s)

s
, s > 0, (1.15)

2. PROPERTIES OF CONFORMABLE FRACTIONAL KAMAL TRANSFORM (CFKT)

In this section, we introduce the definition of conformable fractional kamal transform

(CFKT) and derive some properties and rules of this fractional transform for some functions

and a relationship between conformable fractional kamal transform (CFKT) and conformable

fractional laplace transform (CFLT) are determinate which are important role for solving con-

formable fractional linear and nonlinear differential equations (CFDEs).

Definition 2.1. Consider the conformable fractional kamal transform for functions of exponen-

tial order in the set A by

A =

{
φ(t) : ∃M,λ1,λ2 > 0, |Φ(t)|< Me

|t|
λi , i f t ∈ (−1)i× [0,∞), i = 1,2

}
(2.1)
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where M is a constant but finite number, λ1,λ2 are finite or infinite, then the conformable

fractional kamal transform (CFKT) of φ can be defined as

Kα{φ(t)}= Gα(v) =
∫

∞

0
e
−tα
vα φ(t)dαt, v > 0 (2.2)

where dαt = tα−1dt, 0 < α ≤ 1 and provided the integral exists.

Theorem 2.2. If φ : [0,∞)→ R such that Kα{φ(t)}= Gα(v) and 0 < α ≤ 1, then

Gα(v) = K
{

φ

(
(αt)

1
α

)}
(2.3)

Proof By using the Definition 2.1, we have

Gα(v) =
∫

∞

0
e
−tα
vα φ(t)dαt

Putting u = tα

α
, then du = tα−1dt, we have

Gα(v) =
∫

∞

0
e
−u
v φ

(
(αu)

1
α

)
du =

∫
∞

0
e
−t
v φ

(
(αt)

1
α

)
dt

=K
{

φ

(
(αt)

1
α

)}
.

Theorem 2.3. If φ : [0,∞)→ R be a given function and 0 < α ≤ 1, then

Kα{φ(t)}= Gα

(
1
v

)
, (2.4)

where Gα(v) and Φα(s) are the conformable fractional kamal transform (CFKT) and CFLTs,

respectively.

Proof By Using Definition 2.1, we have

Kα{φ(t)}= Gα(v) =
∫

∞

0
e
−tα
vα φ(t)dαt.

Putting u = tα

α
, then du = tα−1dt, and substitute in above equation, then by using equations

(1.5) and (1.6), we have

Gα(v) =
∫

∞

0
e
−u
v φ

(
(αu)

1
α

)
du

=
∫

∞

0
e−

t
v φ

(
(αt)

1
α

)
dt = L{φ

(
(αt)

1
α

)
}s→ 1

v

=Φα

(
1
v

)
.

Hence proved.
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Theorem 2.4. If φ : [0,∞)→ R be differentiable function and 0 < α ≤ 1, then

Kα{Dα
φ(t)}= 1

v
Gα(v)−φ(0). (2.5)

Proof By Applying Theorem 2.3 and equation (1.14), we have

Kα{Dα
φ(t)}=Lα {Dα

φ(t)}s→ 1
v

=
1
v

Gα(v)−φ(0).

Hence the proof is complete the Theorem 2.4.

If α = 1
n+1(n ∈ N), where α satisfies 0 < α = 1

n+1 ≤ 1, then we have 0 < nα = n
n+1 ≤ 1 in

the above Theorem 2.4 and we have generalised follow Theorem.

Theorem 2.5. Let φ : [0,∞)→ R be n-differentiable function and 0 < α ≤ 1, then

Kα{Dnα
φ(t)}= 1

vn Gα(v)−
1

vn−1 φ(0). (2.6)

Proof Proof is follows by using induction and Theorem 2.4.

Note: In the following example we solve the fractional kamal transform for certain func-

tions.

Example 2.6. Consider the a,c ∈ R, then by using Theorem 2.4, we have

(1) Kα{c}= v.

(2) Kα

{
ea tα

α

}
= K

{
e

a
α
(αt)

1
α α

}
= K{eat}= v

1−av , v > 1
a .

(3) Kα

{
sin(a tα

α
)
}
= K

{
sin( a

α
(αt)

1
α

α)
}
= K{sin(at)}= av2

1+a2v2 , v > 0.

(4) Kα

{
cos(a tα

α
)
}
= K

{
cos( a

α
(αt)

1
α

α)
}
= K{cos(at)}= v

1+a2v2 , v > 0.

(5) Kα

{
sinh(a tα

α
)
}
= K

{
sinh( a

α
(αt)

1
α

α)
}
= av2

1−a2v2 , v > 1
|a| .

(6) Kα

{
cosh(a tα

α
)
}
= K

{
cosh( a

α
(αt)

1
α

α)
}
= v

1−a2v2 , v > 1
|a| .

(7) Kα

{
( tnα

αn )
}
= K

{
(αt)

1
α nα

αn

}
= K{tn}= Γ(n+1)vn+1, v > 0.

Where Γ() denotes to the gamma function.

Theorem 2.7. Let φ ,ψ : [0,∞)→R be the functions such that Kα{φ(t)}=Φα(v),Kα{ψ(t)}=

Ψα(v) and Lα{φ(t)}= Φα(s), for σ ,ζ ∈ R and 0 < α ≤ 1, we have
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(1) Linearly property

Kα{σφ(t)+ζ ψ(t)}= σΦα(v)+ζ Ψα(v). (2.7)

(2) Shifting property

Kα

{
ea tα

α φ(t)
}
=

1−av
v

. (2.8)

(3) Integration property

Kα{Iαφ(t)}= vΦα(
1
v
). (2.9)

(4) Convolution property

Kα{(φ ∗ψ)(t)}= Φα(v)Ψα(v). (2.10)

(5) Power product property

Kα

{(
tα

α
φ(t)

)}
= v2 d

dv
Φα(v). (2.11)

Proof

(1) Proof of (a) follows from Definition 2.1.

(2) By Using Theorem 2.3, we have

Kα

{
ea tα

α φ(t)
}
=L
{

eat
φ

(
(αt)

1
α

)}
s→ 1

v

=Φα(s−a)s→ 1
v

=Φα

(
1−av

v
.

)
(3) By using Theorem 2.3 and equation (1.12)

Kα{Iαφ(t)}=Lα{Iαφ(t)}s→ 1
v

=

{
Φα(s)

s

}
s→ 1

v

=
Φα (1/v)

1/v

=vΦα

(
1
v

)
.
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(4) By using Theorem 2.3 and equation (1.7)

Kα{(φ ∗ψ)(t)}=K
{
(φ ∗ψ)

(
(αt)

1
α

)}
=K

{
(φ((αt)

1
α )
}

K
{
(ψ((αt)

1
α )
}

=Φα(v)Ψα(v).

(5) By using Theorem 2.3 and equation (1.9)

Kα

{(
tα

α
φ(t)

)}
=K

{
tφ((αt)

1
α )
}

=v2 d
dv

Φα(v).

Hence completes the proof of Theorem 2.7.

3. APPLICATIONS OF CONFORMABLE FRACTIONAL KAMAL TRANSFORM (CFKT)

In this section, we solve the general analytical solution of the generalized conformable

Bernoulli’s fractional differential equations by using conformable fractional kamal transform

(CFKT) and ADM. The ADM in [3, 4, 25, 26, 27] that used a very spontaneous method and

has been successfully applied to solve nonlinear ordinary and fractional differential equations

of various kinds. The ADM calculates the solutions of nonlinear equations as infinite series

solution determined. Each term of these series is a generalized polynomial called Adomian’s

polynomial. The convergence, the order of convergence and the principle and convergence of

ADM has been studied by Cherruault, Babolian and Biazar, Jiao et al. respectively [10, 9, 30].

We solve the general solutions of some linear and nonlinear conformable fractional differential

equations (CFDEs) to new approach and to verify that this method can be applied successfully

for finding the general solutions of many other linear and nonlinear conformable fractional

differential equations (CFDEs).

Example 3.1. Consider the conformable Bernoulli’s fractional differential equation of form

Dαy+P(t)y = Q(t)yn +R(t), 0 < α ≤ 1. (3.1)

where P(t),Q(t) and R(x) are α-differentiable functions and n ∈ N. Clearly this equation is a

nonlinear if n 6= 0 or 1.
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Applying Kα on both sides of equation (3.1), we get

Yα(v) = Kα [Q(t)yn]+Kα [R(t)]−Kα [P(t)y] (3.2)

On taking the inverse K−1
α of both sides of equation (3.2), we get

y(t) = K−1
α {Kα [Q(t)yn]}+K−1

α {Kα [R(t)]}−K−1
α {Kα [P(t)y]} (3.3)

An infinite general solution y(t) of equation (3.1) as

y(t) =
∞

∑
k=0

yk(t) = y0 + y1 + y2 + · · · (3.4)

Now equation (3.3) can be rewritten as

∞

∑
k=0

yk(t) = K−1
α {Kα [Q(t)Ak]}+K−1

α {Kα [R(t)]}−K−1
α {Kα [P(t)Bk]}

where Ak and Bk are the Adomian polynomials of nonlinear functions φ(y) = yn and ψ(y) = y,

respectively.

Now define

A0 =φ(y0),

A1 =y1φ
′(y0),

A2 =y1φ
′(y0)+

1
2!

y2
1φ
′′(y0),

A3 =y3φ
′(y0)+ y1y2φ

′′(y0)+
1
3!

y3
1φ
′′′(y0), . . . ,

and

B0 =ψ(y0),

B1 =y1ψ
′(y0),

B2 =y1ψ
′(y0)+

1
2!

y2
1ψ
′′(y0),

B3 =y3ψ
′(y0)+ y1y2ψ

′′(y0)+
1
3!

y3
1ψ
′′′(y0), . . . ,
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Now, the recursive relation of {yk}∞
n=0 as fallows

y0(t) =K−1
α {Kα [R(t)]}

y1(t) =K−1
α {Kα [Q(t)A0]}−K−1

α {Kα [P(t)B0]}

y2(t) =K−1
α {Kα [Q(t)A1]}−K−1

α {Kα [P(t)B1]}

y3(t) =K−1
α {Kα [Q(t)A2]}−K−1

α {Kα [P(t)B2]}

...

Now the general recursive relation can be found by:

y0(t) =K−1
α {Kα [R(t)]}

yk+1(t) =K−1
α {Kα [Q(t)Ak]}−K−1

α {Kα [P(t)Bk]}.

where n = 0,1,2,3, ...

Example 3.2. Consider the initial value problem of conformable fractional differential equa-

tion(CFDE)

Dαy = e−y(t), y(0) = 0, 0 < α ≤ 1. (3.5)

By applying Kα of both sides of above equation (3.5), we have

1
v

Yα(v)− y(0) = Kα

[
e−y(t)

]
Yα(v) = vKα [e−y(t)] (3.6)

Taking inverse transform K−1
α of both sides of equation (3.6), we get the solution of this problem

as

y(t) = K−1
α {vKα [e−y(t)]} (3.7)

By using ADM, then the equation (3.7) can be rewritten as

∞

∑
k=0

yk(t) = K−1
α

{
Kα

{
∞

∑
k=0

Ak(t)

}}
,
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where {Ak}∞
k=0 are the Adomian polynomials representing to φ(y) = e−y(t). Then the recursive

relation as follows

y0(t) =0

y1(t) =K−1
α {vKα [A0]}

y2(t) =K−1
α {vKα [A1]}

y3(t) =K−1
α {vKα [A2]}

...

Thus, the general recursive relation is given by

y0(t) =0

yk+1(t) =K−1
α {Kα [Ak]}, k = 0,1,2,3, ...

By using this recursive relation, we have

y1(t) =K−1
α

{
vKα

[
e−y0

]}
= K−1

α {v2}= tα

α
,

y2(t) =K−1
α

{
vKα

[
−e−y0y1

]}
= K−1

α {v3}=−1
2

t2α

α2 ,

y3(t) =K−1
α

{
vKα

[
e−y0

2
(−2y2 + y2

1)

]}
=

1
3

t3α

α3 ,

...

Then the general solution of equation (3.5) is series form and with the help of we obtain (see

Figure 1)

y(t) =
∞

∑
n=0

yn(t) =
tα

α
− 1

2
t2α

α2 +
1
3

t3α

α3 + · · ·

= ln
(

tα

α
+1
)
.

Example 3.3. Consider the following non-linear CFDE

Dαy−1 = y2, y(0) = 0, 0 < α ≤ 1. (3.8)
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FIGURE 1. The solution of equation (3.5) considering several values of α.

This equation is directly solved by using equation (1.1) to convert into the ordinary differen-

tial equation as

t1−α dy
dt

= y2 +1, y(0) = 0, 0 < α ≤ 1.

Now it is solve by separable, we have

∫ dy
y2 +1

=
∫

t1−αdt,y(0) = 0⇒ y(t) = tan
(

tα

α

)
.

This problem can also solved by using our technique as in above. Comparing equation (3.8)

with equation (3.1), we have P(t) = 0,Q(t) = R(t) = 1 and n = 2. Then by applying Kα on both

sides of equation (3.8), we get

Yα(v) = v2 +Kα [y2] (3.9)

Taking inverse K−1
α of both sides of equation (3.9), we get the solution of this problem as

y(t) =
tα

α
+K−1

α

{
Kα [y2]

}
(3.10)

By using ADM, then the equation (3.10) can be rewritten as

∞

∑
k=0

yk(t) =
tα

α
+K−1

α

{
Kα

{
∞

∑
k=0

Ak(t)

}}
(3.11)
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where {Ak}∞
k=0 are the Adomian polynomials of function φ(y) = y2. Then the recursive relation

as follows:

y0(t) =
xα

α

y1(t) =K−1
α {Kα [A0]}

y2(t) =K−1
α {Kα [A1]}

y3(t) =K−1
α {Kα [A2]}

...

Thus, the general recursive relation is given by

y0(t) =
tα

α

yk+1(t) =K−1
α {Kα [Ak]}, k = 0,1,2,3, . . .

By using this recursive relation, we have

y1(t) =K−1
α

{
Kα [y2

0]
}
= K−1

α {2!}= 1
3

tα

α
,

y2(t) =K−1
α {Kα [2y0y1]}=

2(4!)
3

K−1
α {v6}= 2

15
t5α

α5 ,

y3(t) =K−1
α

{
Kα [2y0y2 + y2

1]
}
=

17
315

t7α

α7 ,

...

Then the general solution of equation (3.8) is series form and with the help of we obtain (see

Figure 2)

y(x) =
∞

∑
n=0

yn(t) =
tα

α
+

1
3

t3α

α3 +
2

15
t5α

α5 + · · ·

= tan
(

tα

α

)
.

Ntoe: If α = 1 in the equation (3.8), then the equation becomes ordinary differetial equation

it’s exact solution is tan(t).
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FIGURE 2. The solution of equation (3.8) considering several values of α.

Example 3.4. Consider a Logistic or Verhulst CFDE

Dαy = y2− y, y(0) =−1, 0 < α ≤ 1. (3.12)

By applying Kα of both sides of above equation (3.12), we have

1
v

Yα(v)+1+Yα(v) = Kα

[
y2]

Yα(v) =
v

1+ v
Kα [y2]− v

1+ v
(3.13)

Taking inverse transform K−1
α of both sides of equation (3.13), we get the solution of this prob-

lem as

y(t) = K−1
α

{
v

1+ v
Kα [y2]

}
− e

−tα
α (3.14)

By using ADM, then the equation (3.14) can be rewritten as

∞

∑
k=0

yk(t) =−e
−tα

α +K−1
α

{
Kα

{
∞

∑
k=0

Ak(t)

}}
,
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where {Ak}∞
k=0 are the Adomian polynomials representing to φ(y) = y2. Then the recursive

relation as follows

y0(t) =− e
−tα

α

y1(t) =K−1
α {vKα [A0]}

y2(t) =K−1
α {vKα [A1]}

y3(t) =K−1
α {vKα [A2]}

...

Thus, the general recursive relation is given by

y0(t) =− e
−tα

α

yk+1(t) =K−1
α {Kα [Ak]}, k = 0,1,2,3, ...

By using this recursive relation, we have

y1(t) =K−1
α

{
v

1+ v
Kα [y2

0]

}
= K−1

α

{
v2

(1+ v)(1+2v)

}
= e

−tα
α − e

−2tα
α ,

y2(t) =K−1
α

{
v

1+ v
Kα [2y0y1]

}
=−e

−3tα
α +2e

−2tα
α − e

−tα
α ,

y3(t) =K−1
α

{
v

1+ v
Kα [2y0y2 + y2

1]

}
= 4e

−4tα
α +3e

−3tα
α −3e

−2tα
α + e

−tα
α ,

...

Then the approximate solution of equation (3.12) is series form and with the help of we obtain

(see Figure 3)

y(t) = y0(t)+ y1(t)+ y2(t)+ y3(t)+ · · ·=
∞

∑
n=0

yn(t),

advandage to the exact solution is of the form

y(t) =

(
1

1−2e
tα
α

)
.

Example 3.5. Consider the following linear CFDE

D2αy−4y = 0, y(0) = 1, Dαy(0) = 0 1≤ α < 2. (3.15)
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FIGURE 3. The solution of equation (3.12) considering several values of α.

By applying Kα on both sides of equation (3.15), we obtain

v2Yα(v)− y(0)−4Yα(v) = 0

Yα(v) =
1

1−4v2 . (3.16)

Taking inverse transform K−1
α of equation (3.16), then we get

y(x) = K−1
α

{
1

1−4v2

}
= cosh

(
tα

α

)
.

Hence the solution of equation (3.15).

4. CONCLUSION

In this paper we derived some important results of the conformable fractional kamal trans-

form (CFKT) which are main roles for solving conformable linear and nonlinear fractional

differential equations. Also we have discussed the general analytical solution of the general-

ized conformable Bernoulli fractional differential equation based on the conformable fractional

kamal transform (CFKT) and adomain decomposition method (ADM). Moreover we solved

conformable linear and nonlinear fractional differential equations with help of this conformable

fractional kamal transform (CFKT) and ADM we gives most appropriate solution.
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