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Abstract. In this paper we study the class of FI-cotorsion modules and we introduce there dimensions of modules

and rings. An R-module M is called FI-cotorsion if Ext1
R(F,M)= 0 for any FI-flat R-module F . Also, we investigate

some properties of FI-cotorsion modules and FI-cotorsion envelopes and we give a characterization of IF-ring.

Then, we study the FI-flat and the FI-cotorsion envelope and we show when they existed. Furthermore, we present

the notation of FI-cotorsion dimension of modules and rings.
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1. INTRODUCTION

Throughout this paper all rings are commutative with identity element and all modules are

unital. For an R-module M, we denote by pdR(M), wdR(M), idR(M), FP− idR(M) and cdR(M),

the usual projective, weak, injective, FP-injective and cotorsion dimension of M, respectively.

Also E(M) is stand for the injective envelope of M and M+ = HomZ(M,Q/Z) is called the

character module of M. Let R be a ring, we denote by CD(R), gldim(R) and wdim(R) the

cotorsion, global and weak dimension of R, respectively.
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We first recall some known notions and facts that well needed later. Now, we recall the notion

of (pre-)cover and (pre-)envelope of modules.

Definition 1. [4, 11]

Let M be any class of modules.

(1) for any R-module M, the homomorphism α : N −→ M is called an M -precover of M

if N ∈M and α∗ = Hom(N′,α) : Hom(N′,N)−→ Hom(N′,M) is surjective for every

N′ ∈M .

(2) An M -precover α is called an M -cover of M if every endomorphism β : N −→ N such

that α ◦β = α implies β is an automorphism.

(3) A homomorphism α : M −→ N is called an M -preenvelope of M if N ∈M and α∗ =

Hom(α,N′) : Hom(N,N′)−→ Hom(M,N′) is surjective for every N′ ∈M .

(4) An M -preenvelope α is called an M -envelope of M if every homomorphism β : N→N

such that α = β ◦α implies β is an automorphism.

(5) An M -preenvelope of M, α : M→ E is called special if α is injective and Coker(α) ∈
⊥M , where ⊥M denote the left orthogonal class of M .

Also, we need to recall the definition of cotorsion theory, complete and hereditary pair of

class of modules.

Definition 2. [4]

Let M and N be two classes of modules.

(1) A pair (M ,N ) is called a cotorsion theory if M = ⊥N and N = M⊥, where M⊥

the right orthogonal class of M .

(2) M is called a special preenvelope (resp., precover) class if every R-module has a special

preenvelope (resp., precover).

(3) M is called a cover (resp., envelope) class if every R-module has a M -cover (resp.,

M -envelope).

(4) A cotorsion theory (M ,N ) is called complete if every module has a special

M−precover and has a special N −preenvelope.
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(5) A cotorsion theory (M ,N ) is called perfect if every module has a M−cover and a

N −envelope.

(6) We called a cotorsion theory (M ,N ) is an hereditary if for any short exact sequence

0→M→M′→M′′→ 0 with M′,M′′ ∈M , then M ∈M .

The concept of cotorsion modules is introduced by Enochs (1984) [3] defined by:

Definition 3. An R-module M is said to be a cotorsion module if Ext1
R(F,M) = 0 for any flat

module F.

After in (2005) Ding and Mao [9] introduced the cotorsion dimensions of modules and rings.

On the other hand, Mao and Ding (2007) [8] introduced and studied the concept of FI-flat

module defined by:

Definition 4. An R-module T is said to be FI-flat if TorR
1 (T,H) = 0 for any FP-injective module

H.

Later, Selvaraj et al. (2017) [2] give the definition of FI-cotorsion modules (Definition5).

Motivated by [1, 9], we study the FI-cotorsion modules and we introduce the FI-cotorsion di-

mensions of modules and of rings. This paper is organized as follows:

In Section 2, we give a characterization of FI-cotorsion modules and present several proper-

ties. We show that this class behave in short exact sequence and stable under direct product.

Also, we give sufficient conditions such that every cotorsion module is FI-cotorsion and such

that every FI-cotorsion module is injective. Finally, we prove, for a module M, when the char-

acter module M+ is FI-cotorsion.

In Section 3, We show that (FF ,FC ) is a cotorsion theory and also hereditary cotorsion

theory, where FF (resp., FC ) denote the class of FI-flat (resp., FI-cotorsion) modules. Also,

we discus when a module has a FI-flat cover and FI-cotorsion envelope and we prove that the

FI-flat envelope of a module M is FI-cotorsion if and only if M is also FI-cotorsion.

In Section 4, we introduce the concept FI-cotorsion dimension of modules and rings. We

give characterizations of these dimensions and we study the FI-cotorsion dimension of modules
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under short exact sequences and direct product of modules. Finally, We prove that, the FI-

cotorsion of a ring R is ≤ 1 if and only if every FI-flat R-module has a projective dimension at

most 1.

2. FI-COTORSION MODULES

In this section we study the class of FI-cotorsion modules and we give a large number of

proberties.

Definition 5. A module M is called FI-cotorsion if Ext1
R(F,M) = 0 for any FI-flat R-module F.

The class of all FI-cotorsion module is denoted by FC .

Remark 1. From the definition above, it’s easy to see that we have the following inclusions

between classes of modules:

{injective}⊆ {FI-cotorsion} ⊆ {cotorsion}.

The following proposition gives a characterization of FI-cotorsion modules.

Proposition 1. For an R-module M, the following statements are equivalent:

(1) M is FI-cotorsion.

(2) Extn
R(F,M) = 0 for every n≥ 1 and for every FI-flat R-module F.

(3) For every exact sequence of R-modules 0→ A→ B→ F → 0 with F is FI-flat, the

functor Hom(.,M) preserves the exactness.

(4) Every exact sequence of R-modules 0→M→ B→ F → 0 with F is FI-flat splits.

(5) For every exact sequence 0 −→ M −→ F −→ N −→ 0 where F is FI-flat, we have

F −→ N is an FI-flat precover of N.

(6) M is a kernel of an FI-flat precover f : A−→ B of a module B with A projective.

Proof. 1)⇒ 2) We prove it by induction on n. If n = 1, then its true by definition. Suppose that

it true for n− 1 and we prove it for n. Let F be FI-flat module and let the exact sequence of

R -modules 0→ K → F0→ F → 0, where F0 is free and it’s easy to see that K is also FI-flat.

Applying the long exact sequence of the functor Hom(.,M) we get the exact sequence:

0 = Extn−1
R (F0,M)→ Extn−1

R (K,M)→ Extn
R(F,M)→ Extn

R(F0,M) = 0,
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where both ends vanish since F0 is free. Now since K is FI-flat and by induction we have

Extn
R(F,M)∼= Extn−1

R (K,M) = 0.

2) ⇔ 3) Follows from the long exact sequence 0 → Hom(F,M) → Hom(B,M) →

Hom(A,M)→ 0, since Ext(F,M) = 0.

3)⇔ 1) Let F be a FI-flat R-module. Consider the short exact sequence of R -modules

0→ K → F0→ F → 0 where M is R-module, K = ker(F0→ F) and F0 is free. Applying the

long exact sequence of the exact functor HomR(.,M)) ), we get:

0→ Hom(F,M)→ Hom(F0,M)→ Hom(K,M)→ 0

and so Ext(A,M) = 0.

1)⇔ 4) Follows from [10, Theorem 7.31].

1)⇒ 5) Suppose that M is a FI-cotorsion R-module and consider the short exact of R-modules

0−→M−→ F −→N −→ 0 where F is FI-flat. Applying the long exact sequence of the functor

HomR(F ′, .) with F ′ is FI-flat, we get: HomR(F ′,F) −→ HomR(F ′,N) −→ Ext1
R(F

′,M) = 0.

Therefore F −→ N is an FI-flat precover of N since the class of FI-flat is closed under direct

summands and isomorphic images.

5)⇒ 6) From [11, Example 1.6], there exists an exact sequence 0−→M−→P−→P/M−→

0 where P is projective preenvelope of M. By hypothesis P −→ P/M is an FI-flat precover of

P/M since P is projective and so FI-flat.

6)⇒ 1) Suppose that K is the kernel of a FI-flat cover f : F(M) −→M of M. As the class

of FI-flat modules contains the class of projective modules, f is surjective by [11, Lemma 1.9].

So we have the exact sequence 0 −→ K −→ F(M) −→ M −→ 0. Let F be a FI-flat module,

applying the long exact sequence of the functor HomR(F, .), we get the exact sequence:

HomR(F,A)−→ HomR(F,B)−→ Ext1
R(F,M)−→ ·· · .

By hypothesis HomR(F,A) −→ HomR(F,B) −→ 0 is exact, then Ext1
R(F,M) = 0 and hence M

is FI-cotorsion. �

Proposition 2. If the class of FI-cotorsion modules is closed under direct sums, then the fol-

lowing statement are equivalent:
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(1) M is FI-cotorsion,

(2) P⊗M is FI-cotorsion for every projective R-module P.

Proof. 1)⇒ 2) Let F be a FI-flat R-module and P a projective R-module. As P projective,

there exists a projective module P′ such that RI ∼= P⊕P′ for some index set I. Now we have

Ext1
R(F,M) = 0 so Ext1

R(F,R⊗M) = 0. Hence

⊕IExt1
R(F,R⊗M) ∼= Ext1

R(F,R
I⊗M)

∼= Ext1
R(F,(P⊕P′)⊗M)

∼= Ext1
R(F,(P⊗M)⊕ (P′⊗M))

∼= Ext1
R(F,P⊗M)⊕Ext1

R(F,P
′⊗M) = 0.

That is Ext1
R(F,P⊗M) = 0 and P⊗M is FI-cotorsion.

2)⇒ 1) Let F be a FI-flat R-module so P⊗M is FI-cotorsion for every projective R-module

P. Then R⊗M ∼= M is FI-cotorsion. �

Next proposition gives a characterization of FI-cotorsion modules over a coherent ring.

Proposition 3. For an R-module M over a coherent ring, the following are equivalent:

1) M is FI-cotorsion,

2) HomR(F,M) is FI-cotorsion for every flat R-module F,

3) HomR(P,M) is FI-cotorsion for every projective R-module P.

Proof. 1)⇒ 2) For any FI-flat R-module N there exists an exact sequence of R-modules 0→

K→ P→ N→ 0, where P is projective. Applying the long exact sequence of the functor ·⊗R F

where F is a flat R-module, we get the exact sequence: 0→ K⊗R F → P⊗R F → N⊗R F → 0.

Now, applying the long exact sequence of the functor(HomR(.,M)), we get :

HomR(P⊗R F,M)→ HomR(K⊗R F,M)→ Ext1
R(N⊗R F,M).

By [7, Proposition 2.11] N ⊗ F is FI-flat since N is FI-flat and R is coherent, so

Ext1
R(N ⊗R F,M) = 0. On the other hand, applying the long exact sequence of the

functor HomR(.,HomR(F,M)) we get: HomR(P,HomR(F,M))→ HomR(K,HomR(F,M))→

Ext1
R(N,HomR(F,M)) → Ext1

R(P,HomR(F,M)) = 0, where the right Ext vanish since P is
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projective. From [10, Theorem 2.75], HomR(P ⊗R F,M) ∼= HomR(P,HomR(F,M)) and

HomR(K,HomR(F,D)) ∼= HomR(K,HomR(F,M)), then Ext1
R(N,HomR(F,M)) = 0 and so

HomR(F,M) is FI-cotorsion.

2)⇒ 3) Obvious.

3)⇒ 1) Suppose that HomR(P,M) is FI-cotorsion for every projective R-module P, then for

P = R , we have HomR(R,M)∼= M. So M is FI-cotorsion. �

In the following proposition, we show that FI-cotorsion modules are stable under direct prod-

uct and summand.

Proposition 4. For any family of modules (M j) j∈J where J is an index set, we have ∏ j∈J M j is

FI-cotorsion if and only if every M j is FI-cotorsion for any j ∈ J.

Proof. Follows from [10, Theorem 7.22], since Ext1
R(F,∏ j∈J M j)∼= ∏ j∈J Ext1

R(F,M j). �

In the following proposition, we show how FI-cotorsion behave in a short exact sequence.

Proposition 5. Let 0→ A→ B→ C→ 0 be a short exact sequence of R-modules with A is

FI-cotorsion, then B is FI-cotorsion if and only if C is FI-cotorsion.

Proof. Applying the long exact sequence of the functor HomR(F, .), where F is FI-flat, we get:

0 = Ext1
R(F,A)→ Ext1

R(F,B)→ Ext1
R(F,C)→ Ext2

R(F,A) = 0, so Ext1
R(F,B)∼= Ext1

R(F,C) and

the result holds. �

In the following theorem we see when the character module M+ of a module M is FI-

cotorsion.

Theorem 2.1. Let M be R-module with FP− id(M)< ∞, then M+ is FI-cotorsion.

Proof. Suppose that FP− id(M) = m for some non-negative integer m and consider the FP-

injective resolution of M, 0→M→ E0→ E1→ ··· → Em→ 0. Then we obtain the following

short exact sequences:

0→M→ E0→C1→ 0,

0→C1→ E1→C2→ 0,
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...

0→Cm−2→ Em−2→Cm−1→ 0,

0→Cm−1→ Em−1→ Em→ 0.

Applying the long exact sequence of the functor (.⊗R F) where F is a FI-flat module, we get:

0 = TorR
n+1(E0,F)→ TorR

n+1(C1,F)→ TorR
n (M,F)→ TorR

n (E0,F) = 0,

0 = TorR
n+2(E1,F)→ TorR

n+2(C2,F)→ TorR
n+1(C1,F)→ TorR

n+1(E1,F) = 0,

...

0 = TorR
n+m−1(Em−1,F)→ TorR

n+m−1(Cm−1,F)→

TorR
n+m−2(Cm−2,F)→ TorR

n+m−2(Em−2,F) = 0,

0 = TorR
n+m(Em,F)→ TorR

n+m−1(Cm−1,F)→ TorR
n+m−1(Em−1,F) = 0

where every ends vanish since every Ei is FP-injective for any 0 ≤ i ≤ m and F is a FI-flat.

From the last sequence we have TorR
n+m−1(Cm−1,F) = 0. Then TorR

n (M,F)∼= TorR
n+1(C1,F)∼=

TorR
n+2(C2,F)∼= · · · ∼= TorR

n+m−1(Cm−1,F) = 0. There is the following standard isomorphism:

Ext1(F,M+)∼= (Tor1(F,M))+ and hence Ext1(F,M+) = 0. Thus M+ is FI-cotorsion. �

Recall that R is called a IF ring if every injective R-module is flat. Next proposition gives a

characterization of IF-ring using FI-cotorsion modules.

Proposition 6. A ring R is an IF-ring if and only if every FI-cotorsion R-module is injective.

Proof. The necessity is follows from [8, Proposition 2.9] since every module is FI-flat over any

IF-rings. For the sufficiency, let E be injective module, then by Theorem 2.1 E+ is FI-cotorsion

and so injective by hypothesis. hence E is flat and R is IF-ring. �

Example 1. Let R be ring which is not an IF-ring (Z For example). Then from Proposition 6

there is an FI-cotorsion R-module which is not injective.

In Remark 1 we see that every FI-cotorsion module is cotorsion, in the following propositions

we discus when the converse holds.
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Proposition 7. Let R be a Prüfer domain, then every cotorsion R-module is FI-cotorsion.

Proof. Follows from [8, Proposition 2.3] since a FI-flat R-module with weak dimension ≤ 1 is

flat over a coherent ring.

�

Proposition 8. Let R be a Noetherian ring, then every cotorsion R-module of finite weak di-

mension is FI-cotorsion.

Proof. We prove that every cotorsion flat R-module is FI-cotorsion and we deduce by induction

the case of finite weak dimension. From [4, Lemma 5.3.27] and for any flat cotorsion R-module

F there exists injective modules E and I such that HomR(E, I) = F ⊕M for some module M.

Let T be a FI-flat R-module, we have

Ext1
R(T,F⊕M) = Ext1

R(T,HomR(E, I))∼= HomR(TorR
1 (T,E), I) = 0

since I and E are injective. Then Ext1
R(T,F ⊕M) = 0 and so Ext1

R(T,F) = 0, thus F is FI-

cotorsion. �

On the next theorem we see the ring over which every R-modules is FI-cotorsion.

Theorem 2.2. Let R be a ring, then the following conditions are equivalent.

(1) Every R-module is FI-cotorsion;

(2) Every FI-flat R-module is projective.

Moreover, if R satisfy one of the previous condition, then R is a perfect ring.

Proof. 1)⇒ 2) Let F be a FI-flat R-module, so by hypothesis for any R-module M we have

Ext1(F,M) = 0. Then F is projective.

2)⇒ 1) Obvious.

Finally, for any R-module M we have M is FI-cotorsion and hence cotorsion. [12, Proposition

3.3.1] complete the proof. �

Recall that every semisimple ring is von Neumann regular and the converse is not true in

general. Next corollary shows the converse is hold when every R-module is FI-cotorsion.
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Corollary 1. Let R be a ring, the following are equivalent:

(1) R is a semisimple ring;

(2) R is a von Neumann regular ring every FI-flat module is projective;

(3) R is a von Neumann regular ring and every R-module is FI-cotorsion.

Proof. 1)⇒ 2) It is obvious by [10, Proposition 4.13].

2)⇒ 1) As R is a von Neumann regular ring, every module is flat and by Theorem 2.2, R is

perfect and every flat module is projective. Then R is semisimple.

2)⇔ 3) by proof Theorem 2.2. �

3. FI-FLAT COVER AND FI-COTORSION ENVELOPE

We recall the following notations, FC is class of FI-cotorsion modules, FF is

the class of FI-flat modules and ⊥FC = {M R − module/ExtR(M,F) = 0, f or anyFI −

cotorsionmoduleF}. The main aim of this section is to show that (FF ,FC ) is a heredi-

tary cotorsion theory over any ring and perfect over an FI-ring. Also we study the relation

between FI-cotorsion envelope and the class of FI-flat modules and the relation between FI-flat

cover and the class of FI-cotorsion modules.

Next lemma we show that (FF ,FC ) is a cotorsion theory.

Lemma 1. ⊥FC = FF , moreover, (FF ,FC ) is a cotorsion theory.

Proof. It’s obvious that FF ⊆ ⊥FC . For the converse, let M ∈ ⊥FC , then Ext1
R(M,N) = 0

for every FI-cotorsion module N. Let G be an FP-injective module, by Theorem 2.1 G+ is

FI-cotorsion, so Ext1
R(M,G+) = 0 by hypothesis. From [6, p. 34] we have the isomorphism

Ext1
R(M,G+)∼= (TorR

1 (M,G))+. Then (TorR
1 (M,G))+ = 0, and by [5] we have TorR

1 (M,G) = 0.

Hence, M is FI-flat, so ⊥FC ⊆FF . Therefore, ⊥FC = FF . Now by definition, FC =

FF⊥ and so (FF ,FC ) is a cotorsion theory. �

The following proposition shows that (FF ,FC ) is an hereditary cotorsion theory.

Proposition 9. (FF ,FC ) is an hereditary cotorsion theory.
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Proof. Consider an exact sequence 0→ F ′→ F→ F ′′→ 0 with F and F ′′ are FI-flat. Applying

the long exact sequence of functor (N⊗R ·) where N is an FP-injective R-module, we obtain the

exact sequence:

0 = TorR
2 (N,F ′′)−→ TorR

1 (N,F ′)−→ TorR
1 (N,F) = 0.

Hence TorR
1 (N,F ′) = 0 and F ′ is FI-flat, therefor, (FF ,FC ) is an hereditary cotorsion theory

as claimed. �

The next proposition is ensured the existence of the FI-flat cover and FI-cotorsion envelope

of R-modules over an IF-ring.

Proposition 10. Over an IF-ring R, every R-module has a FF -cover and a FC -envelope.

Proof. As R is an IF-ring, every FI-cotorsion module is injective by Proposition 7. Hence every

FI-cotorsion module is pure-injective. Now, by Proposition 9, ⊥FC = FF and (⊥FC )⊥ =

FC . So, (FF ,FC ) is a cotorsion theory generated by FC ⊆PI where PI denoted

the class of pure-injective modules. Hence, (FF ,FC ) is complete, and hence perfect by [11,

Theorem 2.8]. So FF is a cover class and FC is an envelope class over an IF-ring. �

In the next corollary, we see that the cokernel of FC -envelope is FI-flat and the kernel of the

FF -cover of R-module is FI-cotorsion.

Corollary 2. Let R be an IF-ring, M and N are R-modules. Then there exist exact sequences

0→M→C(M)→C(M)/M→ 0,

0→ N′→ F(N)→ N→ 0

where C(M) is the FC -envelope of M, F(N) is the FF -cover of N, C(M)/M is FI-flat and N′

is FI-cotorsion.

Proof. The result follows from Proposition 10, since (FF ,FC ) is complete. �

The following theorem answer the question: what is the FI-cotorsion envelope of FI-flat R-

module M.
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Theorem 3.1. Let R be an IF-ring and M be an R-module, and consider C(M) its FI-cotorsion

envelope. Then M is FI-flat if and only if C(M) is FI-flat.

Proof. Let α : M → C(M) be the FI-cotorsion envelope of M, then α is injective since the

class of FI-cotorsion modules contains the class of injective modules by [11, Lemma1.9]. So

there exists an exact sequence 0→ M → C(M)→ C(M)/M → 0, where C(M)/M is FI-flat

by [12, Lemma 2.1.2]. Applying the long exact sequence of functor (N⊗R ·) where N is FP-

injective R-module, we obtain the exact sequence: 0 = TorR
2 (N,C(M)/M)−→ TorR

1 (N,M)−→

TorR
1 (N,C(M)) −→ TorR

1 (N,C(M)/M) = 0. Hence TorR
1 (N,M) = 0 and M is FI-flat. This

complete the proof. �

Next theorem answer: what is the FI-flat cover of FI-cotorsion R-module M.

Theorem 3.2. Let M be a R-module and F(M) its FI-flat cover. Then M is FI-cotorsion if and

only if F(M) is FI-cotorsion.

Proof. There exists an exact sequence 0→K→F(M)→M→ 0. As the class of FI-flat modules

is closed under extension and so K is FI-cotorsion by [12, Lemma 2.1.1], and Proposition 5

establish the result. �

4. FI-COTORSION DIMENSIONS OF MODULES AND RINGS

4.1. FI-cotorsion dimension of modules. In this section we will investigate the FI-cotorsion

dimension of modules and we study its properties and we give its characterization.

Definition 6. Let R be a ring. The FI-cotorsion dimension of a module M, denoted FI–cdR(M),

and defined to be the smallest positive integer n such that Extn+1
R (N,M) = 0 for any FI-flat

module N.

From the previous definition we obtain the following remarks.

Remark 2.

(1) FI–cdR(M) = 0 if and only if M is FI-cotorsion.

(2) cdR(M)≤ FI–cdR(M)≤ idR(M), where cdR(M) is the cotorsion dimension of M.
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The following proposition gives a characterization of FI-cotorsion dimension.

Proposition 11. Let R be a ring and let M be a module and n≥ 0. Then the following conditions

are equivalent:

(1) FI–cdR(M)≤ n.

(2) Extn+1
R (N,M) = 0 for any FI-flat R-module N.

(3) Extn+i
R (N,M) = 0 for any FI-flat R-module N and any i≥ 1.

(4) For any exact sequence 0 −→ M −→ M0 −→ M1 −→ ·· · −→ Mn −→ 0, if Mi are FI-

cotorsion for every i ∈ {0,1, . . . ,n−1}, then Mn is also FI-cotorsion.

(5) FI–cdR(F(M))≤ n where F(M) is the FI-flat cover of M.

Proof. 1)⇔ 2) Is by definition.

2)⇒ 3) By induction on i.

3)⇒ 4) If Extn+i
R (N,M) = 0 for any N FI-flat R-module. We consider an injective resolution

of M with (n− 1)st cosyzygy Ln−1. From [10, Theorem 9.7], we get: 0 = Extn+1
R (N,M) ∼=

Ext1
R(N,Ln−1). Then Ln−1 is an FI-flat.

4)⇒ 3) It follows that Extn+i
R (N,M)∼= Ext i

R(N,Ln−1).

1)⇔ 5) Suppose that K is the kernel of a FI-flat cover f : F(M) −→M of M. As the class

of FI-flat modules contains the class of projective modules, f is surjective by [11, Lemma 1.9].

So we have the exact sequence 0 −→ K −→ F(M) −→ M −→ 0 where K is FI-cotorsion by

[12, Lemma 2.1.1]. Let F be a FI-flat module, applying the long exact sequence of the functor

HomR(F, .), we get the exact sequence:

0 = Extn+1
R (F,K)−→ Extn+1

R (F,F(M))−→ Extn+1
R (F,M)−→ Ext1+2

R (F,k) = 0

where both ends vanish since K is FI-cotorsion. So Extn+1
R (F,F(M))∼= Extn+1

R (F,M), establish

the result. �

Theorem 4.1. The following conditions are identical for an R-module M:

(1) FI–cdR(M).

(2) in f{m| there exists an exact sequence 0 → M → M0 → M1 → ·· · → Mm−1 → Mm →

0 such that every Mi ∈FC for 0≤ i≤ m}.
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(3) The integer k such that M admits a minimal FI-cotorsion resolution. Equivalently, there

exists an exact sequence 0
α−1→ M(= M−1)

α0→M0
α1→M1

α2→ ··· αk−1→ Mk−1
αk→Mk→ 0 such

that every Mi is a FI-cotorsion envelope of Ni = coker(αi−1), Mi 6= 0, for every 0≤ i≤ k,

M−1 = M, M−2 = 0.

Proof. (1) = (2) Let (1) = h, l = (2), suppose that h 6= l and suppose with out loss of gen-

erality that h > l. From the exact sequence 0 → M → M0 → M1 → ·· · → Ml−1 → Ml →

0 such that every Mi ∈FC for 0≤ i≤ l, we get the following short exact sequences:

0−→M −→M0 −→C1 −→ 0,

0−→C1 −→M1 −→C2 −→ 0,

· · ·

0−→Cl−2 −→Ml−2 −→Cl−1 −→ 0,

0−→Cl−1 −→Ml−1 −→Ml −→ 0

Applying the long exact sequence of the functor HomR(F, .), we get:

0 = Ext l
R(F,M0)→ Ext l

R(F,C1)→ Ext l+1
R (F,M)→ Ext l+1

R (F,M0) = 0,

0 = Ext l−1
R (F,M1)→ Ext l−1

R (F,C2)→ Ext l
R(F,C1)→ Ext l

R(F,M1) = 0,

· · ·

0 = Ext2
R(F,Ml−2)→ Ext2

R(F,Cl−1)→ Ext3
R(F,Cl−2)→ Ext3

R(F,Ml−2) = 0,

0 = Ext1
R(F,Ml)→ Ext2

R(F,Cl−1)→ Ext2
R(F,Ml−1) = 0

where every ends vanish since every Mi is FI-cotorsion for every 0 ≤ i ≤ l and F is a FI-flat.

From the last sequence we have Ext2
R(F,Cl−1) = 0. That is 0= Ext2

R(F,Cl−1)∼= Ext3
R(F,Cl−2)∼=

· · · ∼= Ext l−1
R (F,C2)∼= Ext l

R(F,C1)∼= Ext l
R(F,C1)∼= Ext l+1

R (F,M). That is Ext l+1
R (F,M) = 0, and

this contradicts the fact h is smallest integer such that Exth+1
R (F,M) = 0, hence h = l.

(1)≤ (3) Obvious.



6994 A. D. ALQAHTANI, K. OUARGHI

(1)≥ (3) Let FI–cdR(M) = h < ∞ and suppose by contradiction that h < k. There exists an

exact sequence 0→ Nh→ Mh→ Nh+1
∼= Mh/Nh→ 0 where Mh is a FI-cotorsion envelope of

Nh and Nh+1 is FI-flat by Proposition 9 and [12, Lemma 2.1.2] since the class of FI-cotorsion

is closed under extensions. By Proposition 11 (5), Nh is FI-cotorsion using the exact sequence

0→M→M0→M1→ ··· →Mh−1→ Nh→ 0. That is Ext1
R(Nh+1,Nh) = 0 and the short exact

sequence split. Hence Mh =Nh⊕Mh/Nh. As Mh is a FI-cotorsion envelope of Nh, M∩Mh/Nh 6=

/0, and this contradicts the definition of direct sum. Whence Mh/Nh = 0 and so Nh+1 = 0, it

follows that Mh+1 = 0, contradiction. Therefore, (1)≥ (3) and so (1) = (3). �

Proposition 12. Let R be a ring and 0 −→ A −→ B −→ C −→ 0 an exact sequence of R-

modules. If two of FI–cdR(A), FI–cdR(B) and FI–cdR(C) are finite, so is the third. Moreover,

(1) FI–cdR(A)≤ sup{FI–cdR(B),FI–cdR(C)+1}.

(2) FI–cdR(B)≤ sup{FI–cdR(A),FI–cdR(C)}.

(3) FI–cdR(C)≤ sup{FI–cdR(B),FI–cdR(A)−1}.

Proof. We prove only assertion 1 and the other assertion are proved by the same method. Sup-

pose that FI–cdR(B) = n and FI–cdR(C) = m. We can suppose that n ≥ m+ 1. From Propo-

sition 1 we have Extn+1
R (F,B) = Extn

R(F,C) = 0 for any FI-flat R-module F . Using the long

exact sequence of the functor (HomR(F, .)) we obtain: 0 = Extn
R(F,C) −→ Extn+1

R (F,A) −→

Extn+1
R (F,B) = 0. Then Extn+1

R (F,A) = 0, so FI–cdR(A) ≤ n= sup{FI–cdR(B),FI–cdR(C)+

1}. �

Proposition 13. Let 0 −→ A −→ B −→C −→ 0 be an exact sequence of modules, where B is

FI-cotorsion. Then if A is FI-cotorsion, then C is FI-cotorsion. If not

FI–cdR(A) = FI–cdR(C)+1.

Proof. Let F be an FI-flat R-module. Using the long exact sequence of the functor (HomR(F, .))

to the exact sequence we obtain:

(*) 0 = Extn
R(F,B)−→ Extn

R(F,C)−→ Extn+1
R (F,A)−→ Extn

R(F,B) = 0.

The first and the last term are zero since B is FI-cotorsion and F is FI-flat so:
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Extn
R(F,C)∼= Extn+1

R (F,A)

From Definition 6 FI–cdR(A) = FI–cdR(C)+1.

Now, if A is FI-cotorsion and for n = 1 in (∗) we obtain:

Extn
R(F,C) = Extn+1

R (F,A) = 0

So C is FI-cotorsion. �

Corollary 3. Let {Mi}i∈I be a family of modules. Then FI–cdR(∏Mi) =

sup{FI–cdR(Mi)|MiR−module}.

Proof. Follows from [10, Theorem 7.14] since Extn
R(F,∏i∈I Mi) ∼= ∏i∈I Extn

R(F,Mi). Then we

can deduce the result using Proposition 11. �

Corollary 4. Let R be a Noetherian ring and let M be a R modules of finite flat dimension. If

cd(M) = n, then FI–cdR(M) = n.

Proof. By induction, we can suppose that M is flat. Since cdR(M) = n, there exists an exact

sequence 0
α−1→ M(= N−1)

α0→ N0
α1→ N1

α2→ ·· · αn−1→ Nn−1
αn→ Nn→ 0 such that every Ni is a cotor-

sion envelope of Li = coker(αi−1), for every 0 ≤ i ≤ n. Since Ni is a cotorsion envelope of Li,

Ext(Ni/Li,C) = 0 for every cotorsion module C and hence Ni/Li is flat for every 0 ≤ i ≤ n by

[12, Theorem 3.4.2]. As every coker(αi) is flat, Ni is flat as well for every 0 ≤ i ≤ n. Hence

every Ni is FI-cotorsion by Proposition 8. Thus FI–cdR(M)≤ n by Theorem 4.1. And we have

cdR(M)≤ FI–cdR(M) and Remark 2, complete the proof. �

Corollary 5. For a R-module M over a coherent ring, the following are equivalent:

1) FI–cdR(M)≤ n;

2) FI–cdR(HomR(P,M))≤ n for every projective R-module P.

4.2. FI-cotorsion dimension of rings. We end this paper by studying the FI-cotorsion dimen-

sion of rings.

Definition 7. For any ring R the global FI-cotorsion dimension of R, denoted by FI–Cdim(R),

is the supremum of FI-cotorsion dimensions of all R-modules, denoted:

FI–Cdim(R) = sup{FI–cdR(M)/M is an R-module}.
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Remark 3.

For any ring R we have:

CD(R)≤ FI–Cdim(R)≤ gldim(R).

The following result gives a characterization of the FI-cotorsion dimension of rings.

Proposition 14. Let R be a ring and n≥ 0 an integer. Then the following conditions are equiv-

alent:

(1) FI–Cdim(R)≤ n;

(2) Extn+1
R (N,M) = 0 for any R-module M and any FI-flat R-module N;

(3) Extn+ j
R (N,M) = 0 for any integer j ≥ 1 for any R-module M and any FI-flat R-module

N;

(4) pdR(N)≤ n for any FI-flat R-module N;

(5) FI− cd(M)≤ n for any R-module M.

Proof. The proof is obvious it follows from the definition and Proposition 11.

Proposition 15. Let R be a ring.

(1) FI–Cdim(R) = sup{pd(M)/M is a FI-flat module};

(2) If FI–Cdim(R)< ∞, then FI–Cdim(R) = sup{FI− cd(N)/N is a projective module}.

Proof. 1) Follows from the definition and Proposition 14.

2) Let M be a FI-flat module. As FI–Cdim(R)< ∞, we can suppose that pd(M) = n < ∞ by

1). So there exists an exact sequence

0−→ Nn −→ ·· · −→ N1 −→ N0 −→M −→ 0

where every Ni is projective. By Proposition 12, FI− cd(M)≤ sup{FI− cd(Ni)} ≤ sup{FI−

cd(N)/N is a projective module} for every i. Since M was arbitrary, FI–Cdim(R)≤ sup{FI−

cd(N)/N is a projective module}. On other hand, we have FI–Cdim(R) = sup{FI−cd(L)/R−

moduleL} ≥ sup{FI− cd(N)/N is a projective module}. This complete the result. �

In the following theorem we characterize rings of FI–Cdim(R)≤ 1.
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Theorem 4.2. Let R be a ring. Then the following are equivalent:

(1) FI–Cdim(R)≤ 1,

(2) Every quotient module of a FI-cotorsion R-module is FI-cotorsion,

(3) Every quotient module of an injective R-module is FI-cotorsion,

(4) Every FI-flat R-module has an projective dimension at most 1.

Proof. 1)⇒ 2) Let N be a submodule of FI-cotorsion R-module M, and let F be an FI-flat R-

module. applying the long exact sequence of the functor HomR(F, .) to the short exact sequence

0−→ N −→M −→M/N −→ 0, we get:

Ext1
R(F,M)−→ Ext1

R(F,M/N)−→ Ext2
R(F,N).

The first term and the last term vanish since M is FI-cotorsion and by hypothesis hence

Ext1
R(F,M/N) = 0 and N is FI-cotorsion.

2)⇒ 3) Obvious since every injective R-module is FI-cotorsion.

3)⇒ 4) Let F be an FI-flat R-module, for any R-module M applying the long exact sequence

of the functor HomR(F, .) to the exact sequence 0−→M −→ E −→C −→ 0, where E is injec-

tive, we get:

Ext1
R(F,C)−→ Ext2

R(F,M)−→ Ext2
R(F,E) = 0.

By hypothesis Ext1
R(F,C) = 0 which implies that Ext2

R(F,M) = 0 hence pd(F)≤ 1.

4)⇒ 2) Let M/N be a quotient of an FI-cotorsion R-module M, then there exists an ex-

act sequence 0 −→ N −→M −→M/N −→ 0. Applying the long exact sequence of the func-

tor HomR(F, .), where F is an FI-flat R-module we get: Extn−1
R (F,N) −→ Extn

R(F,M/N) −→

Ext2
R(F,M). We have Extn

R(F,M) = 0 since M is FI-cotorsion and Extn−1
R (F,N) = 0 since

pd(F) ≤ 1 by hypothesis for every n. Therefore Extn
R(F,M/N) = 0 and hence M/N is FI-

cotorsion.

2)⇒ 1) Let M be R-module. Then there exists a FI-cotorsion resolution: 0−→M−→N −→

N/M −→ 0 where N is FI-cotorsion. By hypothesis N/M is FI-cotorsion and so FI–cdR(M)≤

1. That is FI–Cdim(R)≤ 1. �
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