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SPHERICAL INVOLUTES OF THE FIXED POLE CURVE (C) ON THE
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Abstract: In this paper, it has been showed that every single indicatrix of tangents and indicatrix of binormals
of the curve, ¢ are spherical involutes of the fixed pole curve, (C*) by finding a transition link of the

timelike Bertrand curve couple through Frenet frames.
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1.Preliminaries

Let Minkowski 3-space IR’ be the vector space IR® equipped with the Lorentzian
inner product g given by

g(X, X) =X +x—x;

where X =(x,%,,%)eIR’. A vector X =(x,X%,X)elIR® is said to be timelike if
g(X,X)<0 , spacelike if g(X,X)>0 and lightlike (or null) if g(X,X)=0. Similarly, an
arbitrary curve e =a(s) in IR’ where s is a arclength parameter, can locally be timelike,
spacelike or null (lightlike), if all of its velocity vectors &'(s) are respectively timelike,

spacelike or null (lightlike) for every s e IR. The norm of a vector X e IR? is defined by [2]

[X1= g (X, X)|.

We denote by {T (s),N(s),B(s)} the moving Frenet frame along the curve « . Let a be a

timelike curve with curvature x and torsion 7 . Let frenet vector fields of « be {T, N, B}.
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In this trihedron, T is timelike vector field, N and B are spacelike vector fields. Then
Frenet formulas are given by [3]

T'—xN ,N'=«T —7B ,B' =N (1)

Let o be a timelike vector, the frenet vectors T timelike, N and B are spacelike
vector, respectively, such that

TxN=-B, NxB=T, BxT =—N

and the frenet instantaneous rotation vector is given by [5]

W =T —xB, |W|=|«*~.

Let ¢ be the angle between W and —B vectors and if W is a spacelike vector, we can write

Kk =|W||cosh ¢
,  C=sinhgT —cosh ¢B (2)

r=|W|sinh ¢
and if W is a timelike vector, we can write

K:”\N”Sinhq)
,  C=coshg@T —sinhpB. (3)

7 =|W|cosh g

Let X =(X,X,,%;) and Y =(,,Y,,Y,) be the vectors in IR’. The cross product of X
and Y is defined by [1]

XAY :(X3y2 X Y3 XY = XY XY, _Xzyl)-

The curvatures drawn by unit speed non-null curve, o: 1 — IR} at the point «/(s)
with the frenet vectors T,N,B and the unit Darboux vector C over the Lorentzian unit
sphere S,* or Hyperbolic unit sphere H,’ are named respectively as indicatrix of tangents,

indicatrix of principal normals , indicatrix of binormals and fixed pole curve. These
curvatures are indicated in orderas (T),(N),(B) and (C) [4].

Let :1 =R’ and a :1 — IR’ be two timelike curves and if the tangent of «,
a(s) posses through the point o (s) and <T*(s),T(s)> =0, then the curve o is said to be

the involute of o [6].
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2. Spherical Involutes of the Fixed Pole Curve (C) on the Timelike Bertrand Curve

Couple

Definition 2.1: Let {T,N,B} and {T*,N*,B*} be respectively the frenet frames of the
timelike curves, a:1 — I and o :1 — I at points «(s) and «"(s). If the principal

normal vectors N and N* are linearly dependent, then the pair (a,a") is said to be timelike

Bertrand curve couple.

Theorem 2.1: There is a connection between timelike Bertrand curve couple and Frenet
frames that are written as followings

T  =—coshdT +sinh OB

N =N

B* = —sinh T +cosh 6B.

Here, the angle @ is the angle between T and T'.

Proof: By taking the derivative of o (s)=a(s)+AN(s) with respect to arc lenght s and

using the equation , we get

T*‘fjiS:T(lmx)-ms. (4)

The inner products of the above equation with respectto T and B are respectively defined as

*

—cosh 49di =1+ Ak
ds

—sinh Qdi =Ar
ds

and substituting these present equations in (4) we obtain
T =—coshdT +sinh&B. (5)

Here, by finding the derivative of (4) and using (1) we get
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N =N.
Firstly, we can write

B" = —sinh T +cosh 6B (6)
by availing the equation B”=—(T"xN").
By the derivative of a.. (sT* ) =T" (s) with respect to arc-lenght s_. parameter, we get

v g
T ds ds.

Afterwards, by some algebraic manipulations and substituting (5) in T_.., the following result
can be achieved

T.=3FN. (7)
Similarly, by taking the derivative of « (SB*)= B*(s) with respect to arc-lenght Sy
parameter, we get

8 s
B ds ds,.

By using the equation (6), we write down

T.=%N. (8)

B

Lastly, by taking the derivative of «_. (sc* ) :C*(s) with respect to arc-lenght s_. parameter,

we obtain

po_dc ds
¢ ds dsc*

If W™ is spacelike, then by considering (2) and with some algebraic operation we get
T. =coshg T —sinh¢'B’, (9)
if W is timelike, then then by considering (3) and with some algebraic operation we get

T. =sinhp T —coshg'B". (10)
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Theorem 2.2: Let (a,a*) be timelike Bertrand curve couple. Tach of the indicatrix of
tangents (T") and the indicatrix of binormals (B") of & curve is a spherical involute of the

fixed pole curve (C”).

Proof: In order to show that (T) and (B) of the " curve is each a spherical involute of

(C"), we need to prove the following statements

dT” dC”
- —==0
< ds ds )

and

dB® dC”
— —)=0.
¢ ds ds )

If W™ is spacelike, by taking into account (7) and (9) we write down

<dl,d£> =(N,coshg T —sinhp B).
ds ds

Next, by using (5) and (6)and doing required manipulations, the following result can be
obtained

dT” dC”
— —)=0.
< ds ds )

Furthermore, by exploiting the equations (5),(6),(8) and (9), we do the similar calculations
to get

dB” dC”
—, —)=0.
< ds ds )

If W™ is timelike, we use (7) and (10) to reach

<di,d£> =(N,sinhgp T —cosh¢'B").
ds ds

Here, by substitution of (5) and (6) in the above the formula, we write

dT" dC”
— —)=0.
< ds ds )
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Once again, when the given relations (5),(6),(8) and (10) are taken into consideration, we

get

[1]

(2]
(3]

[4]

(5]

6]

dB” dC”
— —)=0.
< ds ds )
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