Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 1, 32-37 ISSN: 1927-5307

SPHERICAL INVOLUTES OF THE FIXED POLE CURVE (C^*) ON THE TIMELIKE BERTRAND CURVE COUPLE

SÜLEYMAN ŞENYURT^{*}, ÖMER FARUK ÇALIŞKAN

Ordu Univercity, Faculty of Arts and Sciences ,Department of Mathematics,, Ordu/ TURKEY, 52200

Abstract: In this paper, it has been showed that every single indicatrix of tangents and indicatrix of binormals of the curve, α^* are spherical involutes of the fixed pole curve, (C^*) by finding a transition link of the timelike Bertrand curve couple through Frenet frames.

Keywords: Lorentz Space, Timelike Bertrand Curve Couple, Spherical Involutes

2000 AMS Subject Classification: 53A04, 53B30

1.Preliminaries

Let Minkowski 3-space IR_1^3 be the vector space IR^3 equipped with the Lorentzian inner product g given by

$$g(X,X) = x_1^2 + x_2^2 - x_3^2$$

where $X = (x_1, x_2, x_3) \in IR^3$. A vector $X = (x_1, x_2, x_3) \in IR^3$ is said to be timelike if g(X, X) < 0, spacelike if g(X, X) > 0 and lightlike (or null) if g(X, X) = 0. Similarly, an arbitrary curve $\alpha = \alpha(s)$ in IR_1^3 where *s* is a arclength parameter, can locally be timelike, spacelike or null (lightlike), if all of its velocity vectors $\alpha'(s)$ are respectively timelike, spacelike or null (lightlike) for every $s \in IR$. The norm of a vector $X \in IR_1^3$ is defined by [2]

$$||X|| = \sqrt{|g(X,X)|}.$$

We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve α . Let α be a timelike curve with curvature κ and torsion τ . Let frenet vector fields of α be $\{T, N, B\}$.

^{*}Corresponding author

Received October 8, 2012

In this trihedron, T is timelike vector field, N and B are spacelike vector fields. Then Frenet formulas are given by [3]

$$T' = \kappa N \quad , N' = \kappa T - \tau B \quad , B' = \tau N \, . \tag{1}$$

Let α be a timelike vector, the frenet vectors T timelike, N and B are spacelike vector, respectively, such that

$$T \times N = -B$$
, $N \times B = T$, $B \times T = -N$

and the frenet instantaneous rotation vector is given by [5]

$$W = \tau T - \kappa B$$
, $||W|| = \sqrt{|\kappa^2 - \tau^2|}$.

Let φ be the angle between W and -B vectors and if W is a spacelike vector, we can write

$$\begin{cases} \kappa = \|W\| \cosh \varphi \\ , \quad C = \sinh \varphi T - \cosh \varphi B \\ \tau = \|W\| \sinh \varphi \end{cases}$$
(2)

and if W is a timelike vector, we can write

$$\begin{cases} \kappa = \|W\| \sinh \varphi \\ , \quad C = \cosh \varphi T - \sinh \varphi B . \\ \tau = \|W\| \cosh \varphi \end{cases}$$
(3)

Let $X = (x_1, x_2, x_3)$ and $Y = (y_1, y_2, y_3)$ be the vectors in IR_1^3 . The cross product of X and Y is defined by [1]

$$X \wedge Y = (x_3y_2 - x_2y_3, x_1y_3 - x_3y_1, x_1y_2 - x_2y_1).$$

The curvatures drawn by unit speed non-null curve, $\alpha: I \to IR_1^3$ at the point $\alpha(s)$ with the frenet vectors T, N, B and the unit Darboux vector C over the Lorentzian unit sphere S_1^2 or Hyperbolic unit sphere H_0^2 are named respectively as indicatrix of tangents, indicatrix of principal normals , indicatrix of binormals and fixed pole curve. These curvatures are indicated in order as (T), (N), (B) and (C) [4].

Let $\alpha: I \to IR_1^3$ and $\alpha^*: I \to IR_1^3$ be two timelike curves and if the tangent of α , $\alpha(s)$ posses through the point $\alpha^*(s)$ and $\langle T^*(s), T(s) \rangle = 0$, then the curve α^* is said to be the involute of α [6].

2. Spherical Involutes of the Fixed Pole Curve (C^*) on the Timelike Bertrand Curve Couple

Definition 2.1: Let $\{T, N, B\}$ and $\{T^*, N^*, B^*\}$ be respectively the frenet frames of the timelike curves, $\alpha: I \to IL^3$ and $\alpha^*: I \to IL^3$ at points $\alpha(s)$ and $\alpha^*(s)$. If the principal normal vectors N and N^* are linearly dependent, then the pair (α, α^*) is said to be timelike Bertrand curve couple.

Theorem 2.1: There is a connection between timelike Bertrand curve couple and Frenet frames that are written as followings

$$\begin{cases} T^* = -\cosh\theta T + \sinh\theta B\\\\N^* = N\\\\B^* = -\sinh\theta T + \cosh\theta B. \end{cases}$$

Here, the angle θ is the angle between T and T^* .

Proof: By taking the derivative of $\alpha^*(s) = \alpha(s) + \lambda N(s)$ with respect to arc lenght *s* and using the equation, we get

$$T^* \frac{ds^*}{ds} = T(1 + \lambda \kappa) - \lambda \tau B.$$
(4)

The inner products of the above equation with respect to T and B are respectively defined as

$$\begin{cases} -\cosh\theta \frac{ds^*}{ds} = 1 + \lambda\kappa \\ -\sinh\theta \frac{ds^*}{ds} = \lambda\tau \end{cases}$$

and substituting these present equations in (4) we obtain

$$T^* = -\cosh\theta T + \sinh\theta B.$$
⁽⁵⁾

Here, by finding the derivative of (4) and using (1) we get

$$N^* = N$$
.

Firstly, we can write

$$B^* = -\sinh\theta T + \cosh\theta B \tag{6}$$

by availing the equation $B^* = -(T^* \times N^*)$.

By the derivative of $\alpha_{T^*}(s_{T^*}) = T^*(s)$ with respect to arc-lenght s_{T^*} parameter, we get

$$T_{T^*} = \frac{dT^*}{ds} \cdot \frac{ds}{ds_{T^*}}$$

Afterwards, by some algebraic manipulations and substituting (5) in T_{T^*} , the following result can be achieved

$$T_{T^*} = \mp N . \tag{7}$$

Similarly, by taking the derivative of $\alpha_{B^*}(s_{B^*}) = B^*(s)$ with respect to arc-lenght s_{B^*} parameter, we get

$$T_{B^*} = \frac{dB^*}{ds} \cdot \frac{ds}{ds_{B^*}}.$$

By using the equation (6), we write down

$$T_{B^*} = \mp N \,. \tag{8}$$

Lastly, by taking the derivative of $\alpha_{C^*}(s_{C^*}) = C^*(s)$ with respect to arc-lenght s_{C^*} parameter, we obtain

$$T_{C^*} = \frac{dC^*}{ds} \cdot \frac{ds}{ds_{C^*}}$$

If W^* is spacelike, then by considering (2) and with some algebraic operation we get

$$T_{c^*} = \cosh \varphi^* T^* - \sinh \varphi^* B^*, \tag{9}$$

if W^* is timelike, then then by considering (3) and with some algebraic operation we get

$$T_{c^*} = \sinh \varphi^* T^* - \cosh \varphi^* B^*. \tag{10}$$

Theorem 2.2: Let (α, α^*) be timelike Bertrand curve couple. Tach of the indicatrix of tangents (T^*) and the indicatrix of binormals (B^*) of α^* curve is a spherical involute of the fixed pole curve (C^*) .

Proof: In order to show that (T^*) and (B^*) of the α^* curve is each a spherical involute of (C^*) , we need to prove the following statements

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = 0$$

and

$$\langle \frac{dB^*}{ds}, \frac{dC^*}{ds} \rangle = 0.$$

If W^* is spacelike, by taking into account (7) and (9) we write down

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = \langle N, \cosh \varphi^* T^* - \sinh \varphi^* B^* \rangle.$$

Next, by using (5) and (6) and doing required manipulations, the following result can be obtained

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = 0$$

Furthermore, by exploiting the equations (5), (6), (8) and (9), we do the similar calculations to get

$$\langle \frac{dB^*}{ds}, \frac{dC^*}{ds} \rangle = 0$$

If W^* is timelike, we use (7) and (10) to reach

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = \langle N, \sinh \varphi^* T^* - \cosh \varphi^* B^* \rangle.$$

Here, by substitution of (5) and (6) in the above the formula, we write

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = 0$$

Once again, when the given relations (5), (6), (8) and (10) are taken into consideration, we get

$$\langle \frac{dB^*}{ds}, \frac{dC^*}{ds} \rangle = 0$$

REFERENCES

- Akutagawa, K. and Nishikawa S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-space, Töhoko Math., 1990, J. 42, 67-82.
- [2] O'neill, B., Semi Riemann Geometry, 1983, Academic Press, New York, London.
- [3] Woestijne, V.D.I., Minimal Surfaces of the 3-dimensional Minkowski space. ,Proc. Congres Geometrie differentielle et aplications Avignon (30 May 1988), Wold Scientific Publishing. Singapore. 344-369, 1990.
- [4] Hacısalioğlu, H.H., Differencial Geometry, 1983, İnönü Univercity, Faculty of Arts and Sciences, Math. no.7, Malatya.
- [5] Uğurlu, H.H., On the Geometry of Timelike Surfaces, 1997, Commun. Fac. Sci. Ank. Series A1 V.46.pp. 211-223.
- [6] Sabuncuoğlu, A., Differancial Geometry, 2006, Nobel Press, Ankara.