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Abstract. Hepatitis B infection remains a global problem since the 1990s and the reasons for which disease is

still in existence remain poorly understood. However, understanding the important role played by vaccination in

the transmission dynamics of Hepatitis B virus is critical to its control and management. In this paper, an epi-

demiological model is proposed to model the spread of the Hepatitis B virus disease in the presence of imperfect

vaccination. The basic reproduction number, R0 and the equilibria of the model are determined and the stabilities

of the equilibria determined. It is shown that the disease-free equilibrium point is both locally and globally asymp-

totically stable when R0 < 1 while the endemic equilibrium point is proved to be locally asymptotically stable

when R0 > 1. The model is also shown to exhibit a backward bifurcation phenomenon. Numerical simulations

are carried out and it is observed that increasing both the vaccination and treatment rates reduces the populations

of both the acutely infected and chronic carriers which eventually leads to the containment of the disease. We

conclude that the combination of both vaccination and treatment with the use of a vaccine with a high efficacy is

essential in the control of Hepatitis B virus disease.
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1. INTRODUCTION

The revelations of the hepatitis B virus (HBV) infections started in the early 1966 [1]. Hep-

atitis B is a liver inflammation disease caused by the Hepatitis B virus (HBV). The virus is a

global problem and the dangerous type among all the hepatitis viruses [3]. Hepatitis B virus

(HBV) is a DNA virus with a circular genome formed by a partially double-stranded DNA,

which reproduces through an RNA intermediate form by transcription which is very difficult

to clear ones infected [4]. It infects the human hepatocytes in the liver as an acute or chronic

infection and puts people at a high risk of death from cirrhosis of the liver and liver cancer. Ac-

cording to the World Health Organisation (WHO), more than 240 million people have long term

liver infections and 780,000 people die every year due to the acute or chronic consequences of

the HBV infection [5]. Most of the infected individuals live in developing countries with few

incidences in developed countries. In Ghana, HBV is a disease for individuals between the ages

of 10 years to 50 years. About 1.6 million people in Ghana are chronic hepatitis B virus carriers

[6]. Despite an effective vaccination program for newborn babies since the 1990s and treatment

of infected patients, which has reduced chronic HBV infection in children [7, 8], the incidence

of HBV infection is still on rise, from 21.9% in 100,000 people in 1990 to 53.3% in 100,000

in 2003 [9].

Mathematical modelling and numerical simulations are important tools that are useful in the

control of human and animal infectious diseases. Over the years, vaccination of susceptible

individuals with a hepatitis B vaccine and treatment of infected individuals with anti-viral ther-

apies have proved to be partially efficient. It is of higher interest to understand the connections

between the HBV, the human immune responses of the body, both the long-term and short-term

effectiveness of the vaccine and drug efficacies and the overall well-being of the human liver.

Mathematical models can be used to gain a clear understanding of disease transmission dynam-

ics, assess the effectiveness of various prevention and control strategies. Several mathematical

models of HBV transmission dynamics have focused on the influence of prevention and control

measures that focused mainly on perfect vaccination, i.e when an individual is vaccinated, then

they are fully protected from infection, antiviral treatment and linkage to care in certain regions
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and countries.

In Zhang and Zhang [14], a mathematical model that incorporates perfect vaccination and treat-

ment as control strategies to study the transmission dynamics of HBV in China is formulated.

In Khan et al [11], a mathematical model to study the effect of immigrants on the host popula-

tion with respect to HBV transmission is proposed. The model in [11] is a modification of the

model in Pang, Cui and Zhou [12] that includes additional new transmission dynamics. These

new transmission dynamics include; a migrated compartment, HBV transmission between the

migrated compartment and the exposed compartment, the transmission between the migrated

compartment and the acutely infected compartment and the natural death rate of individuals in

the migrated compartment. The work presented in Zou, Zhang and Ruan [18] considers vertical

transmission from carrier mothers to newborn babies in a bid to understand the transmission

dynamics and control of HBV infection in mainland China. Kimbir et al [13], extend the work

done in [18] to incorporate treatment as an HBV control measure. Moreover, Desta and Koya

[15] classifies the infected population into chronic and acute compartments respectively and

formulate a five compartment model to study the spread of HBV in Ethiopia. Both vaccination

and treatment were incorporated as control strategies. The work in Zhang, Wang and Zhang

[16], observed that incorporating both the exponential birth rate and vertical transmission in

a mathematical model to study the transmission dynamics of HBV in Xinjiang, China proved

beneficial. Hence, they proposed a model by incorporating vaccination of newborn babies and

treatment as control strategies to study HBV.

The work done in Zhang and Zhou, [17], postulates that intrauterine infection in pregnant car-

rier mothers is relatively low, hence vertical transmission from HBV carriers mothers occurs

either during delivery or after birth. They further claim that the acutely infected stage of HBV

infection is relatively short compared to the pregnancy period of a carrier mother and the pro-

longed chronic phase of the HBV infection. Thus perinatal infection from carrier mothers who

are acutely infected is not possible. These two characteristics of HBV transmission dynamics

were used to formulate a mathematical model to describe the spread of hepatitis B virus disease

in China. These mathematical models described above model the impact of perfect vaccination
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and treatment as control strategies of HBV. HBV vaccines have been found not to protect those

vaccinated fully. It is thus important to consider imperfect vaccination when modelling HBV

infection. One of the feasible methods to predict the prevalence of any infectious disease is to

use mathematical models [10]. In this paper, we extend the model in Zhang and Zhang [14]

by taking into consideration imperfect vaccination in describing HBV transmission dynamics

in the presence of treatment. We also incorporate vaccination at birth as in Zhang, Wang and

Zhang [16]. We aim to investigate the transmission dynamics of HBV in the presence of an

imperfect vaccine and vaccination at birth.

The paper is organized as follows; Section 2 is devoted to the mathematical formulation of the

model. In Section 3 we present the model analysis, the basic reproduction number and the

model equilibria. The stability analyses of the equilibria are given in 4. In Section 5, we study

the numerical results of the proposed model and present the results and a discussion is presented

in Subsection 5.7.

2. MODEL FORMULATION

Based on the fact that HBV vaccination is imperfect, we present a compartmental model of HBV

transmission dynamics using an SV ICT R model with vaccination and treatment as intervention

strategies with imperfect vaccination. We divide the total population at any time t, N(t) into

six compartments of: susceptible individuals S(t), vaccinated individuals V (t), acutely infected

individuals I(t), chronic carriers C(t), treated individuals T (t), immunized individuals R(t),

where

N(t) = S(t)+V (t)+ I(t)+C(t)+T (t)+R(t).

The model is a system of ordinary differential equations with the assumption that recruitment

into the susceptible population is driven by births and immigration at a rate λ and entire pop-

ulation is assumed to die at some natural death rate defined by µ0. The virus is assumed to be

horizontally transmitted at the rate of x, where x is defined as the force of infection, where

x = β (I +η1C+η2T )
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with the parameters η1 and η2 measure the relative infectivity of individuals in compartments

C and T respectively, when compared to those in compartment I. The parameter ω defines the

proportion of individuals that are successfully immunized. The parameter θ denotes the rate

at which individuals are vaccinated with the HBV vaccine while ψ is the rate at which the

vaccine wanes. We further assume that vaccination with hepatitis B vaccine can reduce but

not eliminate the susceptibility of infection. The results in a modified force of infection of the

vaccinated defined by

z = β (1− ε)(I +η1C+η2T ),

where ε ∈ (0,1) is the efficacy of the vaccine. If ε = 0 then the vaccine is deemed to be useless

while ε = 1 means the vaccines is 100% efficacious. Acutely infected individuals can either

develop chronic HBV at a rate γ1, recover at a rate ω̄, due to the immune response of the

host. We assume that due to chronic infection, individuals may die as a result of the disease

at an HBV-induced death rate µ1. We also assume that both acutely and chronically infected

individuals can undergo treatment at rates τ1 and τ2 respectively. Individuals under treatment

can either recover at a rate σ or have treatment failure that results in them becoming chronically

ill at a rate δ . The flow of individuals following the model description is shown in Figure 1.

S I C

V

R

T

λ (1−ω) xS

θS ψV
w̄I

τ2CδT

λ (1−ω) xS

θS ψV
w̄I
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λ

FIGURE 1. shows the schematic diagram of HBV transmission dynamics in the

presence of an imperfect vaccination.
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From the model diagram in Figure 1, we obtain a system of six ordinary differential equations

that describe HBV transmission dynamics with treatment and imperfect vaccination. We have

the following system of non-linear ordinary differential equations:

dS
dt

= λ (1−ω)+ψV − [β (I +η1C+η2T )+(µ0 +θ)]S,

dV
dt

= θS− [(µ0 +ψ)+β (1− ε)(I +η1C+η2T )]V,

dI
dt

= β (I +η1C+η2T )S+β (1− ε)(I +η1C+η2T )V − (µ0 + γ1 + τ1 + ω̄) I,

dC
dt

= γ1I +δT − (µ0 +µ1 + τ2)C,

dT
dt

= τ1I + τ2C− (µ0 +δ +σ)T,

dR
dt

= λω + ω̄I +σT −µ0R.



(1)

Since the variable R does not appear in the other equations in system (1), the equation of R can

be regards as redundant and the reduced system (2) can be studied.

dS
dt

= λ (1−ω)+ψV − [β (I +η1C+η2T )+(µ0 +θ)]S,

dV
dt

= θS− [(µ0 +ψ)+β (1− ε)(I +η1C+η2T )]V,

dI
dt

= β (I +η1C+η2T )S+β (1− ε)(I +η1C+η2T )V − (µ0 + γ1 + τ1 + ω̄) I,

dC
dt

= γ1I +δT − (µ0 +µ1 + τ2)C,

dT
dt

= τ1I + τ2C− (µ0 +δ +σ)T



(2)

3. MODEL ANALYSIS

3.1. Positivity of Solutions. For system (2) to be biologically meaningful, we need to prove

that all the state variables in the model system are non-negative. Thus, given any positive initial

conditions, the solutions of system (2) should remain positive. We thus have the following

lemma.

Lemma 1. Given that the initial solutions and parameters of system (2) are positive, the solu-

tions S(t), V (t), I(t), C(t) and T (t) are non-negative for all t > 0.
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Proof. Let us consider

κ = sup{t > 0 : S(t)> 0,V (t)≥ 0, I(t)≥ 0,C(t)≥ 0, and T (t)≥ 0}.

This implies that

S(t)> 0, V (t)≥ 0, I(t)≥ 0, C(t)≥ 0

and T (t)≥ 0, ∀ t ∈ [0,κ).

Considering the first equation of system (2), we have

dS
dt

= λ (1−ω)+ψV − [β (I +η1C+η2T )+(θ +µ0)]S ∀ t ∈ [0,κ).

Separating of variables and integrating, we obtain

S(κ) ≥ S(0)exp

{
− (θ +µ0)κ−β

(∫
κ

0
(I(t)+η1C(t)+η2T (t))dt

)}
> 0.

For the second equation of system (2), we have

dV
dt

= θS− [(µ0 +ψ)+β (1− ε)(I +η1C+η2T )]V,

≥ − [(µ0 +ψ)+β (1− ε)(I +η1C+η2T )]V.

We similarly obtain

V (κ) ≥ V (0)exp

{
− (µ0 +ψ)κ−β (1− ε)

(∫
κ

0
(I(t)+η1C(t)+η2T (t))dt

)}
≥ 0.

For the third equation of system (2), we have

I(κ) ≥ I(0)exp [−(γ1 + τ1 +µ0 + ω̄)κ]≥ 0.

Similarly, the remaining equations give the following

C(κ) ≥ C(0)exp [−(µ0 +µ1 + τ2)κ]≥ 0,

and

T (κ) ≥ T (0)exp [−(δ +σ +µ0)κ]≥ 0.

Thus, the solutions S(t)> 0, V (t)≥ 0, I(t)≥ 0, C(t)≥ 0 and T (t)≥ 0 for all t > 0 given that:

S(0)> 0, V (0)≥ 0 I(0)≥ 0, C(0)≥ 0, and T (0)≥ 0.
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3.2. Boundedness of Solutions. Given the initial conditions of system (2) to be S(0) > 0,

V (0)≥ 0, I(0)≥ 0, C(0)≥ 0 and T (0)≥ 0 and the fact that the model system we have monitors

human population, it follows that the total population is given by

N̄(t) = S(t)+V (t)+ I(t)+C(t)+T (t),

with N̄ ≤ N. The rate at which the total population is changing over time is given

dN̄
dt

= λ −µ0N̄−µ1C.(3)

We have the following results on the boundedness of the model system in (2).

Lemma 2. The feasible region Ω is defined by the set:

Ω =

{
(S(t),V (t), I(t),C(t),T (t)) ∈ R+

5|N̄ ≤ λ

µ0

}
.

From (3), we have

N̄(t) ≤ λ

µ0
+

(
N0−

λ

µ0

)
e−µ0t ,

where N0 = N̄(0). Hence, as t → ∞, N(t)→ λ

µ0
. So, if N0 < λ

µ0
, the total population at time

t is bounded above by
λ

µ0
and if N0 > λ

µ0
the population decreases to

λ

µ0
. Therefore, for any

solution {S(0)> 0, V (0)≥ 0, I(0)≥ 0, C(0)≥ 0, and T (0)≥ 0} at t > 0 of system

(2) of the total population that begins in R+
5 either remains in or approaches Ω asymptotically.

Hence, the region Ω is positively invariant and attracting with respect to system (2).

3.3. Disease-free Equilibrium (DFE). Equating the derivatives of system (2) to zero results

in the disease-free equilibrium and the endemic equilibrium. At the disease-free equilibrium

point there is no HBV in the population. Therefore, the disease-free equilibrium is given by

E0 (S?,V ?, I?,C?,T ?) =

(
λ (1−ω)(µ0 +ψ)

µ0 (θ +µ0 +ψ)
,

θλ (1−ω)

µ0 (θ +µ0 +ψ)
,0,0,0

)
.
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3.4. Basic Reproduction Number; R0. The basic reproduction number denoted by R0 is

the average number of secondary HBV infections caused by an individual infected individual

during his/her entire period of infectiousness. We use the next generation matrix operator as

proposed by Diekmann and Heesterbeek [20] to compute the basic reproduction number. By

the next generation matrix operator, the basic reproduction number is the spectral radius of the

next-generation matrix denoted by ρ(FiV−1
i ); where Fi is the rate at which secondary infections

increase the infected compartments and Vi the rate at which infection progression and recovery

decrease the infected compartment. It follows from system (2) that

Fi =


β (I +η1C+η2T )S+β (1− ε)(I +η1C+η2T )V

0

0

 and

Vi =


(γ1 + τ1 +µ0 + ω̄) I

−γ1I−δT +(µ0 +µ1 + τ2)C

−τ1I− τ2C+(δ +σ +µ0)T

 .

The Jacobian of Fi and Vi at the DFE, we have

Fi =


βλ (1−ω)[(µ0+ψ)+θ(1−ε)]

µ0(θ+µ0+ψ)
βλη1(1−ω)[(µ0+ψ)+θ(1−ε)]

µ0(θ+µ0+ψ)
βλη2(1−ω)[(µ0+ψ)+θ(1−ε)]

µ0(θ+µ0+ψ)

0 0 0

0 0 0

 ,

and

Vi =


γ1 + τ1 +µ0 + ω̄ 0 0

−γ1 µ0 +µ1 + τ2 −δ

−τ1 −τ2 δ +σ +µ0

 .

Hence the basic reproduction number is given by ρ(FiVi) so that

R0 = R1 +R2 +R3,
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where

R1 =
βλ (1−ω) [(µ0 +ψ)+θ (1− ε)]

µ0 (θ +µ0 +ψ)(γ1 + τ1 +µ0 + ω̄)
,

R2 =
βλη1 (1−ω) [(µ0 +ψ)+θ (1− ε)] (γ1 (δ +σ +µ0)+δτ1)

µ0 (θ +µ0 +ψ)(γ1 + τ1 +µ0 + ω̄) [(µ0 +µ1 + τ2)(δ +σ +µ0)−δτ2]
,

R3 =
βλη2 (1−ω) [(µ0 +ψ)+θ (1− ε)] (γ1τ2 + τ1 (µ0 +µ1 + τ2))

µ0 (θ +µ0 +ψ)(γ1 + τ1 +µ0 + ω̄) [(µ0 +µ1 + τ2)(δ +σ +µ0)−δτ2]
.

The basic reproduction number, R0 is observed to be the sum of the reproduction number for the

three infectious compartments. Thus R1 is the average number of secondary infections from the

acutely infected compartment. Similarly, R2 is the average number of secondary infections from

the chronically infected compartment whiles R3 represents that of the treatment compartment.

3.5. Endemic Equilibrium. The endemic equilibrium points are the steady-state solutions

where the HBV persists in the population. Expressing the state variables in system (2) in terms

of the variable C we obtain

S? = φ4− (1−ε)θφ4
φ5+φ6C? ,

V ? = φ7
φ5+φ6C? ,

I? = φ1C?,

T ? = φ2C?,


(4)

where

ε0 = λ (1−ω) , ε1 = (θ +µ0) , ε2 = (µ0 +ψ) , ε3 = (γ1 + τ1 +µ0 + ω̄) , ε4 = (µ0 +µ1 + τ2) ,

ε5 = (δ +σ +µ0) , φ1 = ε5ε4

[
1−Φ

γ1ε5 +δτ1

]
, φ2 =

[
γ1τ2 + τ1ε4

γ1ε5 +δτ1

]
, φ3 = φ1 +η1 +η2φ2,

φ4 =
ε3φ1

βφ3
, φ5 = θ (1− ε)+ ε2, φ6 = β (1− ε)φ1 +β (1− ε)η1 +β (1− ε)η2φ2, φ7 = θφ4,

φ8 = βφ1 +βη1 +βη2φ2, Φ =
δτ2

ε5ε4
< 1,

and

a2 (C?)2 +a1C?+a0 = 0.(5)
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The coefficients a0, a1 and a2 are given by

a2 = φ8φ4φ6,

a1 = − [ε0φ6−φ8φ4φ5 +(1− ε)φ8φ7− ε1φ4φ6] ,

a0 = ε1φ4φ5

[
1− (ε0φ5 + ε1 (1− ε)φ7)

ε1φ4φ5

]
= ε1φ4φ5(1−R0).

From (5), we have

C? =
−a1±

√
a2

1−4a2a0

2a2
.(6)

From (6), we have the following theorem:

Theorem 1. The model system in (2):

• has a unique endemic equilibrium point if R0 > 1;

• has two positive equilibria if a1 < 0 for R0 < 1;

• otherwise has no positive endemic equilibrium.

4. STABILITY ANALYSIS

In this section, we determine the global stability of the disease-free equilibrium.

4.1. Global Stability of Disease-free Equilibrium. We also apply the approach of Castillo-

Chavez et al [19], to prove the global stability of the disease-free equilibrium. This approach is

stated in the Theorem below.

Theorem 2. If a model system can be written in the form:

dX
dt

= F(X , I),

dI
dt

= G(X , I), G(X ,0) = 0,

where X ∈ Rm denotes the number of uninfected individuals and I ∈ Rn denotes the number of

infected individuals including latent, acute, infectious e.t.c. U0 = (X?,0) denotes the disease-

free equilibrium of the system. Then, the conditions (H1) and (H2) below must satisfied to

guarantee local asymptotic stability.

(H1) for dX
dt = F(X?,0), X? is globally asymptotically stable.
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(H2) G(X , I) = AI− Ĝ(X ,0) ≥ 0 for (X , I) ∈ Ω, where A = D1G(X?,0) is a Metzler matrix

(the off diagonal elements of A are non-negative) and Ω is the region where the model

makes biological sense and well-posed. Then the fixed point U0 = (X?,0) is globally

asymptotically stable equilibrium of the hepatitis B virus model system (2) provided

R0 < 1.

Theorem 3. The disease-free equilibrium of the model system E0 = (S?,V ?,0,0,0) is globally

asymptotically stable if R0 < 1 and the conditions (H1) and (H2) are satisfied.

Proof. From system (2), X ∈ R2 = (S,V ) and I ∈ R3 = (I,C,T ). Hence for condition (H1), we

have

F(X ,0) =

λ (1−ω)+ψV − (θ +µ0)S

θS− (µ0 +ψ)V

 .

So, for the equilibrium U0 = (X?,0), the system reduces to

dS(t)
dt

= λ (1−ω)+ψV − (θ +µ0)S,

dV (t)
dt

= θS− (µ0 +ψ)V.

It follows that

F(X ,0) =

−(θ +µ0) ψ

θ −(µ0 +ψ)

 .

The characteristics polynomial of the system is given by

α
2 +α (2µ0 +θ +ψ)+(µ0 +θ)(µ0 +ψ) [1−L] = 0,(7)

where

L =
θψ

(µ0 +θ)(µ0 +ψ)
< 1.

Since all the coefficients of the characteristics polynomial in (7) are positive, by the Routh-

Hurwitz criterion the solutions to the characteristic polynomial have negative real parts. This
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means that the eigenvalues have negative real parts. Hence, X? is always globally asymptotically

stable. Also, applying Theorem 2 to the hepatitis B virus model system (2) gives

G(X , I) =


Θ− (γ1 + τ1 +µ0 + ω̄) Θη1 Θη2

ργ1 −(µ0 +µ1 + τ2) δ

τ1 τ2 −(δ +σ +µ0)




I

C

T



−


β (I +η1C+η2T )(S?−S)

β (1−ω)(I +η1C+η2T )(V ?−V )

0

 ,

where Θ = βS?+β (1−ω)V ?. So, A is a Metzler matrix with non-negative off diagonal ele-

ments. Also, it follows from (3) that, as t→∞, (I,C,T )→ (0,0,0). Therefore, Ĝ(X , I)≥ 0 and

the disease-free equilibrium is globally asymptotically stable. �

4.2. Bifurcation Analysis. System (2) give rise to multiple endemic equilibrium points which

shows a bifurcation phenomenon at R0 = 1. We shall establish the conditions necessary and

sufficient on the parameter values that cause the bifurcation phenomenon to system (1) based

on the used of Centre Manifold Theory proposed by Castillo-Chavez and Song [21] and used

in some published articles such as Opoku, Nyabadza and Gwasira [2] and Asamoah et al [25].

Choosing β as the bifurcation parameter and solving for β = β ? when R0 = 1, we obtain

β
? =

µ0 (θ +µ0 +ψ)(γ1 + τ1 +µ0 + ω̄)Ψ0

Ψ5 [Ψ0 +η1 (γ1 (δ +σ +µ0)+δτ1)+η2 (γ1τ2 + τ1 (µ0 +µ1 + τ2))]
,

where Ψ0 = (µ0 +δ +σ)(µ0 +µ1 + τ2) [1−ϒ] , ϒ =
δτ2

(δ +σ +µ0)(µ0 +µ1 + τ2)
< 1,

Ψ5 = λ (1−ω) [(µ0 +ψ)+θ (1− ε)].

We redefine the state variables by letting x1 = S(t), x2 =V (t), x3 = I(t), x4 =C(t) and x5 = T (t)

so that the total host population N(t) = S(t)+V (t)+ I(t)+C(t)+T (t) becomes N(t) = x1 +

x2 + x3 + x4 + x5. Furthermore, by using vector notation, x = [S(t),V (t), I(t),C(t),T (t)], the

system can be written in the form

dx
dt

= ( f1, f2, f3, f4, f5)
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so that

dx1

dt
= f1 = λ (1−ω)+ψx2− [β (x3 +η1x4 +η2x5)+(θ +µ0)]x1,

dx2

dt
= f2 = θx1− [(µ0 +ψ)+β (1− ε)(x3 +η1x4 +η2x5)]x2,

dx3

dt
= f3 = β (x3 +η1x4 +η2x5)x1 +β (1− ε)(x3 +η1x4 +η2x5)x2

−(γ1 + τ1 +µ0 + ω̄)x3,

dx4

dt
= f4 = γ1x3− (µ0 +µ1 + τ2)x4 +δx5,

dx5

dt
= f5 = τ1x3 + τ2x4− (δ +σ +µ0)x5.

The Jacobian matrix evaluated at the disease-free equilibrium

E0 = (S?,V ?,0,0,0) with β = β
? is given as

J1 =



−ε1 ψ −β ?S? −β ?η1S? −β ?η2S?

θ −ε2 −w3 −w4 −w5

0 0 w6 w7 w8

0 0 ργ1 −ε4 δ

0 0 τ1 τ2 −ε5


.

The Jacobian matrix J1 of the linearized system has a simple zero eigenvalue and all other

eigenvalues have negative real parts. Hence, the Centre Manifold Theory can be used to analyse

the stability dynamics of system (1). For the case when R0 = 1, we obtain the right eigenvector

q = (q1,q2,q3,q4,q5)
T from the Jacobian matrix J1 to be

q1 =

[
β ?λ (1−ω) [Ψ0 +Ψ1 +Ψ2 +Ψ3]

µ0 (θ +µ0 +ψ) [γ1 (δ +σ +µ0)+δτ1]

]
,

q2 =

[
β ?λ (1−ω) [Ψ0 +Ψ1 +Ψ2 +Ψ4]

µ0 (θ +µ0 +ψ) [γ1 (δ +σ +µ0)+δτ1]

]
,

q3 =

[
Ψ0

γ1 (δ +σ +µ0)+δτ1

]
,

q4 = 1,

q5 =

[
γ1τ2 + τ1 (µ0 +µ1 + τ2)

γ1 (δ +σ +µ0)+δτ1

]
,
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where Ψ1 = η1 (γ1 (δ +σ +µ0)+δτ1), Ψ2 = η2 (γ1τ2 + τ1 (µ0 +µ1 + τ2)),

Ψ3 =
[
(µ0 +ψ)2 +

(
(θ +µ0)(1− ε)+(θ +µ0)

2 (µ0 +ψ)(1− ε)
)]

,

Ψ4 = (µ0 +ψ)+(θ +µ0)(1− ε).

Also, we obtain the left eigenvector from the Jacobian matrix J1 to be v = (v1,v2,v3,v4,v5)
T

where

v1 = 0, v2 = 0, v3 = 1, v4 =

[
β ?Ψ5 [η1 (δ +σ +µ0)+η2τ2]

µ0 (θ +µ0 +ψ)Ψ0

]
,

v5 =

[
β ?Ψ5 [δη1 +η2 (µ0 +µ1 + τ2)]

µ0 (θ +µ0 +ψ)Ψ0

]
.

From the transformed system, the associated non-zero partial derivatives of f evaluated at

disease-free equilibrium which we need in the computation of a are given by

∂ 2 f3(0,0)
∂x1∂x3

=
∂ 2 f3(0,0)

∂x3∂x1
= β

?,
∂ 2 f1(0,0)

∂x1∂x3
=

∂ 2 f1(0,0)
∂x3∂x1

=−β
?,

∂ 2 f3(0,0)
∂x1∂x4

=
∂ 2 f3(0,0)

∂x4∂x1
= β

?
η1,

∂ 2 f1(0,0)
∂x1∂x4

=
∂ 2 f1(0,0)

∂x4∂x1
=−β

?
η1,

∂ 2 f3(0,0)
∂x1∂x5

=
∂ 2 f3(0,0)

∂x5∂x1
= β

?
η2,

∂ 2 f1(0,0)
∂x1∂x5

=
∂ 2 f1(0,0)

∂x5∂x1
=−β

?
η2,

∂ 2 f3(0,0)
∂x2∂x3

=
∂ 2 f3(0,0)

∂x3∂x2
= β

? (1− ε) ,
∂ 2 f3(0,0)

∂x2∂x4
=

∂ 2 f3(0,0)
∂x4∂x2

= β
?
η1 (1− ε) ,

∂ 2 f3(0,0)
∂x2∂x5

=
∂ 2 f3(0,0)

∂x5∂x2
= β

?
η2 (1− ε) ,

∂ 2 f2(0,0)
∂x2∂x3

=
∂ 2 f2(0,0)

∂x3∂x2
=−β

? (1− ε) ,

∂ 2 f2(0,0)
∂x2∂x4

=
∂ 2 f2(0,0)

∂x4∂x2
=−β

?
η1 (1− ε) ,

∂ 2 f2(0,0)
∂x2∂x5

=
∂ 2 f2(0,0)

∂x5∂x2
=−β

?
η2 (1− ε)

and all the other second-order partial derivatives are equal to zero. Following [21], we have

a = v3

5

∑
i, j=1

qiq j
∂ 2 f3(0,0)

∂xi∂x j
.
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Hence,

a = 2v3

{
β
?q1q3 +β

?
η1q1q4 +β

?
η2q1q5 +β

? (1− ε)q2q3

+β
?
η1 (1− ε)q2q4 +β

?
η2 (1− ε)q2q5

}
> 0.

Also, from the transformed system, the associated non-zero partial derivatives of f evaluated at

the disease-free equilibrium which we need in the computation of b are given as

∂ 2 f3

∂x3∂β
=

Ψ5

µ0 (θ +µ0 +ψ)
,

∂ 2 f3

∂x4∂β
=

Ψ5η1

µ0 (θ +µ0 +ψ)
,

∂ 2 f3

∂x5∂β
=

Ψ5η2

µ0 (θ +µ0 +ψ)
.

From

b = v3

5

∑
i=1

qi
∂ 2 f3(0,0)

∂xi∂β
,

we have

b = v3

[
q3

∂ 2 f3(0,0)
∂x3∂β

+q4
∂ 2 f3(0,0)

∂x4∂β
+q5

∂ 2 f3(0,0)
∂x5∂β

]
.

By substitution, we obtain

b =
Ψ5η1

µ0 (θ +µ0 +ψ)
+

Ψ5Ψ0

µ0 [γ1 (δ +σ +µ0)+δτ1] (θ +µ0 +ψ)

+
Ψ5η2 [γ1τ2 + τ1 (µ0 +µ1 + τ2)]

µ0 [γ1 (δ +σ +µ0)+δτ1] (θ +µ0 +ψ)
> 0.

Since a > 0 and b > 0 holds when R0 = 1, system (2) undergoes a backward bifurcation at

R0 = 1 and has a negative unstable endemic equilibrium point (E?) which becomes negative

and locally asymptotically stable past R0 = 1.

We also use numerical simulations to show the stability and existence of the endemic equilib-

rium. Figure 2 below shows the bifurcation diagram of system (2). The chronically infected

population at equilibrium plotted against the basic reproduction number R0 shows a backward

bifurcation when R0 = 1, leading to the existence of multiple endemic equilibria. The lower

dashed curve with a negative slope indicates unstable endemic equilibria and the upper bold

curve with a positive slope indicates locally stable endemic equilibria. The diagram shows that

when the basic reproduction number, R0 is less than one then eradication of the disease de-

pends on the size of the population under consideration. However, reducing the value of R0 to
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below R?
0 called the R0 critical which is obtained by setting the discriminant of the quadratic

polynomial in (6) to zero to gives

R?
0 = 1−

(
a2

1 +φ10

4a2φ9

)
,

where φ9 =
1

µ0 (θ +µ0 +ψ)(γ1 + τ1 +µ0 + ω̄)Ψ0
, φ10 =

θψ

µ0 (θ +µ0 +ψ)
, may result in con-

trolling the HBV disease. This condition is guaranteed when the disease-free equilibrium state

is globally asymptotically stable.

Thus, an increase in the vaccine efficacy to a value close to one (i.e ε ≈ 1) will lead to the

disappearance of the backward bifurcation curve. The biological meaning is that with an in-

crease in the efficacy which corresponds with the extinction of the backward bifurcation curve,

lowering R0 < 1 will be sufficient to eliminate the HBV disease from the population. Hence,

R0 < 1 would be enough to make the disease-free equilibrium globally stable.

FIGURE 2. Backward bifurcation analysis of system (2) with the transmission

rate β chosen as the bifurcation parameter. The saddle-node bifurcation occurs at

R0 =R?
0, where the stable endemic equilibrium state intersects the other unstable

endemic equilibrium state.

5. NUMERICAL SIMULATIONS

In this section, we show the numerical simulations of the proposed model. We rely on values

obtained from literature and estimated some of the parameter values for the spread of the HBV
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disease. We conduct numerical simulations using Matlab. The initial conditions of the state

variables are given to be S(0) = 50000, V (0) = 40000, I(0) = 30000, C(0) = 20000, T (0) =

10000 and the rest of the parameters and their values are presented in Table 1.

TABLE 1. Parameters and their values

Parameter Standard value/year Source Parameter Standard value/year Source

λ 20000 Assumed ω 0.65 [14]

µ0 0.0166 [13] ω̄ 0.9 Assumed

µ1 0.025 [15] δ 0.2323 [14]

β 0.0017 Assumed ψ 0.1 [22]

σ 0.06≤ σ ≤ 0.6 Assumed η1 0.4002 [14]

γ1 0.1 Assumed η2 1.7352 [14]

τ1 0.0576 [14] θ 0.4 [15]

τ2 0.0936 [14] ε 0≤ ε ≤ 1 [23]

5.1. Numerical Results in the Presence of Perfect Vaccination. Figure 3 demonstrate how

the reproduction number, R0 is evolve with a vaccination rate θ = 0.4, treatment rate σ = 0.6

and a strong vaccine efficacy rate ε = 1. With other parameter values stated in Table 1, we

observe that the model system settles at the disease-free state with R0 = 0.9137. However,

due to constant recruitment of individuals into the susceptible population and the presence of

individuals being vaccinated, the susceptible compartment shows a downward sloping curve

that decreases and asymptotically approaches zero. This shows the effect perfect vaccination has

on the number of susceptible individuals. The presence and application of vaccines causes the

vaccinated individuals to increase while the infective compartments tend to zero since there is

no transmission of the HBV in the population. Figure 3 has also confirmed the local and global
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stability of the hepatitis B virus model at the disease-free equilibrium state. The biological

meaning is that the hepatitis B virus disease will die out of the total population in the short-run

period, say four years.

FIGURE 3. Numerical Simulation of SV ICT R Model for R0 < 1.

To further investigate the evolution of the reproduction number with the vaccination rate θ ,

treatment rate σ and vaccine efficacy rate, ε , we vary the values of these three parameters (θ , σ

and ε). The results in Figure 4 below also shows that our model system 1 attained the endemic

equilibrium state with the reproduction number, R0 = 2.8124 base on the parameter values in

Table 1 above. The presence of the hepatitis B virus has increased the number of individuals in

the infective compartments as depict in Figure 4 below.
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FIGURE 4. Numerical Simulation of SV ICT R Model for R0 > 1.

5.2. Effect of Perfect Vaccination on Acutely Infected and Chronic Carriers Population.

In Figures 5 and 6 below, we notice that as we increase the vaccination rate from 0.4 to 0.6

and 0.9 with a vaccine efficacy rate, say ε = 1, there is a corresponding decreased in both the

acutely infected and chronic carriers populations. This implies that most of the individuals in the

susceptible compartment have been vaccinated causing a reduction in the number of individuals

who get infected with the hepatitis B virus disease. The simulation results in Figures 5 and

6 below demonstrate the important role perfect vaccination play in controlling the spread of

hepatitis B virus disease in the population.
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FIGURE 5. Simulation results showing the effect of varying the vaccination rate

(θ = 0.4, θ = 0.6, θ = 0.9) with vaccine efficacy rate, ε = 1 on the acutely

infected population and the rest of the parameter values, as stated in Table 1.

FIGURE 6. Simulation results showing the effect of varying the vaccination rate,

(θ = 0.4, θ = 0.6, θ = 0.9) with vaccine efficacy rate, ε = 1 on the chronic

carriers population and the rest of the parameter values, as stated in Table 1.
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5.3. Effect of Imperfect Vaccination on Acutely Infected and Chronic Carriers Popula-

tion. In Figures 7 and 8 below, we notice that as we increased the vaccination rate from 0.4 to

0.6 and 0.9 with a weak vaccine efficacy rate, say ε = 0.1, there is a small corresponding de-

creased in both the acutely infected and chronic carriers populations. This implies that, though

most of the individuals in the susceptible compartment have been vaccinated with the hepatitis

B vaccine, only a small percentage of these individuals vaccinated are protected against the

hepatitis B virus. Hence, the a small reduction in the number of individuals who get infected

with hepatitis B virus disease. The simulation results in Figures 7 and 8 below demonstrate the

important role imperfect vaccination play in preventing the spread of hepatitis B virus disease

in the population.

FIGURE 7. Simulation results showing the effect of varying the vaccination rate

(θ = 0.4, θ = 0.6 and θ = 0.9) with vaccine efficacy rate, ε = 0.1 on the acutely

infected population and the rest of the parameter values, as stated in Table 1.
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FIGURE 8. Simulation results showing the effect of varying the vaccination rate

(θ = 0.4, θ = 0.6 and θ = 0.9) with vaccine efficacy rate, ε = 0.1 on the chronic

carriers population and the rest of the parameter values, as stated in Table 1.

5.4. Effect of Treatment on Acutely Infected and Chronic Carriers Population. We have

observe in Figures 9 and 10 below that as the treatment rate, σ increases from σ = 0.04 to

σ = 0.06 and σ = 0.09, there is a corresponding decreased in both acutely infected and chronic

carriers population sizes respectively. This shows that the treatment of acutely infected and

chronic carriers individuals has a great impact on eradicating the hepatitis B virus disease.

Hence, the general public should be educated on the importance of seeking medical treatment

when infected with the hepatitis B virus to help eliminate the disease.
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FIGURE 9. Simulation results showing the effect of varying the treatment rate

(σ = 0.04, σ = 0.06, σ = 0.09) on the acutely infected population and the rest

of the parameter values, as stated in Table 1.

FIGURE 10. Simulation results showing the effect of varying the treatment rate

(σ = 0.04 σ = 0.06, σ = 0.09) on the chronic carriers population and the rest of

the parameter values, as stated in Table 1.
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5.5. Effect of both Vaccination and Treatment on Acutely Infected and Chronic Carriers

Population. Figures 11, 12, 13 and 14 below shows the effect of combining both treatment

and vaccination with a high vaccine efficacy rate as control strategies of HBV infection. The

main aim was to determine the best control strategy. Figure 11 shows the prevalence of HBV

infection with no control parameter. That is no vaccination; (θ = 0), treatment; (σ = 0) and

vaccine efficacy; ε = 0. We notice that the HBV infection asymptotically approaches zero at a

constant rate. This means that without any control strategy, HBV disease cannot be eradicated.

However, with a high vaccination rate of 0.6 and vaccine efficacy rate of 1 and without treatment

parameter (σ = 0), it will take a longer time, say 6 years to eradicate the HBV disease as

depicted in Figure 12. We also notice that a high treatment rate of 0.6 with no vaccination

parameter (θ = 0) will only reduce the number of infections but cannot eradicate the HBV

infection as depicted in Figure 13. This is because most infected individuals are not aware

of their infection and do not seek any medical treatment. Figure 14 also shows a decreasing

prevalence of hepatitis B virus infection with a high vaccination rate (θ = 0.9), high vaccine

efficacy rate (ε = 1) and a high treatment rate (σ = 0.8) combined as control strategies. We

notice that all the infective compartments (both acutely infected and chronic carriers) population

turn to zero in a short time. This means that the disease can be eradicated within the shortest

possible time. Thus, this study shows that a combination of treatment and vaccination with

a high vaccine efficacy rate as a control strategy is the most effective way of controlling and

eradication of hepatitis B virus disease.
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FIGURE 11. Simulation results showing the effect of no control measures such

as vaccination rate (θ = 0), vaccine efficacy rate (ε = 0) and treatment rate

(σ = 0) on acutely infected and chronic carriers population and the rest of the

parameter values, as stated in Table 1.

FIGURE 12. Simulation results showing the effect of high vaccination rate (θ =

0.6), strong vaccine efficacy rate (ε = 1) and no treatment rate (σ = 0) on acutely

infected and chronic carriers population and the rest of the parameter values, as

stated in Table 1.
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FIGURE 13. Simulation results showing the effect of no vaccination rate (θ =

0), strong vaccine efficacy rate (ε = 1) and a high treatment rate (σ = 6) on

acutely infected and chronic carriers population and the rest of the parameter

values, as stated in Table 1.

FIGURE 14. Simulation results showing the effect of a very high vaccination

rate (θ = 0.9), strong vaccine efficacy rate (ε = 1) and a very high treatment rate

(σ = 0.8) on acutely infected and chronic carriers population and the rest of the

parameter values, as stated in Table 1.
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5.6. Sensitivity Analysis on the Basic Reproduction Number. The basic reproduction num-

ber R0 is a function of the parameters β , λ , ω , µ0, µ1, ψ , ε , θ , ω̄ , γ1, δ , σ , τ1, τ2, η1 and η2.

To control the outbreak of a disease, it is important to control the parameter values that will

make R0 < 1. This is because these parameters contribute most toward the spread of the dis-

ease. Hence, we are interested in determining the rate of change of R0 as the parameter values

changes. To consider the variation in the basic reproductive number R0, we used the approach

of Zhang and Zhang [14] and Farman et al [24] to obtain the following partial derivatives:

∂R0

∂β
=

λ (1−ω) [(µ0 +ψ)+θ (1− ε)] [Ψ0 +Ψ1 +Ψ2]

µ0 (θ +µ0 +ψ)(γ1 + τ1 +µ0)Ψ0
≥ 0,

∂R0

∂λ
=

β (1−ω) [(µ0 +ψ)+θ (1− ε)] [Ψ0 +Ψ1 +Ψ2]

µ0 (θ +µ0 +ψ)(γ1 + τ1 +µ0)Ψ0
≥ 0.

The rest of the parameters can be shown in a similar way to determine their sensitivity status

with the basic reproduction number, R0. The results are summarized in Table 2 below.

TABLE 2. Parameters and their relationship with R0.

Parameter Relationship Parameter Relationship

λ + ε -

β + µ0 -

σ - µ1 -

η1 + τ1 +

η2 + τ2 -

θ - δ +

ω̄ + ψ -

ω - γ1 +
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5.7. Discussion. In this paper, we extended the model of Zhang and Zhang [14] to incorporate

imperfect vaccination and investigated the parameter space that gave rise to the observed pat-

terns of hepatitis B virus transmission dynamics. The increasing use of the hepatitis B vaccine

and treating of infected persons has shown a significant impact on the rates of HBV infection

and future HBV-related deaths. Analysis from the model system shows that the qualitative be-

haviours of the model are completely determined by the magnitude of the basic reproductive

number R0. More precisely, when R0 < 1, the endemic status of the hepatitis B virus disease

will naturally settle to the disease-free equilibrium and for that matter, the disease will die out

from the entire population. Otherwise, the disease will be uniform persistence and remain to

invade the entire population.

Numerical results from the model show that when we increase the proportion of individuals who

are vaccinated and the proportion of individuals seeking treatment, the basic reproduction num-

ber can be reduced below unity. Hence, R0 is a decreasing function concerning the vaccination

rate and treatment rate indicating that vaccination and treatment are very useful in controlling

and total eradication of the hepatitis B virus infections. The model system studied in this pa-

per, however, indicated that the basic reproduction number R0 which forms the threshold is not

enough to completely eradicate the spread of hepatitis B virus infection. This is because the re-

sult of the stability analysis investigated show that the model exhibit local asymptotic stability

under certain conditions at the disease-free equilibrium provided R0 < 1 while the stability of

the endemic equilibrium examined using the centre manifold theory proved the existence of a

backward bifurcation phenomenon under certain conditions.

It was also noticed that the model system settles at the disease-free equilibrium state with a

very strong vaccine efficacy rate, ε = 1 and both the vaccination rate, θ and treatment rate, σ

having values 0.4 and 0.6 respectively. Thus, vaccination of susceptible individuals and treat-

ment of infected individuals play an important role in controlling the hepatitis B virus disease.

Although total eradication of the hepatitis B virus disease remains a global problem, base on

the finding of this study, we suggested that a combination of massive vaccination and treatment

of infected individuals to the highest level should be included in government hepatitis B virus
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control programmes. However, vaccines with a very strong vaccine efficacy rate should be used

to help eradicate this deadly disease.
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