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Abstract. In this article, we present the notion of complex Fermatean fuzzy set. We introduce various operators
namely, complex Fermatean Fuzzy weighted average, complex Fermatean Fuzzy weighted geometric operator,
complex Fermatean Fuzzy weighted power average and complex Fermatean Fuzzy weighted power geometric
operators and discuss some of their properties. Finally, we present a MCDM problem and an algorithm to solve it
with supporting case studies using these operators. We have compared the results of these operators to show the
reliability of the proposed method.
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1. INTRODUCTION

The concept of fuzzy set (FS) introduced by Zadeh [24] is one of the important events in
mathematics. Atanassov [2] proposed the notion of Intuitionistic fuzzy set (IFS) which is a
generalization of FS. Wei [14] investigated geometric aggregation operators (AOs) for IFS. Wei
and Lui [15] presented the concept of AOs using Einstein operations on IFS and discussed some
properties. Xu and Yager [16] introduced AOs in IFS and established some of their properties.
Xu [17] proposed Choquet integrals to solve multi-criteria decision-making (MCDM) problems
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in IFS. Xu [18] established AOs in IFS and studied some of their properties. Zhao et al. [25]
developed some generalized AOs for IFS. Yager [22] investigated the AOs and used these oper-
ators to solve MCDM problems. Yager [23] introduced Pythagorean fuzzy subsets and the idea
of Pythagorean membership values. Yager [21] presented AOs in IFS and studied some of their
properties. Yager [20] focussed on MCDM problems where the parameters are expressed in
Pythagorean FS (PFS). Zhang and Xu [26] used TOPSIS method to solve MCDM problems in
PFS. Zeng et al. [27] developed AOs for PFS and studied some of there properties. Zhang [29]
introduced similarity measures and applied them in solving group decision-making problems.

Ramot et al. [10] extended the concept of FS to complex fuzzy set (CFS) in which the
membership values are in the form of complex numbers. Alkouri and Salleh [1] generalized the
concept of CFS and presented the idea of complex IFS (CIFS) by adding non-membership value
to it. Chinnadurai et al. [4] defined the concept of complex cubic (IFS) and discussed some of
its properties. The same authors [5] proved some properties of complex interval-valued PFS.
The same authors [6] presented the idea of complex cubic set and their applications to MCDM.
Zhou et al. [28] proposed complex cubic fuzzy AOs to solve MCDM problems. Yager and
Abbasov [19] showed the relationship between PFS and complex numbers. Ullah et al. [13]
defined some similarity measures between complex PFS (CPFS) and applied them to pattern
recognition problems. Akram et al.[3] investigated AOs using Yager t-norm and s-norm in
CPFS. Garg and Rani [7] defined AOs on complex IFS and discussed some properties. Garg
and Rani [8] introduced the concept of AOs using T-Norm on complex IFS and presented some
of there properties. Hu et al. [9] investigated AOs in CFS. Senapathi and Yager [12] proposed
the concept of Fermatean FS (FFS) and compared FFS with PFS and IFS. The same authors
[11] investigated AOs for FFS.

In this paper, we extend the concept of FFS to complex FFS. The main idea behind the study
is that complex Fermatean fuzzy number (CFFN) is larger class than complex intuitionistic
fuzzy number (CIFN) and complex Pythagorean fuzzy number (CPFN). This paper consists of
six sections. Sections 1 and 2 deal with the introduction and basic definitions required for this
study. Section 3 introduces the concept of CFFS. Section 4 investigates the properties of AOs.

Section 5 proposes the method to solve MCDM problems. Section 6 ends with the conclusion.
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2. PRELIMINARIES

In this section, we present the basic concepts of CIFS, CPFS, FFS. Through out the discussion
U represent the universe.
Definition 2.1[1] A CIFS § in U represented as § = {(Z, uz(2), vz(Z)) : Z € U}, where uz : U —
{a:aecC,la|<1}andvz:U — {a:a e C,lal <1} are complex valued membership and non-

membership functions respectively given by uz(Z) =rg (é)eizne’ﬁ ® 27645 2),

and v (2) = g5 (De
Here rg(2),q3(Z) € [0, 1] such that 0 < rg(Z) +¢53(Z) < 1. Also 6,,(Z) and 6, (?) are real-valued,
where i =+/—1 forall Z € U.
Definition 2.2[3] A CPFS .%; represented as .%, = {(Z,Pz,(Z),Q.,(%))|x € U}, where Pz, :
U—{a:aeC:la|<1},0z:U—{a:acC:|a| <1} provided that Pz (%) = 3 (2).e?*% )
and Q0 7 (%) = K(%).¢?% () satisfying the conditions 0 < ¥?(¥) + k?(¥) < 1 and 0 < 9% (2)+
02 ( ) < 1. The degree of hesitancy functions H; = n,( ).ei2™0n (), in such that

= /1—72(2) — k2(2) and 6y, (2) \/ 1— 02(2) — 02 (). Then %, = (.27 i .¢1270x)
is called a CPyFN.

Definition 2.3[11] A FFS € in U in this structure € = {Z, (x¢(2), e (2)) : Z € U}, where x¢(2) :
U — [0,1] and @¢(Z) : U — [0, 1] which satisfy the conditions 0 < (x¢(2))? ((p¢( 7)) <1 for

all # € U, is such that the indeterminacy degree of % to € is ¢ (2) = /1 — (2 (2))? — (9e(2))3

forallZe U.

3. CoMPLEX FERMATEAN Fuzzy SET (CFFS)

In this section, we define a new concept CFFS and discuss some of its properties.
Definition 3.1 Let U be the universal set. A Complex Fermatean Fuzzy Set (CFFS) rep-
resents as A = {2, F(2),G(2)|z€ U} where F(2) : U — {a:ae,|a| <1}, Gz):U —
{a:a e, |a| <1}, such that F(z) = d; = x+iy and G(2) = dp = x + iy provided 0 < |a;|> +
laz]? < 1 or F(z) = y(z).e2@) and G(z) = 9(2).¢2™ (@) Satisfying the conditions 0 <
(7(2))* + (19(2))3 <land0< (9,,()) +(0(2)) < 1. Moreover, the term H = ¢(z).¢"2™%(2),
such that @(z) = /1 — —(9(2))? and 6y (2) \/1 — (6y(2))? — (6y(2))? define the hes-

itancy degree of z. Furthermore A = (7.¢"2%%,19.¢/>"9) is called complex Fermatean fuzzy

number.
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Theorem 3.1 The set of CFMGs is a larger class then the set of CPMGs and CIMGs.

Proof: Any point 2 = (y.¢?"% 1.¢27%) which is a CIMG is also a CPMG and CFMG.
For any two numbers y,® € [0,1] and 6y,0y € [0,1], we have Y+ & < 1 = (7)? + (8)% <
1= (y)°+(9)° < land 6y + 05 < 1= (8y)2+ (09)> < 1 = (6,)° + (05)> < 1. There are
CFMGs that are not CPMGs and CIMGs. Consider the point (0.8.¢/2%(0-0) 0.7.¢227(09))  Wwe
see that (0.8)3 +(0.7)* < 1,(0.6)> +(0.9)3 < 1, hence this is a CFMG, and so (0.8)? +(0.7)? £
1,(0.6)>+(0.9)% £ 1 and (0.8.¢727(00) 0.7.¢2%(09)) is neither a CPMGs nor CIMGs.
Definition 3.2 Let 2 = (7.¢27%, 9.¢12700) 9} = (712" | 9.1 and

Ay = (}/z.e"z’r O , 192.6127: 9192) be three CFENSs, then the three operations are defined as follows
(DA NA, = (min(yl7}/2).ei2”mi”(07’l 1) max(9y, 9,).e' 200, ’9192)>

(i)A; UAy = <max(}/1 ). 2 On.0n) in(9y,19,).e/ 2N O, ’91’2)>

(iii)A° = (8.€279 y.£127r)

Definition 3.3 Let A = (7.¢2%, 9.2 9} = (1;.€*" .1 ) and

Ay = (1.2 9,629 be three CFFNs and A > 0, then the following operators hold.

(i)20 B = (m.em VoA OO0, (15,.9) o270, e%))
(ii)Q‘1®Q‘2:<(7172)-ei2”(971972),\3/193+z92 8393, ’“W)
i) A2 = (m on{i-0-0 g1 ,zm>

(iv)Ql’l:( 270 T (1= )L, lzn\/lim)

Theorem 3.2 2(; and 2(, and 23, and A, 4,4, > 0, the following hold

(A1 DA =Ap BAy (i)A; @A = A @Ay (i) A (A BAa) = AA; DAy,

(iv) (A +2)2 = LAD L2 () (A ©A)* = AL @A (vi)AM @ AR = ghith

Proof: For three CFFNs 2A,2(; and %A, and A, 4,4, > 0, according to Definition 3.2, we obtain

()2 & Ay = (\3/9/13 +pR PR m (1 0n).¢27 (O 9192))
e <43/ ')/23 + ’}/13 — ’}/%'yis_eiznm, (192191)'61.27[(91926131 ))

=2 DAy

) T 3/03 3 3 03
(ii)Q(l QA = <(z}/1y2)_el27r(9yl 972), </1913 —|—l923 . ﬁfﬁ;.elznm>
= ((Y2Yl)-€i2ﬂ(972971), {03+ 07 — 0300 VW)

=2 @2y
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(l‘il‘)l(ml@mz = (\/Y3+'}’3 ’}/173 lzn\/m 19192 i27( 91919192>
(3 1_ 1_ ,)/2_{_,)/1,)/2)1. 12717\/1 1— 93/] 9Y2+971972 (19 ,02) i2m( 91919192) )

= (\3/1 —(1— Yf))“(l _ yg),l‘eﬂn:%/17(179;1)/1(179;2)1,(191/102/1) 27(6 19/1 ))

- —(1-93 (o
A BAAy = (3/1_ 1— 1.612nm76{1.812n(9ﬁ)
( 3/ “R) 274 Yi-(-ep)* 19%.61'27:(9@2))

— <\/1 —(1-p ,,23)1'6!2”V““—@%)l(l—%)ﬂ(ﬁlzﬁzx)eim(@%l 9£2)>

. 3 z’ ] A‘
(lv)(a’l + A’Z <\/1 ’)/3 2r"’ArZ.eIZE\V/W7 19,2,1—}—},2'6127[(9191-'—22))
N <\/1 (1 oy (1 — i o251 "W‘”Z“*"?Wh,(Mw).eizn(eg‘*”))

= (\3/1_(1—_,)/:5)),1.61'271\/@7 19,/11 .eiZTC(Qg] )) D
(m'eimm’ 19/12_61'27:(91@2))

=42 B A

. 7 3 3 3 3 g3
(v) (2 © )" = ((7172)’1~ff’2”("’1"Vz)l,\3/1—(1—193—15\23+zs‘1319§)1.e’2”¢l (1-05, 63, +65,65,)"

— (( /1 227 671972 \/1 1_03 193)1.61'27:%/1_(1_91391)/1(932)/1>

(Y’L L2m(6}) \/W r3/1-(1-63 )F )
ve 2O 51— (1— 93)n. ’Z”W)

(A)* @ (A)*
(W‘)Q[M ®Q[7Lz — <},11.ei27r(9;}')7 3 1_(1 —ﬁ3)ll_ei2nm) 2

(,},/12 ‘ei27r(9;}2)7 m.eizn ,3/1—(1—9139)12)

}/)“14'/12 £127(6y) ll“ﬁ 31— —93) Ml 127r (193)'11%2)

||/—\

— Qla’l +A,2

7213

Theorem 3.3 For three CFFNs 2(; and 2(, and 23, and A,4;,4; > 0, the following are valid

(DA NA =ANYAy (i))2A; URAp = A Uy
(G)A; N (A NRA3) = (A NA2) NAs (iv)A; U (A UA3) = (A3 URA) UA3
(V)A(A;UAp) = AA; UL (vi) (A UA)* = AL LA
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Proof: We present the proofs of (i),(iii) and (v) for the CFFNs 2(;,2(, and 23 and A > 0, ac-
cording to Definition (3.2) and (3.3) we have obtain

(D) (>ANA, = (min(}/l,yz)eiznmi”(eyl’9V2),max(191, 192>'ei2n'max(6191,6192))

_ (mm(% 1).27min (O 80) (95, 9).e27mar(Boy o, ))

= A N2Ay

(i) U (A URA3) =244 N (mi”(}’z, 1) 27 O 8n) max( 0y, %)-eiznmaﬂ%’%»
= ((min(n,min(p, 1)) 20 108 81)), (a9, max(8, ) o2 ma( O max(Boy B0y)) )

= ((min(min(y, 1), ) 2061 82 ).81), (max(max(9y, 82), Bs) o2 (maxmas(Oo, O0,).60,) )

_ (ml-n(,yl,,yz).eiZTL'min(Oyl,9y2),max(l91,192).61'27rmax(919179§2)> N2As

= (A;NAp) N A3

(VAR UAy) = A (max(%,},z) i2wmax(8y, ,0y,) min(ﬁ]’l%).eiZEmin(eﬁlﬁ%))

(\/1_ l—max('}/l ')/2)2’ 1277:\/] 1 mdx(eyl79y2) min(ﬁlﬂv’ﬁ%).elzﬂmln(eg’l,el%z))

AA UAL, = ( 3/1 — (1 _ y13>)b.el27t,/l (1-65) ,1911.61275(601)) U
( \3/ 1—(1- YS)’I.eizn V 1_(1_9%2)1,1927“.52%(9%2))
- : _(1_p3 _(1_p3

(max (\/1 — A 11— YS))L) Pmmin(Yf1-(-85)1 1= o)),

min(O7, ﬁ%).elznmln(eﬂl ’6192)>
i 3/M1_(1_ 3 93 )24 .

_ </1 _ (1 —max(yf,}/g))l.e 271:\/1 (1 max(eyl,eyZ)) 7min(ﬁlx,192,1)‘e1277:mm(6§ 79192)>
= )«(Qll UQ[Q)
Theorem 3.4 Let 2(; and 2(, and 2[5 be three CFFNs and A > 0, then we have,
() (1 NRA2)¢ =ATUAS (i) (A3 UKo )¢ = AT NAS (1) (A DA2)° = A @ AS
(iv) (21 @2)° = A S A (v)(A)* = (AA)° (v)A(A) = (A*)°
Proof: we present the proofs of (i)(iii) and (v). For the three CFFNs 2(;,2(, and 2(3, and A > 0

according to Definition (3.2) and (3.3) we obtain

(i) (Qll mQ(Z)C — (min(yl , yz).eiZ”mi”("Yl ’672),max(191 7 l%)‘eﬂnmax(eﬂl ,9192)>
= <max(191’ 02).ei27rmax(9191 09,) ’ min(}/l , ,)/2)'61‘27rmin(9yl

_ (191' 2700, eiZneyl) U (192 2700, €i27r972)

= AT URAS

c
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21 3/63 465 —63 63 27(0.5. 6 ¢
see » 1 p— > .
(idi) (A DA ) = (\3/y3+y3—y13y3.e NI (919,).627 0 192))
i27(6y, O 3 2m 3 Gy +6y 0), 97
<(19192 (0, 192 /}’34—}’3 },33,2 VT TP nUn

% .6127r9191 N _61271671) ® (192_6127:9192 : ’}’2.6’2”97’2>

(v) (Q[c>7t _ (6.81.27[019 , j/.eizﬂei’))“
= ( _ei2ﬂ(9y‘), J1—-(1 _193),1‘61'27:%/1—(1—93;)1)
( —(1— 193)/1‘(31'2;“3/1—(1—93)1’yg_dZn(G%))

(A1)
Definition 3.4 For any CFEN 2 = (7.¢/2%% 19.¢2"%) the score function of 2 is defined
as S [ (PP =03+ 9139)] where g‘(%l) € [—1,1]. For any two CFFENs 2,2, if

S(Qll) < S(2y), then 2A; < A If§(%l1) > S(2y), then 2A; > 2 IFS(2A;) = S(2Ay), then 2A; = As.
For example if 2A; = (0.7.e2%(0-3) 0.7.¢2%(0-5)) and 20, = (0.8.¢27(07),

0.8.¢27(07)) then g(%ll) = g‘(%lz) = 0. More generally, if any two CFFN satisfying 1; = 2,
then their scores are 0. But there CFFNSs are not identical. To overcome this difficulty, we define
an accuracy function for CFFNSs as follows.

Definition 3.5 Let A = (7.¢/2%% 9 .¢27%), then the accuracy function of ac(2l) denoted by
ac() is defined as ac(A) = [ (¥ +9°)+(6;+63)|. Clearly, ac(2) € [0,1]. if ac(2A;) <
ac(2p), then Ay < Ap. I ac(A;) > ac(Ay), then Ay > Ay . If ac(A;) = ac(2Ay), then Ay ~ As.

4. AGGREGATION OF COMPLEX FERMATEAN FUzZZY SET

In this section, we define a new concept complex Fermatean Fuzzy weighted average, com-
plex Fermatean Fuzzy weighted geometric operator, complex Fermatean Fuzzy weighted power
average and complex Fermatean Fuzzy weighted power geometric operators and discuss some
of their properties.

Definition 4.1 Let 2, = (7,.¢2"%,9,.¢2%) (1 = 1,2,....,n) be ‘n® CFFNs and y =
(X1, X2, Xn)T be the weight vector of 2, with Zn: %, = 1. Then a complex Fermatean fuzzy
weighted average (CFFWA) operator is a functior;:CI’F FWA : A" — 2, where
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n n
n i2n XI919,
CFFWA(,2z,...,2A,) = (Z)m/,.e =1 Y e = ) (4.1)

=1 1

Definition 4.2 Let 2, = (%.¢?"% 9,.¢?™%) (1 = 1,2,...,n) be a number of CFFNs and

n
X = (X1,%2,--,xn)" be the weight vector of 2, with Z X, = 1. Then a complex Fermatean
1=1
fuzzy weighted geometric (CFFWG) operator is a function CFFWG : 2" — 2(, where

n
n i2m H 9%’ n i2m H Gg:

CFFWG(Q[l,Q[Q,...,an) = (H%x’.e =1 ,Hﬁlx’.e =1 )
=1 1=1

Definition 4.3 Let 2, = (%.¢"% 9,.¢?"%) (1 = 1,2,...,n) be a number of CFFNs and

(4.2)

n
X = (X1,%2,---,xn)" be the weight vector of 2, with Z X = 1. Then a complex Fermatean
1=1
fuzzy weighted power average (CFFWPA) operator is a function CFFW PA : A" — 2, where
CFFWPA(2,, 2, ..., 2,)

n I oin nx,@%) n 3 izn(n)(,93l>g
((Ee) B () By
=1 1=1

Definition 4.4 Let 2, = (%.¢?"% 9,.¢?"%) (1 = 1,2,...,n) be a number of CFFNs and

|

n
X = (X1,%2,---,xn)T be the weight vector of 2, with Z %, = 1. Then a complex Fermatean
1=1
fuzzy weighted power geometric (CFFWPG) operator is a function CFFW PG : " — 2, where
CFFWPG(2,2s,...,2,)

1 1
n

— <<1 —fI(l —y})%'>%.em(l_zl:ll(l_e%)x’) ,(1 _ﬁ(l_ﬂ?)%)%.eizn(l_ll}u_eg’)%) ) (4.4)
Exampll(:el 4.1 Let 2, = (0.8.61276(09),0.6.:;2%(0'3)), Ay = (0.7.62705) 0.5.£2708)) and
Az = (0.6.27(08) 0.4.¢2700)) pe three Fermatean fuzzy values, and suppose that y =
(0.1.0.3,0.4)T is weight vector of 2, (1 = 1,2,3) then

(i) CFFWA(2;,2,,23) = ((0.8 x 0.140.7 x 0.3+ 0.6 x 0.4).¢27(0:9x0140.3x0.3+08x0.4) |
(0.6 % 0.14+0.5 % 0.3+ 0.4 x 0.4).ei2ﬂ:(0.3><0.1+0.8><0.3+0.6><0.4)) _
(0'4581'27;(0.5)70.3761‘27:(0.51))

(i) CFFWG(21,20,203) = ((0.80-1 % 0.703 x 0.604).¢i27(0:91x0.577x0.87)

(0.6%1 x 0.5%3 x 0.40‘4>.ei27r(0.30'1x0.80'3x0.60'4)> _ (0_696i27r(0.61),0.53ei2n(0.66)>

1
(iiil) CFFWPA (21,20, 913) = ((0.83 % 0.140.73 % 0.340.6% x 0.4) :
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1

3
27 0.93%0.140.53x0.3+0.83 0.4) 1
¢ ”< KOO ,(0.63><O.1+0.53><O.3+0.43><0.4>3.

1
3

ezZﬂ: (o 33%0.1+0.83%0.3+0.6 0. 4) ) _ (0.61ei2”(0~66),0.43ei2”(0'83))
(iv) CFFWPG(2;,25,23) =
<(1 (10890 x 1 (1-0.73)03 x 1 — (1—0.6%)°4)7
.eiZn(l—(170.93)0'1><17(170.53)0'3><17(170.83)0'4)%’ <1 C(1-0.6% x1—(1-0.5%)03x 1 — (1 —
0_43)0.4 %‘ei27r(l—(1—0.33)0-1><1—(1—O.83)0'3><1—(1—0.63)0'4)%> _
<0‘086i2ﬂ(0.22)70'1281'271:(0.03))
Theorem 4.1 Let 2, = (7,.¢7% 9,.¢/2%%:) (1=1,2,...,n) be a number of CFFNs,

= (7.€7% 19.¢27%) is also CFFN and y = (X1,%2,....xn)" be weight vector of 2, with

le =1, then

(1)1CFFWA(Ql1 DA DA, ..., A, BA) > CFFWA(RL @A, @2, ..., 2, @A)

(i) CFFWG(; oA,y ®A,..., A, A) > CFFWA(R; @A, @2, ..., 2, @)

(iii) CFFWPA(2; A, A, B, ..., A, ®A) > CFFWA(; @A, A; @A, ..., A, @A)

(iv) CFFWPG(2 @A, 2, A, ..., A, DA) > CFFWPA(; @A, A @A, ..., A, @A)

Proof: we prove (i) and (iv). The other assertions are proved analogously.

(i) For any 2, = (};.¢"2%% 09,6279 (1 =1,2,...,n) and 2 = (y.™% 1 .279), we can get
VR +P 1P > V277 — vy = ¥*y® and the phase termi/@% +6; —6;6; >

/26567 — 6;6; = 6,6 and /0 + 93 — 8393 > \3/219,3193 9393 = 9797 and the phase
term /03, + 63 — 03,63 > /203,03 — 63,03 = 03,03 ., le VE+P=%r> ZJ&VW
1=1 1=1

n n n
and the phase term Zx, \3/6% +6; —6;6; > Zx,@;l 9; and le i/ﬁf +03—0393 >

Zx,193193 and the phase term Zx, \/93 +6; 6365 > Z%,Gﬁ, 63. Since FFWA(2l @
=1
91 Roy®A,..., Ay OA) =

n n
\ WAV RN L or Y 1,63,03
<Zx,€/7,3+y3—%3y3.e =1 Y 09 e = and
=1

=1

n
ory 26,6,
FFWA(2, @2,2 @2, ...,2, 2 2A) = (Zx,ffe =1 :
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n
] x Y %i)65,+03 - 65,6
7 \3/ B+ 03 —-09393e =1 > . According to Definition (3.4), the
1=1
proof follows.

(iv) For any 21, = (7,.¢"2%% 09,.¢/279%) (1 =1,2,...,n) and A = (7.¢2"%,9.¢/2%), we can get
Y 4+7 -7y > 217 — ¥y} = ¥’y and the phase term 9% + 9; — 9%9; > 29%9; — 9%9; =
9%9; =1-(P+7 —97) >1—(¥y) and the phase term 1 — (9;1 + 9; — 9%9;) >
1-(6;6) = (1—(¥+7v - 7)) > (1 (%3},3))7& and the phase term
(1—(9g+9;—9;9;)) > (1- 9393) ;»H (- +7r-7r)* >

n

E(l—(ﬁ}ﬁ))%l and the phase termH(l_(9%+9;_9%93 ) >H<1_ 9393 )
(1= +7-7%7) )XI 2 1_H(1—(}’,3}’3))x' and the phase term

=1 =1

_ﬁ< (63 +63 - 0295)) 21—H<1_(9;9$)>%

1=

n

=~
N

—

Similarly, 1 — H (1- (8 +0° - 879%)" > 1T (1 - (879*))* and the phase term

=1 =

—

n

1-TT(1— (85 +63-656)" =1 -] (1-(6563))".
=1 =1
Now CFFWPG(2, @A, A, &2, ..., A, dA) =

A T

(1—ﬁ(1 (193193)) )ielzn( 1131(1_(91996)) >>and

=1
CFFWPG(A; @2, @, ..., A, @A) =

(mﬁom)my.;“<ln<l<w> )

(1—H(l—(ﬂl3+193—19,3193))"'>3 e zzl )
=1
By Definition (3.4), the proof is follows.

Theorem 4.2 Let 2, = (%.€/2%, 0,.¢2™%.) (1 =1,2,...,n) be a number of CFFNs,
A = (7.¢2™% 0.¢2"%) is also CFFN and ¥ = (¥1,X2,...,xn)" be weight vector of 2, with
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ix, =1, then

() CEFWAQSL, Ay, .. A20,) > CFFWA}, 20, .., 2%

(i) CFFWG(A11, A%y, ..., A%0,) > CFFWG (AL 2%, ..., A1)

(iii) CFFW PA(ARUy, A%y, ..., A2L,) > CFFWPA(A* A%, ... AM)
(iv) CFFWPG(A1;, A%y, ..., A%L,) > CFFWPG(A} 2% ... )
(V) ACFFWA(1,2s,...,2,) > (CFFWA(1,2s, ..., 2A,))*

(vi) ACFFWG(21,2s,...,2,) > (CFFWG(;, 2, ..., 2A,))

(vii) ACFFWPA(21;,2s, ..., 2,) > (CFFWPA(1,2s, ..., A,))*
(viii) \CFFWPG(2y,2s, .....,2,) > (CFFWPG(21, s, ....., %))
Proof: we give the proof of (i). The other assertions are proved analogously.
(i) For any 21, = (7,.¢2™% 9,.¢2%%.) (1=1,2,....n),

we have CFFWA (AL, Ay, ...,A,)

i 1= (1—=60H* , 2r ¥ 0}
(le 0 e ZHZZ’% 71) 72%1191/1.6%;% 19,),

=1

n i277:ZX19 n
CFFWA(* b, .. %) = (Zm{l.e =Y /1 - (1— 03)2,

1=1 1=1
2r Y xi/1—(1-63)*
e =1 ) In the upcoming, we mean f(7,)
=1—(1=9)* = (1) f(6y) = 1— (1 - 6;3)* — (6;)* and show that f(%), f(8y) > 0. Uti-
lizing Newton generalized binomial theorem, we get (1 —y)* — (P)* < (1 =P +¥)* =
L(1—6)* = (0:)* < (1-65+6:)* =1 Thus (1), f(6;) >0.ie., (1-(1—p)* = (¥)* >
0, l—( 93) (93)’1 >0).=>1-(1-pP)r>@P)*1-(1 63)7L > (Oy) which 1mphes

V11— YA >y 31— (1 937L>9’l ThuswehaveZ)m/ 1—}/3’1>le1,
similarly Z /1= (1 =031 > Z %07, According to Definition (3.4), the proof follows.

Theorem 4.3 Let 2, = (y.e’z’w%,ﬁ.e’z’wz’r) (1t =1,2,...,n) be a number of CFFNs, and
n

X = (X1,22:-- %n)" be weight vector of 2, with Y %, = 1, then
1=1

(i) CFFWA(2S, S, ..., %) > (CFFWA(U, 25, ..., 2y))°

(i) CFFWG(25,245, ...,2S) > (CFFWG(21, s, ..., Ap) )
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(iii) CFFWPA (U, 25, ..., 25) > (CFFWPA(;,2Asz, ..., 2,))¢

(iv) CFFWPG(A{, A5, ..., 25) > (CFFWPG(1,25,...,2,) )¢

Proof: We give the proof of (i). The other assertions are proved analogously.
(i) For any 21, = (7,.7% 0,.¢™%) (1=1,2,...,n), we get

n n
CFFWA(S, 25, .., 2AS) = (Z PR Y _612”97,) and
1=1 =1

(CFFWA(1, 2%, .., 2,))" = (z Y 78,67
=1 =1

n n
) (szz%.e’“"l’usz%'elm”> = CFFWA(UL, 25, ..., %)
1=1 =1

Theorem 4.4 (Boundedness) Let A, = (%.e2%% 0,.¢2™%) (1 = 1,2,....n) be a number of
CFFNs and y = (X1, X2,.--,Xn)" be weight vector of 2, with ixl =1, then

(i) Apin < CEFWA(A1, 2, ..., Ap) < Wpnar -

(i) Wppin < CEFWG(A1, A, .., W) < Wnax

(i) Apnin < CFEWPA(A1, s, .., Ap) < W

(iv) Wpin < CEFWPG(A1,2Aa, .., A) < Upnax

Proof: We present the proof(i) and (iii).

For any 2, = (7.2, 9,.¢?"%) (1=1,2,...,n), we canget y <% <y", 0, <6, <6, and
B < <O, 05 <6y <6} (1=1,2,..,n). Suppose that A, = (y~.€>™% 5+ 2705

and leax — (r}/+ elzrfey 19_ e127t9 )

® ZX:Y < ZX:% < ZXI Z%zey_ < Z%ze}/, < Z%ze; and 27517-9_ < Z%zﬁz <
=1 =1

=1 1=1 =1
Z%ﬂ“ Z%ze le%,sf,xleg.

(Xn‘,xzey*f—(ixzeﬁf) :

score(CFFWA(2(,2,,...,2 j |:< ZX:% (ix;&ﬁ) +< ix:ey 27&919 )]
Consequently, score(Q[ n) < score(CF FWA(y,23,...,2,)) § score(%l ax)
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n 1

. 3\ 3
(iii) y .0 = <i%(y_)3)§.612”<;xl(97 ) ) Yo — (Z%z )é.
n ll:l n !
, 3 . —\3\3
61271(’:21%(9;)3) and 9 2705 — (ix’(ﬁP)%.el%(l;L(eﬁ) ) g

= ((iﬁ(fﬂé)}(<ix1w>3>é 3 (((imw») ((ix,(93)3)5)3>
score(CFFWPA (21,2, ..., 2,)) '

(B Fror) s (o Eaoa?)
=t {((Eant) - (Gt >+((,Z/"9% ) ()]

Consequently, score(pin) < score(CEFWPA(2y,2,,...,2,)) < score(JApmax). The other as-

sertions (ii) and (iv) are proved analogously.
Theorem 4.5 (Idempotency) Let A, = (%.e2"%,9,.¢?"%) (1 = 1,2,...,n) be a number of
CFFNS and A, = A = (7.2, 9.279), ¥ = (x1,%2,...,xn)T be weight vector of 2, with

Z)(l =1, then

(1)1CFFWA(%1,Q(2, S2A) =2

(ii)) CFFWG (21,25, ..., 2,) =2

(ii)) CFFWPA(2(,25,...,2,) =2

(iv) CFFWPG(24,25,...,2,) =2

Proof: We present the proof (i) and (iii).

(i) Since A, = A = (7.627 9.27%) (1=1,2,...,n),

then CFFWA(2,2s, ..., 2,) = CFFWA(, 2, .......,2)
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i 21y %6y » 21 Y %69
= (Z)m/.e =1 Y e =l ) =2
1=1 1=1
(iii) CFFWA(211, 20y, ..., 2,) = CFFWA(2L, 2L, ..., )
n 1 n
n oo Y u65)7 v Y 263
=<(Zm3)3.e (1—1 ' ,(2%193)3.6 <,_1 ) )
=1 1=1

— (Y.ei2n6},’ ﬁ_ei2n9§) =9

Il —

The other assertions (ii) and (iv) are proved analogously.

Theorem 4.6 (Monotonicity) Let 2, = (7.e2"%0,.¢2"%) and B, = (§,.e>%: v,.e/>™)
(1=1,2,...,n) be two number of CFFNs, if ¥, < §,,6y, < 65 and 0, > v,,05 > 6,, for all 1,
then

(i) CFFWA(2,25,...,2.,) < CFFWA(By,By,...,B,)

(i) CFFWG(,2s, ...,2,) < CFFWA(B},B,, .., B,)

(iii) CFFWPA(,,2s, ...,2,) < CFFWA(B|,B,, .., B,)

(iv) CFFWPG(,2s, ...,2,) < CFFWA(B},B,, .., B,)

Proof: we present the proof of (i) and (iii). Since ¥, < 6,6y, < 05 and ¥, > v;, 0 >

0y, (1=1,2,...,n) then

) Zm, < Zx,é,, Zx,ey ii 165, and Zx,ﬁ, > l;x,v,,lzx,eﬁ > ,ZMV

score(CFFWA(1,20y, ..., 2,)) = } {( Y xn)? (l;x,zs,) )+ (( Zx,ey Zx,eﬂ )}

score(CFFWA(B1,B,. =1 [( (Y. 18) (éxlv,) ) ( Zx,95 Zx,ev )}

Consequently, score(CFFWA(Qll A, Ay)) < score(CFFWA(B1 ,B2,...,By))

Therefore, CFFWA (2,25, ...,2,) < CFFWA(By,By,...,By)

(iii) fx,y} < im}, fx,eg < )ix,eg and f;mﬁ > le ):;C,e19 > lee3
scol;el(CFF;PA(Qllzll,le,..leln)) -

() - (Ero)') + ((Eod?) - (Enoart)') |
(i%z'}’? - i){ﬂf) + (iXIG; - i%l@i)
1=1 =1 1=1 1=1

score(CFFWPZl(Bl,Bz, -sBn))

%[<(<éx’6’3);>3_ ((éxw?)éf) (( Y 2.63) f) - ((gxleﬁ,)§>3>].
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n n n n
= (ZX16,3 _ Zx,vf) + (leeg’l — Zx,@gl).
1=1 1=1 1=1 1=1
Consequently,score(CFFWPA(1,2s, ...,2,)) < score(CFFWPA(By,By,...,By)).
Therefore, CFFWA(Q[l,le, ,Q[n) < CFFWA(Bl,Bz, ...,Bn)

The other assertions (ii)and (iv) are proved analogously.

5. MCDM PROBLEM USING VARIOUS OPERATORS IN CFFNS ENVIRONMENT

In this section, we present an application using proposed operators to solve MCDM problems
in CFFNs environment.
Let A = {A;,2s, ..., } be alternatives and E = {E, E, ...,E, } be the parameters.
Let x = {x1,X2,---, Xn}be the weight of the parameters subject to the conditions 0 < y, <1
(1=1,2,...,n) and Zn: X, = 1. We denote the values of the alternatives 2l; corresponding to
each parameter E; bl; 1c,- i = (Fij,Gij), represented in CFFN. Then X = (¢;;)mxn is a complex
Fermatean fuzzy decision matrix(CFFDM). Now apply the different type of operators to
combine the CFFNs in each row to a single CFFN. Finally, determine the ranking of the
alternatives using score function. The maximum value denotes the best alternative among the
given alternatives.
Algorithm for solving MCDM problem in CFFNs environment:
Step 1: Construct CFFDM using alternatives 2 = {2(1,%2», ..., 2, } and parameters
E={E|,E,...,E,}.
Step 2: Aggregate the values by using the operators.
Step 3: Calculate the score values using Definition 3.4.
Step 4: Rank the alternatives in descending order and select the best alternative.
Case study: We present an application to select the best online educational application (OEA)
which can facilitate students, teachers, and parents during the lockdown of schools. We study
the selection process using different operators in the CFFN environment.
Case-I The system of traditional education methods has come to halt during this COVID-19
period. An alternate to classroom teaching is OEA. Nowadays, with the rise of internet usage
and other new technologies, we can bridge the gap between classroom teaching and OEA.

This study aims to select the best OEA to facilitate teachers, students, and parents during
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Let an expert evaluate the four OEAs (2(1,%20,%2(3,%2(4) based on

parameters E1= user friendly system , Eo=internet usage, Ez=question sessions, Es=report for

teachers. The weight for the parameters are (0.3,0.1,0.4,0.2) respectively.

The Method: We use the following method to determine the best OEA.

Step 1: The expert provides the information for the alternatives corresponding to each

parameter in CFFDM form,

(0 71. 61271' (0.4) ,0.3. elZﬂ,’(O 8))
(0 3. 61271,' (0.6) 0 7. elZTC(O 6))

(0 9. 61271,' (0.2) 0 6. elZTC(O 4))
(

0.6. £27(0.8) 0 7. elZTC(O 4))

Nyxq =

(
(
(
(

0561277:06 0661271305)
0461277:06 0561271:07
0661277:07 0461271708

0761271: (0.3) 0361271: (0.7)

0.4. 61271:(06) 0.6. 612717 (0.7) )

0.8. 61271:(0 4) ,0.5. 612717 (0.6)
3)

0.8. 612717(0 6) ,0.1. 61271,' (0.

o~ o~ o~ o~

)
)
0.7. 612717(0 8) ,0.9. £127(0.2) )
0.8. £27(0.4) 0 2 ¢i27(0.9)
0.7. £27(0.5) 0 4.¢i27(0.7)

0.6. £27(0.8) 0 9. £127(0.3)

0.5. £i27(0.6) 0 3. £127(0.7)

(
(
(
(

~— ~— ~— —

)
)
)

Step 2: By using the discussed operators given in Definitions 4.1, 4.2, 4.3 and 4.4, aggregate

the values in CFFDM and tabulate the results as shown in Table 1.

TABLE 1. Shows aggregation values for the operators.

2

2o

CFFWA
CFFWG

(0.61.¢27(0-5) (.43 £127(0.69))
(0.59.677048) 0,30 (2R(066)
CFFWPA  (0.64.¢227(0:51) (.49 127(072))
CFFWPG  (0.61.¢27(03) (.43 .£i27(0-69))

0.53.¢i27 (0.56) ,0.54. elZTL‘ (0.66) )
0.51.e27 (0.55) ,0.52. elZTL‘ (0.65) )
0.56.¢'27 (0.56) ,0.56. elZTL‘ (0.66) )

))

0.53.¢i27 (0.56) ,0.54. elZTL’ (0.66)

(
(
(
(

Step 3: Determine the score value by using Definition 3.4 and tabulate the results as shown in

Table 2.
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As Ay

CFFWA  (0.71.6727(0:56) 0.53.¢27(0-58)) ~ (0.63.727(0-56) (.48.¢27(0-56))

CFFWG  (0.69.¢27(04%) 0.46.¢27(0-53))  (0.62.¢™7(051) 0.42.£727(051))

CFFWPA  (0.73.¢727(0-64) 0.61.¢27(065))  (0.63.¢27(063) (.57 £27(0-6))

CFFWPG  (0.71.727(0-56) 0.53.¢27(0-58)) ~ (0.63.727(0-56) (.48.¢27(0-56))

TABLE 2. Shows the rank for alternatives.
A 2y A3 Ay Rank

CFFWA  -0.026 -0.060 0.094 0069  A3>Ay>A >A
CFFWG  -0.0156  -0.0000003  0.0964 0078 A3 >Ay>A > Ay
CFFWPA  -0.048 -0.055 0.074 0.049 A3 >Ay>A; > A

CFFWPG -0.0000031 -0.0000003 0.000031 0.00000043 23> 204 >2A; >

Step 4: This means that OEA 2(3 is the best educational tool when compared with other alter-

natives.

6. CONCLUSION

In this article, we have generalized the concept of FFS to CFFS. We have defined the concepts
of CFFWA, CFFWG, CFFWPA and CFFWPG operators. We have presented an application to
select the best OEA using these operators. As a direction for future research, we plan to apply

the proposed concepts to other fuzzy environments.
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