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Abstract. In this paper, we have extended the concept of class of square matrices which have Minkowski inverse

is idempotent in Minkowski space. A number of original characteristics of the class are derived and new properties

identified.
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1. INTRODUCTION

Throughout this paper, Let us denote the set of complex matrices as Cm×n and Cn rep-

resent complex n-tuples. The symbols B∗, B†, B∼, Bm©, R(B) and N(B) denote the conju-

gate transpose, Moore-Penrose inverse, Minkowski adjoint, Minkowski inverse, range space

and null space of a matrix B respectively. The components of this complex vector in Cn
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is represented as u = (u0,u1,u2, ...,un−1). Let G be the Minkowski metric tensor defined by

Gu = (u0,−u1,−u2, ...,−un−1). Clearly the Minkowski metric matrix is given by

G=

1 0

0 −In−1

 (1)

G = G∗ and G2 = In. In [13], Minkowski inner product on Cn is defined by (u,v) = [u,Gv],

where [., .] denotes the conventional Hilbert space inner product. M denotes the Minkowski

space, which is a space with Minkowski inner product.

In 2000 Meenakshi [7] presented the concept of Minkowski inverse of a matrix represented

as A ∈ Cm×n. Also presented a unique solution to the following four matrix equations:

AXA = A, XAX = X , (AX)∼ = AX , (XA)∼ = XA (2)

where A∼ denotes the Minkowski adjoint of the matrix A in M .

However, the Minkowski inverse of a matrix does not exists always as that of Moore-Penrose

inverse of a matrix. It is proved that the Minkowski inverse of a matrix A ∈ Cm×n exists if and

only if rk(AA∼) = rk(A∼A) = rk(A). A matrix A ∈ Cn is said to be m-symmetric if A = A∼.

The Moore-Penrose inverse belongs to one of the most important notions of matrix analysis,

whose significance is well reflected by a great number of applied research areas where it is

exploited.

2. PRELIMINARIES

The symbols CmS
n , CGN

n , CmEP
n , Cmbi−GN

n , Cmbi−D
n , Cmbi−EP

n , CmC
n , CmSD

n ,

CPIm
n , CmIS

n , CmI
n

will stand for the sets consisting of m-symmetric, G-normal, m-EP, m-bi-G-normal, m-bi-

dagger, m-bi-EP, m-core, m-star-dagger, m-partial isometry, m-idempotent and m-symmetric,

m-idempotent in Minkowski space respectively, i.e.,

CmS
n = {B ∈ Cn,n : B = B∼},

CGN
n = {B ∈ Cn,n : BB∼ = B∼B},

CmEP
n = {B ∈ Cn,n : BBm© = Bm©B}= {B ∈ Cn,n : R(B) = R(B∼)},

Cmbi−GN
n = {B ∈ Cn,n : BB∼B∼B = B∼BBB∼},

Cmbi−D
n = {B ∈ Cn,n : (Bm©)2 = (B2)m©},

Cmbi−EP
n = {B ∈ Cn,n : BBm©Bm©B = Bm©BBBm©},
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CmC
n = {B ∈ Cn,n : rk(B2) = rk(B)},

CmSD
n = {B ∈ Cn,n : B∼Bm© = Bm©B∼},

CPIm
n = {B ∈ Cn,n : B∼ = Bm©},

CmIS
n = {B ∈ Cn,n : B2 = B = B∼},

CmI
n = {B ∈ Cn,n : B2 = B},

Let B ∈M has singular value decomposition given by B = V ΣU∗. Taking Minkowski

adjoint on both sides we get B∼ = RDS∼, where R = G1U, V = S are unitary and D = ΣG2 is a

diagonal matrix. G1,G2 are Minkowski metric matrices of suitable order. Thus, corresponding

to every matrix B ∈M having a singular value decomposition, there corresponds a matrix

W = B∼ = RDS∼. Furthermore, if we assume that UG1 = G1U and V G2 = G2V , then U and V

are G-unitary, that is, UU∼ =U∼U = I and VV∼ =V∼V = I.

Consider, B = R

D 0

0 0

S∼, where R and S are G-unitary and D is a diagonal subblock

of rank r. Let S∼R =

E F

G H

. Then, it can be easily verified that S∼R is G-unitary. Post-

multiplying the above equality by R∼, we get S∼ =

E F

G H

R∼. Using this representation

of S∼, we have B = R

DE DF

0 0

R∼. Since S∼R is G-unitary. Thus (S∼R)(S∼R)∼ = I

gives EE∼−FG1F∼ = I. We will use G1 to denote the Minkowski metric matrix of order

n− r×n− r.

Lemma 2.1. [12] Let B ∈ M be of rank r. Then there exists unitary U ∈ Cn,n such

that

B =U

DE DF

0 0

U∼, (3)

where D = diag(σ1Ir1, ...,σtIrt ) is the diagonal matrix of singular values of B,

σ1 >σ2 > ... >σt > 0, r1+r2+ ...+rt = r, and E ∈Cr,r, F ∈Cr,n−r satisfy EE∼−FG1F∼= Ir.

(4)

From (3) it follows that
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B∼ =U

 E∼D 0

−G1F∼D 0

U∼, (5)

Bm© =U

 E∼D−1 0

−G1F∼D−1 0

U∼, (6)

Lemma 2.2. [12] Let H ∈M be of rank r and have representation (3). Then:

(i) H ∈ CmP
n if and only if D = I,J = I, and K = 0

(ii) H ∈ CPIm
n if and only if D = Ir,

(iii) H ∈ CGN
n if and only if K = 0,D2J = JD2,

(iv) H ∈ CMIA
n if and only if D2J∼ = J∼D2,

(v) H ∈ CEPm
n if and only if J is G-unitary and K = 0,

(vi) H ∈ CGmP
n if and only if J3 = I and K = 0,

(vii) H ∈ CHGmP
n if and only if (JD)3 = (DJ)3 = Ir and K = 0,

(viii) H is nilpotent of index 2 if and only if J = 0.

Lemma 2.3. Let B ∈ Cn,n be of rank r and have representation (3). Then:

(i) B is m-symmetric if and only if F = 0,E∼D = DE,

(ii) B is bi-normal if and only if E∼D2F = 0 and, additionally, E∼D2E and D commute,

(iii) B is bi-dagger if and only if E is a partial isometry and, additionally, E∼E and D commute,

(iv) B is bi-EP if and only if E is a partial isometry,

(v) B is star-dagger if and only if ED = DE,

(vi) B is a partial isometry if and only if D = Ir,

(vii) B is idempotent and m-symmetric if and only if D = Ir,E = Ir,

(viii) B is idempotent if and only if DE = Ir.

Proof: (i) Since B is m-symmetric⇔ B = B∼.

⇔U

DE DF

0 0

U∼ =U

 E∼D 0

−G1F∼D 0

U∼

Equating the corresponding entries
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⇔ DE = E∼D;DF = 0⇒ F = 0.

(ii) Since B is bi-normal⇔ BB∼B∼B = B∼BBB∼.

⇔U

DEE∼DE∼D2E−DFG1F∼DE∼D2E DEE∼DE∼D2F−DFG1F∼DE∼D

0 0

U∼

=U

 E∼DDEDEE∼D−E∼DDEDFG1F∼D 0

−G1F∼DDEDEE∼D+G1F∼DDEDFG1F∼D 0

U∼

Equating the corresponding entries

⇔ DEE∼DE∼DDE

−DFG1F∼DE∼DDE = E∼DDEDEE∼D−E∼DDEDFG1F∼D; (i)

⇔ DEE∼DE∼DDF−DFG1F∼DE∼DDF = 0; (ii)

⇔−G1F∼DDEDEE∼D+G1F∼DDEDFG1F∼D = 0; (iii)

From equation (i), we have

⇔ D(EE∼−FG1F∼)DE∼DDE = E∼DDED(EE∼−FG1F∼)D (Using equation(4))

⇔ DIrDE∼DDE = E∼DDEDIrD

⇔ D2E∼D2E = E∼D2ED2

Therefore E∼D2E and D commute.

From equation (ii), we have

⇔ D(EE∼−FG1F∼)DE∼DDF = 0 (Using equation(4))

⇔ DIrDE∼D2F = 0

⇔ D2E∼D2F = 0

⇔ E∼D2F = 0.

(iii) Since B is bi-dagger⇔ B∼Bm©Bm©B∼ = Bm©B∼B∼Bm©.

⇔U

 E∼DE∼D−1E∼D−1E∼D 0

−G1F∼DE∼D−1E∼D−1E∼D 0

U∼ =U

 E∼D−1E∼DE∼DE∼D−1 0

−G1F∼D−1E∼DE∼DE∼D−1 0

U∼

Equating the corresponding entries

⇔ E∼DE∼D−1E∼D−1E∼D = E∼D−1E∼DE∼DE∼D−1; (i)

⇔−G1F∼DE∼D−1E∼D−1E∼D =−G1F∼D−1E∼DE∼DE∼D−1; (ii)
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From equation (i), we have

⇔ D = D−1

⇔ D2 = Ir

⇔ D = Ir

Hence E is a partial isometry.

From equation (i) simplifying we have

⇔ D2EE∼ = EE∼D2EE∼

⇔ DEE∼ = EE∼D

⇔ EE∼ and D commute.

(iv) Since B is bi-EP⇔ BBm©Bm©B = Bm©BBBm©.

⇔U

DEE∼D−1E∼E−DFG1F∼D−1E∼E DEE∼D−1E∼F−DFG1F∼D−1E∼F

0 0

U∼

=U

 E∼D−1DEDEE∼D−1−E∼D−1DEDFG1F∼D−1 0

−G1F∼D−1DEDEE∼D−1 +G1F∼D−1DEDFG1F∼D−1 0

U∼

Equating the corresponding entries

⇔ DEE∼D−1E∼D−1DE−DFG1F∼D−1E∼D−1DE

= E∼D−1DEDEE∼D−1−E∼D−1DEDFG1F∼D−1; (i)

⇔ DEE∼D−1E∼D−1DF−DFG1F∼D−1E∼D−1DF = 0; (ii)

⇔−G1F∼D−1DEDEE∼D−1 +G1F∼D−1DEDFG1F∼D−1 = 0; (iii)

From equation (i), we have

⇔D(EE∼−FG1F∼)D−1E∼D−1DE = E∼D−1DED(EE∼−FG1F∼)D−1(Using equation(4))

⇔ DIrD−1E∼D−1DE = E∼D−1DEDIrD−1

⇔ D = Ir

Hence E is a partial isometry.

(v) Since B is star-dagger⇔ B∼Bm© = Bm©B∼.
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⇔U

 E∼DE∼D−1 0

−G1F∼DE∼D−1 0

U∼ =U

 E∼D−1E∼D 0

−G1F∼D−1E∼D 0

U∼

Equating the corresponding entries

⇔ E∼DE∼D−1 = E∼D−1E∼D (i)

⇔−G1F∼DE∼D−1 =−G1F∼D−1E∼D (ii)

post multiply by D, from equation (i), we have

⇔ E∼DE∼D−1D = E∼D−1E∼DD

⇔ E∼DE∼ = E∼D−1E∼D2

⇔ DE∼ = EE∼D−1E∼D2

⇔ DE∼ = IrD−1E∼D2

⇔ DE∼ = D−1E∼D2

pre multiply by D, we have

⇔ DDE∼ = DD−1E∼D2

⇔ D2E∼ = E∼D2

Taking square roots on both sides

⇔ DE∼ = E∼D

Taking Minkowski adjoint on both sides, we have

⇔ DE = ED.

(vi) Since B is a partial isometry⇔ B∼ = Bm©.

⇔U

 E∼D 0

−G1F∼D 0

U∼ =U

 E∼D−1 0

−G1F∼D−1 0

U∼

Equating the corresponding entries

⇔ E∼D = E∼D−1; (i)

⇔−G1F∼D =−G1F∼D−1; (ii)

From equation (i), we have

⇔ D = EE∼D−1

⇔ DD = Ir
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⇔ D2 = Ir

⇔ D = Ir.

(vii) Since B is idempotent⇔ B2 = B.

⇔U

DEDE DEDF

0 0

U∼ =U

DE DF

0 0

U∼

⇔ DEDE = DE; (i)

⇔ DEDF = DF ; (ii)

and m-symmetric⇔ B = B∼.

⇔U

DE DF

0 0

U∼ =U

 E∼D 0

−G1F∼D 0

U∼

Equating the corresponding entries

⇔ E∼D = DE; (iii)

⇔ DF = 0; (iv)

⇔−G1F∼D = 0; (v)

From equation (i), we have

⇔ (DE)2 = DE

⇔ DE = I

⇔ D = I and E = I.

(viii) Since B is idempotent⇔ B2 = B.

⇔U

DEDE DEDF

0 0

U∼ =U

DE DF

0 0

U∼

Equating the corresponding entries

⇔ DEDE = DE; (i)

⇔ DEDF = DF ; (ii)

From equation (i), we have

⇔ (DE)2 = DE
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⇔ DE = Ir.

Hence the proof.

Lemma 2.4. Let B ∈ Cn,n be of the form in (3). Then:

(i) Bm© is idempotent if and only if D = E.

(ii) Bm© is bi-normal if and only if E∼D−2F = 0 and, additionally, E∼D−2E and D−2 commute.

Proof: (i) Since Bm© is idempotent⇔ (Bm©)2 = Bm©.

⇔U

 E∼D−1E∼D−1 0

−G1F∼D−1E∼D−1 0

U∼ =U

 E∼D−1 0

−G1F∼D−1 0

U∼

Equating the corresponding entries

⇔ E∼D−1E∼D−1 = E∼D−1⇒ E∼D−1E∼ = E∼ (i)

⇔−G1F∼D−1E∼D−1 =−G1F∼D−1⇒−G1F∼D−1E∼ =−G1F∼ (ii)

pre multiply by E and F from equations (i) and (ii), we have

⇔ EE∼D−1E∼ = EE∼ (iii)

⇔−FG1F∼D−1E∼ =−FG1F∼ (iv)

Adding equations (iii) and (iv), we have

⇔ (EE∼−FG1F∼)D−1E∼ = (EE∼−FG1F∼) (Using equation(4))

⇔ IrD−1E∼ = Ir

⇔ D−1E∼ = Ir

pre multiply by D, we have

⇔ DD−1E∼ = D

⇔ E∼ = D

Taking Minkowski adjoint on both sides, we have

⇔ E = D.

(ii) Since Bm© is bi-normal⇔ Bm©(Bm©)∼(Bm©)∼Bm© = (Bm©)∼Bm©Bm©(Bm©)∼.

⇔U

 E∼D−2ED−1EE∼D−1 0

−G1F∼D−2ED−1EE∼D−1 0

U∼ =U

D−2E∼D−2E D−2E∼D−2F

0 0

U∼
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Equating the corresponding entries

⇔ E∼D−2ED−1EE∼D−1 = D−2E∼D−2E; (i)

⇔−G1F∼D−2ED−1EE∼D−1 = 0; (ii)

⇔ D−2E∼D−2F = 0; (iii)

From equation (i), we have

⇔ E∼D−2ED−1IrD−1 = D−2E∼D−2E

⇔ E∼D−2ED−2 = D−2E∼D−2E

⇔ E∼D−2E and D−2 commute.

From equation (iii), we have

⇔ D−2E∼D−2F = 0

⇔ E∼D−2F = 0.

Hence the proof.

3. MAIN RESULTS

Theorem 3.1. Let B ∈ Cn,n. Then Bm© is idempotent if and only if any of the following

statements is satisfied

(i) B∼Bm© = B∼,

(ii) Bm©B∼ = B∼,

(iii) (BB∼)m© is an inner inverse of B,

(iv) (BB∼)m© is an outer inverse of B.

Proof: (i) Since Bm© is idempotent⇔ B∼Bm© = B∼.

⇔U

 E∼DE∼D−1 0

−G1F∼DE∼D−1 0

U∼ =U

 E∼D 0

−G1F∼D 0

U∼

Equating the corresponding entries

⇔ E∼DE∼D−1 = E∼D (i)

⇔−G1F∼DE∼D−1 =−G1F∼D (ii)

pre multiplying by E and F and adding by equations (i) and (ii), we have

⇔ EE∼DE∼D−1−FG1F∼DE∼D−1 = (EE∼−FG1F∼)D
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⇔ (EE∼−FG1F∼)DE∼D−1 = (EE∼−FG1F∼)D (Using equation(4))

⇔ IrDE∼D−1 = IrD

⇔ DE∼D−1 = D

post multiply by D, we have

⇔ DE∼D−1D = DD

⇔ DE∼ = D2

pre multiplying by D−1, we have

⇔ D−1DE∼ = D−1DD

⇔ E∼ = D

Taking Minkowski adjoint on both sides, we have

⇔ E = D.

(ii) Since Bm© is idempotent⇔ Bm©B∼ = B∼.

⇔U

 E∼D−1E∼D 0

−G1F∼D−1E∼D 0

U∼ =U

 E∼D 0

−G1F∼D 0

U∼

Equating the corresponding entries

⇔ E∼D−1E∼D = E∼D (i)

⇔−G1F∼D−1E∼D =−G1F∼D (ii)

pre multiplying by E and F and adding equations (i) and (ii), we have

⇔ EE∼D−1E∼D−FG1F∼D−1E∼D = EE∼D−FG1F∼D

⇔ (EE∼−FG1F∼)D−1E∼D = (EE∼−FG1F∼)D (Using equation(4))

⇔ IrD−1E∼D = IrD

⇔ D−1E∼D = D

post multiply by D−1, we have

⇔ D−1E∼DD−1 = DD−1

⇔ D−1E∼ = Ir

⇔ E∼ = D

Taking Minkowski adjoint on both sides, we have

⇔ E = D.
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(iii) Since Bm© is idempotent⇔ (BB∼)m© is an inner inverse of B.

⇔ B(BB∼)m©B = B

⇔U

DED−2DE DED−2DF

0 0

U∼ =U

DE DF

0 0

U∼

Equating the corresponding entries

⇔ DED−2DE = DE; (i)

⇔ DED−2DF = DF ; (ii)

pre multiply by D−1 from equation (i), we have

⇔ D−1DED−2DE = D−1DE

⇔ ED−1E = E (iii)

pre multiply by D−1 from equation (ii), we have

⇔ D−1DED−2DF = D−1DF

⇔ ED−1F = F (iv)

post multiply by E∼ and F∼ and adding from equations (iii) and (iv), we have

⇔ ED−1EE∼−ED−1FG1F∼ = EE∼−FG1F∼

⇔ ED−1(EE∼−FG1F∼) = EE∼−FG1F∼ (Using equation(4))

⇔ ED−1Ir = Ir

⇔ ED−1 = Ir

⇔ E = D.

(iv) Since Bm© is idempotent⇔ (BB∼)m© is an outer inverse of B.

⇔ (BB∼)m©B(BB∼)m© = (BB∼)m©

⇔U

D−2DED−2 0

0 0

U∼ =U

D−2 0

0 0

U∼

Equating the corresponding entries

⇔ D−2DED−2 = D−2

⇔ DED−2 = Ir

⇔ DED−1D−1 = Ir
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postmultiply by D, we have

⇔ DED−1D−1D = D

⇔ DED−1 = D

post multiply by D, we have

⇔ DED−1D = DD

⇔ E = D2

pre multiply by D−1, we have

⇔ D−1DE = D−1D2

⇔ E = D.

Hence complete the proof.

Lemma 3.2. Let B ∈ Cn,n be of the form (3). Then (B2)m© = (Bm©)2 is satisfied if and

only if (DED)m© = D−1E∼D−1.

Proof: Since (B2)m© = (Bm©)2.

⇔U

 E∼(DED)m© 0

−G1F∼(DED)m© 0

U∼ =U

 E∼D−1E∼D−1 0

−G1F∼D−1E∼D−1 0

U∼

Equating the corresponding entries

⇔ E∼(DED)m© = E∼D−1E∼D−1 (i)

⇔−G1F∼(DED)m© =−G1F∼D−1E∼D−1 (ii)

pre multiplying by E and F by equations (i) and (ii) and adding, we have

⇔ (EE∼−FG1F∼)(DED)m© = (EE∼−FG1F∼)D−1E∼D−1 (Using equation(4))

⇔ (DED)m© = D−1E∼D−1.

Hence complete the proof.

4. CONCLUSION

In this paper, we have concluded the algebraic structure of matrices whose Minkowski inverse

is idempotent in Minkowski space.
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