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Abstract. In this paper, we prove the existence of renormalized solutions for some class nonlinear elliptic problem

of the type

−div a(x,u,∇u)+H(x,u,∇u) = µ−div φ(u),

in the Musielak-Orlicz-Sobolev spaces W 1
0 Lϕ(Ω). No ∆2−condition is assumed on the Musielak function. We as-

sume that H(x,s,ξ ) satisfies has a natural growth with respect to its third argument and satisfies the sign condition.

The µ is assumed to belong to L1(Ω) + W−1Eψ(Ω) and φ(·) ∈C0(IR, IRN) is a continuous function.
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1. INTRODUCTION

Let Ω be an open subset of IRn (N ≥ 2). This paper is concerned with the existence of

renormalized solutions for some class nonlinear elliptic problem of the form:

 Au+H(x,u,∇u) = µ−div φ(u) in Ω,

u = 0 on ∂Ω,
(1.1)
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where A is the Leray-Lions operator defined as:

A(u) =−div a(x,u,∇u)

and H(x,s,ξ ) presents the nonlinearity of the problem (1.1) and satisfies :

|H(x,s,ξ )| ≤ b(|s|)(d(x)+ϕ
(
x, |ξ |

)
), (natural growth condition)

H(x,s,ξ ).s ≥ 0, (sign condition)

where b(·) : IR+ 7−→ IR+ is a continuous and non-decreasing function and the nonnegative

function d(x) ∈ L1(Ω), µ = f −div F belongs to L1(Ω) + W−1Eψ(Ω) and φ(·) ∈C0(IR, IRN).

The concept of renormalized solutions was introduced by Diperna and Lions in [18] for the

study of the Boltzmann equations, this notion of solutions was then adapted to the study of the

problem (1.1) by Boccardo et al. in [15] when the right hand side is in W−1,~p′(Ω) and in the

case where the nonlinearity g depends only on x and u, this work was then studied by Rakotoson

in [24] when the right hand side is in L1(Ω) and finally by DalMaso et al. in [16] for the case in

which the right hand side is general measure data. Some elliptic boundary value problems with

L1(Ω) or Radon measure data or involving the p-Laplacian have been studied by Rãdulescu

et al. in [25], [26] and[27]. On Orlicz-Sobolev spaces and in variational case, Benkirane and

Bennouna have studied in [10] the problem (1.1) where the nonlinearity g depends only on x

and u under the restriction that the N-function satisfies the ∆2− condition, this work was then

extended in [1] by Aharouch, Bennouna and Touzani for N-function not satisfying necessarily

the ∆2− condition. If g depends also on ∇u the problem (1.1) has been solved by Aissaoui

Fqayeh, Benkirane, El Moumni and Youssfi in [2] without assuming the ∆2− condition on the

N-function. In the framework of variable exponent Sobolev spaces, Bendahmane and Wittbold

have treated in [9], they proved the existence and uniqueness of a renormalized solution in

Sobolev space with variable exponents W 1, ~p(x)
0 (Ω). In [8] Azroul, Barbara, Benboubker and

Ouaro have proved the existence of a renormalized solution for some elliptic problem involv-

ing thep(x)-Laplacian with Neumann nonhomogeneous boundary conditions in the case where

the second member f is in L1(Ω) Further works for nonlinear elliptic equations with variable

exponent can be found in [28] and [29]. In the variational case of Musielak-Orlicz spaces and
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in the case where H = 0 and φ = 0, an existence result for (1.1) has been proved by Benkirane

and Sidi El Vally in [11] and then in [12] when the non-linearity g depends only on x and u If g

depends also on ∇u the problem (1.1) has recently been solved by Ait Khellou, Benkirane and

Douiri in [3] and then in [5] when the right hand side is in L1(Ω). M. AL-Hawmi, E.Azroul,

H. Hjiaj and A.Touzani have studied (1.1)in [6] the existence of entropy solutions for some

anisotropic quasilinear elliptic unilateral when H = 0. AL-Hawmi, A. Benkirane, H. Hjiaj and

A. Touzani have studied (1.1) in [7] the existence and uniqueness of Entropy Solutions for some

Nonlinear Elliptic Unilateral Problems in Musielak-Orlicz-Sobolev spaces when H = 0, φ = 0

and F = 0. Our main goal, in this paper, is to prove the existence of a renormalized solutions

for the problem (1.1) in Musielak-Orlicz space W 1Lϕ(Ω). The paper is organized as follows: In

section 2, we give some preliminaries and background. Section 3 is devoted to some auxiliary

lemmas which can be used to our result. In Section 4, we state our main result and finally give

the prove of an existence of a renormalized solutions in section 5.

2. PRELIMINARIES

In this section, we introduce some definitions and known facts about Musielak-Orlicz-

Sobolev spaces. Standard reference is [23].

2.1. Musielak-Orlicz function. Let Ω be an open subset of IRN (N ≥ 2), and let ϕ(x, t) be a

real-valued function defined in Ω× IR+ and satisfying the following conditions:

(a): ϕ(x, ·) is an N-function, i.e. convex, nondecreasing, continuous, ϕ(x,0) = 0,

ϕ(x, t)> 0 for all t > 0, and :

lim
t→0

sup
x∈Ω

ϕ(x, t)
t

= 0 , lim
t→∞

inf
x∈Ω

ϕ(x, t)
t

= ∞

(b): ϕ(·, t) is a measurable function.

A function ϕ(x, t) which satisfies conditions (a) and (b) is called a Musielak-Orlicz function.

For a Musielak-Orlicz function ϕ(x, t) we set ϕx(t) = ϕ(x, t) and let ϕ−1
x (t) the reciprocal func-

tion with respect to t of ϕx(t), i.e.

ϕ
−1
x (ϕ(x, t)) = ϕ(x,ϕ−1

x (t)) = t.

For any two Musielak-Orlicz functions ϕ(x, t) and γ(x, t), we introduce the following ordering:
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(c): If there exists two positives constants c and T such that for almost everywhere x ∈Ω

:

γ(x, t)≤ ϕ(x,ct) for t ≥ T,

we write γ ≺≺ ϕ , and we say that ϕ dominate γ globally if T = 0, and near infinity if

T > 0.

(d): For every positive constant c and almost everywhere x ∈Ω, if

lim
t→0

(sup
x∈Ω

γ(x,ct)
ϕ(x, t)

) = 0 or lim
t→∞

(sup
x∈Ω

γ(x,ct)
ϕ(x, t)

) = 0.

Remark 2.1. [12] If γ ≺≺ ϕ near infinity, then ∀ ε > 0 there exist k(ε)> 0 such that for almost

all x ∈Ω we have

γ(x, t)≤ k(ε)ϕ(x,εt) ∀ t ≥ 0.

Remark 2.2. [12] Let ψ(x, t) is the Musielak-Orlicz function complementary to (or conjugate)

of ϕ(x, t) in the sense of Young with respect to the variable s such that

ψ(x,s) = sup
t≥0
{st−ϕ(x, t)}.

Remark 2.3. [12] The Musielak-Orlicz function ϕ(x, t) is said to satisfy the ∆2−condition if,

there exists k > 0 and a nonnegative function h(·) ∈ L1(Ω), such that

ϕ(x,2t)≤ kϕ(x, t)+h(x) a.e. x ∈Ω,

for large values of t, or for all values of t.

2.2. Musielak-Orlicz Lebesgue space. In the following, the measurability of a function u :

Ω 7−→ IR means the Lebesgue measurability. We define the functional

ρϕ,Ω(u) =
∫

Ω

ϕ(x, |u(x)|)dx

where u : Ω 7−→ IR is a measurable function. The set

Kϕ(Ω) = {u : Ω 7−→ IR measurable / ρϕ,Ω(u)<+∞}
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is called the Musielak-Orlicz class (the generalized Orlicz class). The Musielak-Orlicz space

(the generalized Orlicz space) Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is, Lϕ(Ω) is

the smallest linear space containing the set Kϕ(Ω); equivalently

Lϕ(Ω) =
{

u : Ω 7−→ IR measurable / ρϕ,Ω(
u
λ
)≤ ∞, for some λ > 0

}
.

In the space Lϕ(Ω), we define the following two norms:

||u||ϕ,Ω = inf
{

λ > 0 /
∫

Ω

ϕ(x,
|u(x)|

λ
)dx≤ 1

}
,

which is called the Luxemburg norm, and the so-called Orlicz norm by:

|||u|||ϕ,Ω = sup
||v||ψ≤1

∫
Ω

|u(x)v(x)|dx,

where ψ(x, t) is the Musielak-Orlicz function complementary (or conjugate) to ϕ(x, t). These

two norms are equivalent [23]. The closure in Lϕ(Ω) of the bounded measurable functions with

compact support in Ω is denoted by Eϕ(Ω). It is separable space and Eψ(Ω)∗ = Lϕ(Ω) [23].

2.3. Musielak-Orlicz-Sobolev space. We now turn to the Musielak-Orlicz-Sobolev space.

W 1Lϕ(Ω) (resp. W 1Eϕ(Ω)) is the space of all measurable functions u such that u and its dis-

tributional derivatives up to order 1 lie in Lϕ(Ω) (resp. Eϕ(Ω)). Let α = (α1,α2, . . . ,αn) with

nonnegative integers αi, |α|= |α1|+ |α2|+ ...+ |αn| and Dαu denotes the distributional deriva-

tives.

ρϕ,Ω(u) = ∑
|α|≤1

ρϕ,Ω(Dαu) and ||u||1,ϕ,Ω = inf{λ > 0 : ρϕ,Ω(
u
λ
)≤ 1}

for u∈W 1Lϕ(Ω), these functionals are a convex modular and a norm on W 1Lϕ(Ω), respectively,

and the pair 〈W 1Lϕ(Ω), ||u||1,ϕ,Ω〉 is a Banach space if ϕ satisfies the following condition [23]:

there exists a constant c > 0 such that inf
x∈Ω

ϕ(x,1)≥ c.

The spaces W 1Lϕ(Ω) and W 1Eϕ(Ω) can be identified with subspaces of the product of n+ 1

copies of Lϕ(Ω). Denoting this product by ΠLϕ , we will use the weak topologies σ(ΠLϕ ,ΠEψ)

and σ(ΠLϕ ,ΠLψ). The space W 1
0 Eϕ(Ω) is defined as the (norm) closure of the Schwartz space

D(Ω) in W 1Eϕ(Ω), and the space W 1
0 Lϕ(Ω) as the σ(ΠLϕ ,ΠEψ) closure of D(Ω) in W 1Lϕ(Ω).
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2.4. Dual space. Let W−1Lψ(Ω) (resp. W−1Eψ(Ω)) denotes the space of distributions on Ω

which can be written as sums of derivatives of order ≤ 1 of functions in Lψ(Ω) (resp. Eψ(Ω)).

It is a Banach space under the usual quotient norm. If ψ(x, t) has the ∆2−condition, then the

space D(Ω) is dense in W 1
0 Lϕ(Ω) for the topology σ(ΠLϕ ,ΠLψ) (see corollary 1 of [11]).

3. SOME TECHNICAL LEMMAS

We present here some lemmas, which will be used later in order to prove the existence theo-

rem:

Lemma 3.1. Let Ω be an open bounded subset of IRN satisfying the segment property. If u ∈

(W 1
0 Lϕ(Ω))N , then ∫

Ω

div(u)dx = 0

Lemma 3.2. ([13]) Let Ω be a bounded Lipschitz domain in IRN and let ϕ and ψ be two

complementary Musielak-Orlicz functions which satisfy the following conditions

(a): There exists a constant c > 0 such that inf
x∈Ω

ϕ(x,1)≥ c,

(b): There exists a constant A > 0 such that for all x,y ∈Ω with |x− y| ≤ 1
2 we have

(3.1)
ϕ(x, t)
ϕ(y, t)

≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1;

(c):

(3.2)
∫

Ω

ϕ(x,1)dx < ∞;

(d): There exists a constant

(3.3) C > 0 such that ψ(x,1)<C a.e in Ω.

Under this assumptions, D(Ω) is dense in Lϕ(Ω) with respect to the modular topology, D(Ω)

is dense in W 1
0 Lϕ(Ω) for the modular convergence and D(Ω) is dense in W 1Lϕ(Ω) for the

modular convergence.
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Lemma 3.3. ([2]) Let Ω be a bounded Lipschitz domain of IRN and let ϕ be a Musielak-Orlicz

function satisfying

(3.4)
∫

∞

0

ϕ−1
x (t)

t
N+1

N
dt = ∞ and

∫ 1

0

ϕ−1
x (t)

t
N+1

N
dt < ∞.

Define a function

ϕ
−1
∗ : Ω× [0,∞)→ [0,∞) by ϕ

−1
∗ (x,s) =

∫ s

0

ϕ−1
x (τ)

τ
N+1

N
dτ for x ∈Ω and s ∈ [0,∞).

and the conditions of Lemma 3.1. Then

W 1
0 Lϕ(Ω) ↪→ Lϕ∗(Ω),

where ϕ∗ is the Sobolev conjugate function of ϕ . Moreover, if φ is any Musielak function

increasing essentially more slowly than ϕ∗. near infinity, then the imbedding

W 1
0 Lϕ(Ω) ↪→ Lφ (Ω),

is compact.

Lemma 3.4. [2] (Poincaré inequality) Let Ω be a bounded Lipchitz domain of IRN and let ϕ be

a Musielak-Orlicz function satisfying the same conditions of Theorem 3.3. Then there exists a

constant C > 0 such that

‖u‖ϕ ≤C‖∇u‖ϕ ∀u ∈W 1
0 Lϕ(Ω).

Lemma 3.5. [4] Let be a bounded Lipschitz domain of IRN and let ϕ be a Musielak- Orlicz

function satisfying the conditions of (3.1). Assume also that the function ϕ depends only on

N−1 coordinates of x. Then there exists a constant λ > 0 depending only on Ω such that∫
Ω

ϕ(x, |v|)dx≤
∫

Ω

ϕ(x,λ |∇v|)dx for all v ∈W 1
0 Lϕ(Ω)

Lemma 3.6. [19] Let (un)n be a sequence in L1(Ω) and u ∈ L1(Ω) such that

(i): un→ u a.e. in Ω,

(ii): un ≥ 0 and u≥ 0 a.e. in Ω,

(iii):
∫

Ω

un dx→
∫

Ω

u dx,

then un→ u in L1(Ω).
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Lemma 3.7. [11]. Let u ∈ Lϕ(Ω) and un ∈ Lϕ(Ω) with ‖un‖ϕ,Ω ≤C.

If un(x)→ u(x) a.e. in Ω, then un ⇀ u in Lϕ(Ω) for σ(Lϕ(Ω),Eψ(Ω)).

Lemma 3.8. [12] Let F : IR 7→ IR be uniformly Lipschitz function, with F(0) = 0. Let ϕ(x, ·) be

a Musielak-Orlicz function and u ∈W 1
0 Lϕ(Ω). Then F(u) ∈W 1

0 Lϕ(Ω). Moreover, if the set D

of discontinuity points of F ′(·) is finite, we have

(3.5)
∂

∂xi
F(u) =

 F ′(u) ∂u
∂xi

a.e in {x ∈Ω : u(x) /∈ D},

0 a.e in {x ∈Ω : u(x) ∈ D}.

Lemma 3.9. Let Ω be an open subset of IRN with finite measure. Let ϕ , ψ and γ be Musielak

functions such that γ ≺≺ ψ , and let f : Ω× IR→ IR be a Carathéodory function such for a.e.

x ∈Ω and all s ∈ IR:

(3.6) | f (x,s)| ≤ c(x)+ k1ψ
−1
x ϕ(x,k2|s|)

where k1,k2 are real constants and c(x) ∈ Eγ(Ω).

Then the Nemytskii operator N f defined by: N f (u)(x) = f (x,u(x)) is strongly continuous from

P(Eϕ(Ω),1/k2) = {u ∈ Lϕ(Ω) : d(u,Eϕ(Ω))< 1/k2} into Eγ(Ω).

Proof.

Let un, u ∈ P(Eϕ(Ω),1/k2), we suppose that un → u in P(Eϕ(Ω),1/k2) and we prove that

N f (un)→ N f (u) in Eγ(Ω).

• Firstly, we prove that :

for any u ∈ P(Eϕ(Ω),1/k2) we have N f (u) ∈ Eγ(Ω).

From (3.6) we have: |N f (u)(x)|= | f (x,u(x))| ≤ c(x)+ k1ψ−1
x ϕ(x,k2|u(x)|)

γx(|N f (u)(x)|) ≤ γx(c(x)+ k1ψ
−1
x ϕ(x,k2|u(x)|))

= γx(
1
2
(2c(x))+

1
2
(2k1ψ

−1
x ϕ(x,k2|u(x)|)))

≤ 1
2

γx(2c(x))+
1
2

γx(2k1ψ
−1
x ϕ(x,k2|u(x)|))
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since γ ≺≺ ψ i.e. ∀ε > 0, ∃α > 0 such that γx(t)≤ αψx(εt), then:

γx(N f (u)(x))≤
1
2

γx(2c(x))+
α

2
ψx(2εk1ψ

−1
x ϕ(x,k2|u(x)|))

we choice ε as 0 < 2εk1 < 1, since ψx is a convex function, it follows that

γx(N f (u(x))) ≤
1
2

γx(2c(x))+
α

2
2εk1ψxψ

−1
x (ϕ(x,k2|u(x)|))

≤ 1
2

γx(2c(x))+αεk1ϕ(x,k2|u(x)|)

we have c(x) ∈ Eγ(Ω) and u ∈ P(Eϕ(Ω),1/k2) then:

∫
Ω

γx(2c(x))dx < ∞ and
∫

Ω

ϕ(x,k2|u(x)|)dx < ∞

and we deduce that: N f (u) ∈ Eγ(Ω).

• Secondly, we prove that N f (un)→ N f (u) in Eγ(Ω):

we have N f (un)(x) = f (x,un(x)) is a caratheodory function i.e. f is continuous for x fixed in Ω.

We have supposed that

un→ u in P(Eϕ(Ω),1/k2) then un→ u a.e. in Ω,

then

f (x,un(x))→ f (x,u(x)) a.e. in Ω

hence

γx( f (x,un(x)))→ γx( f (x,u(x))) a.e. in Ω,

and there exists g ∈ L1(Ω) such that γx( f (x,un(x)))≤ g(x) a.e. in Ω, then by using Lebesgue’s

theorem, we can write:

N f (un)→ N f (u) in Eγ(Ω),

which achieve the proof of Lemma 3.9.
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4. ESSENTIAL ASSUMPTIONS

Let Ω be a bounded open subset of IRN (N≥ 2), and ϕ(x, t) be a Musielak-Orlicz function. We

set ψ(x, t) the Musielak-Orlicz function complementary (or conjugate) to ϕ(x, t) and satisfies

the condition of Lemma 3.8. Let γ(x, t) be a Musielak-Orlicz function such that γ ≺≺ ϕ. We

consider a Leray-Lions operator A : D(A)⊂W 1
0 Lϕ(Ω)→W−1Lψ(Ω) given by

A(u) =−div a(x,u,∇u)

where a : Ω× IR× IRN → IRN is a Carathéodory function (measurable with respect to x in Ω

for every (s,ξ ) in IR× IRN , and continuous with respect to ξ ,ξ ∗ ∈ IRN for almost every x ∈ Ω)

which satisfies the following conditions

(4.1) |a(x,s,ξ )| ≤ k1(c(x)+ψ
−1
x (γ(x,k2|s|))+ψ

−1
x (ϕ(x,k3|ξ |)),

(4.2)
(
a(x,s,ξ )−a(x,s,ξ ∗)

)
·
(
ξ −ξ

∗)> 0 for ξ 6= ξ
∗,

(4.3) a(x,s,ξ ) ·ξ ≥ α ·ϕ(x, | ξ |),

for a.e. x ∈Ω and all (s,ξ ) ∈ IR× IRN , where c(x) is a nonnegative function lying in Eψ(Ω) and

α,λ > 0 and k1,k2,k3≥ 0. The nonlinear terms H(x,s,ξ ) is a Carathéodory functions satisfying

(4.4) H(x,s,ξ )s ≥ 0,

(4.5) |H(x,s,ξ )| ≤ b(|s|)(d(x)+ϕ
(
x, |ξ |

)
),

where b(·) : IR+ 7−→ IR+ is a continuous and non-decreasing function and the nonnegative func-

tion d(x) ∈ L1(Ω). We consider the problem

(4.6)

 Au+H(x,u,∇u) = f − div F− div φ(u) in Ω,

u = 0 on ∂Ω.

(4.7) f ∈ L1(Ω), F ∈W−1Eψ(Ω) and φ(·) ∈C0(IR, IRN).

Remark 4.1. A consequence of (4.3) and the continuity of a with respect to ξ , is that, for almost

every x in Ω and s in IR such that a(x,s,0) = 0.
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5. MAIN RESULTS

Let k > 0, we define the truncation function Tk(·) : IR 7−→ IR, by

Tk(s) =


s if |s| ≤ k,

k
s
|s|

if |s|> k.

Definition 5.1. A measurable function u is called renormalized solutions of the strongly non-

linear problem (4.6) if

(5.1)



Tk(u) ∈W 1
0 Lϕ(Ω), a(x,Tk(u),∇Tk(u)) ∈ (Lψ(Ω))N ,∫

{m≤|u|≤m+1}
a(x,u,∇u) ·∇u dx→ 0 as m→ 0∫

Ω

a(x,u,∇u) ·∇(h(u)θ)dx+
∫

Ω

H(x,u,∇u)h(u)θ dx =
∫

Ω

f h(u)θ dx

+
∫

Ω

φ(u) ·∇(h(u)θ)dx+
∫

Ω

F ·∇(h(u)θ)dx,

for any h ∈C1
c (IR) and for all θ ∈ D(Ω).

Theorem 5.1. Assuming that (4.1)− (4.5) and (4.7) holds , then the problem (4.6) has at least

one renormalized solution.

Proof of the Theorem 5.1.

Step 1 : Approximate problems. Let ( fn)n∈IN ∈W−1Eψ(Ω) be a sequence of smooth func-

tions such that fn → f in L1(Ω) and | fn| ≤ | f | (for example fn = Tn( f )), φn(s) = φ(Tn(s))

and Hn(x,s,ξ ) = Tn(H(x,s,ξ ). Not that Hn(x,s,ξ )s ≥ 0, |Hn(x,s,ξ )| ≤ |H(x,s,ξ )| and

|Hn(x,s,ξ )| ≤ n. Since φ is continuous, we have |φn(t)| = |φ(Tn(t))| ≤ cn. We consider the

approximate problem

(5.2)


−div a(x,un,∇un)+Hn(x,un,∇un) = fn− div Fn− div φn(un) in D′(Ω),

un ∈W 1
0 Lϕ(Ω).

There exists at least solution un ∈W 1
0 Lϕ(Ω) of equation (5.2) (see [21], Proposition 1 and [12]

Theorem 4 ).



12 MOHAMMED AL-HAWMI, MUSTAFA AL-HASISI

Step 2 : A priori estimates. taking v = Tk(un) as a test function in (5.2), we get

(5.3)

∫
Ω

a(x,un,∇un) ·∇Tk(un)dx+
∫

Ω

Hn(x,un,∇un)Tk(un)dx =
∫

Ω

fnTk(un)dx

+
∫

Ω

φ(Tn(un)) ·∇Tk(un)dx+
∫

Ω

Fn ·∇Tk(un)dx.

Remark that, by Lemma 3.1

(5.4)
∫

Ω

φ(Tn(un)) ·∇Tk(un)dx =
∫

Ω

div (Φn(un))dx = 0,

where Φn(s) =
∫ Tk(s)

0
φn(Tn(τ))dτ,Φn(un) ∈W 1

0 Lϕ(Ω)
N

by Lemma 3.8, which implies, by

using the fact that

(5.5) Hn(x,un,∇un)Tk(un)≥ 0,

On the other hand we have

(5.6)
∫

Ω

Fn ·∇Tk(un)dx≤ α

2

∫
Ω

ϕ(x, |∇Tk(un)|)dx

from (5.3), (5.4) , (5.6)and by using the hypothesis (5.5) we get

∫
{|un|≤k}

a(x,un,∇un) ·∇un dx≤Ck.

where C is a constant such that ‖ fn)‖1,Ω ≤C,∀n.

Thanks to (4.1) one easily has

(5.7)
∫

Ω

ϕ(x, |∇Tk(un)|)dx≤ 1
α

∫
Ω

a(x,un,∇un) ·∇Tk(un)dx≤C1k.

On the other hand, by using Lemma 3.5. Taking v = 1
λ
|Tk(un)| in (5.7) gives

∫
Ω

ϕ(x,
1
λ
|Tk(un)|)dx≤

∫
Ω

ϕ(x, |∇Tk(un)|)dx≤ kC1
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Then, we deduce that,

meas({|un|> k}) ≤ 1

inf
x∈Ω

ϕ(x,
k
λ
)

∫
Ω

ϕ(x,
k
λ
)dx

≤ 1

inf
x∈Ω

ϕ(x,
k
λ
)

∫
Ω

ϕ(x,
1
λ
|Tk(un)|)dx

≤ kC1

inf
x∈Ω

ϕ(x,
k
λ
)

, ∀n, ∀k > 0.

For all δ > 0, we have

meas{|un−um|> δ} ≤meas{|un|> k}+meas{|um|> k}+meas{|Tk(un)−Tk(um)|> δ}.

(5.8) meas{|un−um|> δ} ≤ 2kC1

inf
x∈Ω

ϕ(x,
k
λ
)

+meas{|Tk(un)−Tk(um)|> δ}.

By using (5.7) and Lemma 3.4, we deduce that Tk(un) is bounded in W 1
0 Lϕ(Ω), and then there

exists wk ∈W 1
0 Lϕ(Ω) such that Tk(un)⇀ wk weakly in W 1

0 Lϕ(Ω) for σ(ΠLϕ ,ΠEψ) strongly in

Eϕ(Ω) and a.e. in Ω Consequently, we can assume that Tk(un) is a cauchy sequence in measure

in Ω.

Let ε > 0, using (5.8) and the fact that 2kC1

inf
x∈Ω

ϕ(x,
k
λ
)
→ 0 ask → ∞ there exists some k =

k(ε) ≥ 0 such that meas{|un− um| > δ} ≤ ε ∀n,m ≥ n0(k(ε),δ ), it follows that (un)n is a

Cauchy sequence in measure, then converges almost everywhere, for a subsequence, to some

measurable function u. Consequently, we have

Tk(un)⇀ Tk(u) weakly in W 1
0 Lϕ(Ω) for σ(ΠLϕ ,ΠEψ)

it follows that

(5.9) Tk(un)→ Tk(u) strongly in Eϕ(Ω) a.e. in Ω
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Now, we shall prove that a(x,Tk(un),∇Tk(un))n is bounded in (Lψ(Ω))N for all k > 0, by using

the dual norm of (Lψ(Ω))N . Let v0 ∈ (Eϕ(Ω))N such that ‖v0‖ϕ,Ω = 1 . We have from (4.2)∫
Ω

(a(x,Tk(un),∇Tk(un))−a(x,Tk(un),
v0

k3
)) · (∇Tk(un)−

v0

k3
))dx≥ 0

this implies by (5.7)

∫
Ω

1
k3
(a(x,Tk(un),∇Tk(un))v0dx ≤

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx

−
∫

Ω

a(x,Tk(un),
v0

k3
)) · (∇Tk(un)−

v0

k3
))dx

≤Ck−
∫

Ω

a(x,Tk(un),
v0

k3
)) ·∇Tk(undx

+ 1
k3

∫
Ω

a(x,Tk(un),
v0

k3
))v0dx

By using Young’s inequality in the last two terms of the last side and (5.7) we have

∫
Ω

a(x,Tk(un),∇Tk(un)v0dx ≤Ckk3 +3k1(1+ k3)
∫

Ω

ψ(x,
a(x,Tk(un),

v0
k3
)

3k1
)dx

+
∫

Ω

ϕ(x, |∇Tk(un)|)dx+
∫

Ω

ϕ(x, |v0|)dx

≤Ckk3 +3C1kk1k3 +3k1

+3k1(1+ k3)
∫

Ω

ψ(x,
a(x,Tk(un),

v0
k3
)

3k1
)dx

Using (4.1) and the convexity of ψ yields

ψ(x,
|a(x,Tk(un),

v0
k3
)|

3k1
)≤ 1

3
ψ(x,c(x))+ γ(x,k2Tk(un))+ϕ(x, |v0|)

and, since γ grows essentially less rapidly than ϕ near infinity there exists µ(k) > 0 such that

γ(x,k2Tk(un)) ≤ γ(x,k2k) ≤ µ(k)ϕ(x,1) Lemma 3.1 then we have by integrating over Ω and

using (3.2)∫
Ω

ψ(x,
|a(x,Tk(un),

v0
k3
)|

3k1
)≤ 1

3
(
∫

Ω

ψ(x,c(x))+µ(k)
∫

Ω

ϕ(x,1)+
∫

Ω

ϕ(x, |v0|))≤Ck

where Ck is a constant depending on k, we deduce that∫
Ω

a(x,Tk(un),∇Tk(un))v0dx≤Ck ∀v0 ∈ (Eϕ(Ω))N with ‖v0‖ ≤ 1

which shows that (a(x,Tk(un),∇Tk(un))n is bounded in (Lψ(Ω))N .
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Step 3 : Almost everywhere convergence of the gradients. Let η(t) = t.exp(σt2) ,σ > 0 where

σ ≥
(b(k)

2α

)2 one has

(5.10) η
′(t)− b(k)

α
|η(t)| ≥ 1

2
∀t ∈ IR.

Where k > 0 is a fixed real number which will be used as a level of the truncation.

Let v j ∈ D(Ω) be a sequence which converges to Tk(u) for the modular convergence W 1
0 Lϕ(Ω)

and define the function

ρm(s) =


1 if |s| ≤ m

0 if |s| ≥ m+1

m+1−|s| if m≤ |s| ≤ m+1.

Where m > k.

Let θ
j

n = Tk(un)−Tk(v j), θ
j = Tk(u)−Tk(v j) and z j

n,m = η(θ j
n )ρm(un)

Using in (5.2) the test function z j
n,m gives

(5.11)

∫
Ω

a(x,un,∇un) ·∇z j
n,m dx+

∫
Ω

Hn(x,un,∇un)z j
n,m dx

=
∫

Ω

fnz j
n,m dx+

∫
m≤|un|≤m+1

φn(un) ·∇unρ
′
m(un)η(Tk(un)−Tk(v j))dx

+
∫

Ω

φn(un)) ·∇η(Tk(un)−Tk(v j))ρm(un)dx+
∫

Ω

Fn ·∇z j
n,mdx.

In the sequel, we denote by εi(n, j), i = 1,2, . . . various real-valued functions of real variables

that converge to 0 as n→ ∞ and j tends to infinity, i.e. lim
j→∞

lim
n→∞

εi(n, j) = 0.

In view of (5.9), we have z j
n,m→ η(θ j)ρm(u) weakly* in L∞(Ω) as n→ ∞ and then∫

Ω

fnz j
n,m dx→

∫
Ω

f η(θ j)ρm(u)dx→ 0 as n→ ∞,

and since θ j→ 0 weakly* in L∞(Ω) we get
∫

Ω

f η(θ j)ρm(u)dx→ 0 as j→ ∞, then

∫
Ω

fnz j
n,m dx = ε0(n, j).
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By Lemma 3.1, it’s easy to see that∫
m≤|un|≤m+1

φn(un) ·∇unρ
′
m(un)η(Tk(un)−Tk(v j))dx = 0

Concerning the third term in the left-hand side of (5.11) we can write

∫
Ω

φn(un)) ·∇η(Tk(un)−Tk(v j))ρm(un)dx =
∫

Ω

φn(un)) ·∇Tk(un)η
′(θ j

n )ρm(un)dx

−
∫

Ω

φn(un)) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx.

By Lemma 3.1, it’s easy to see that∫
Ω

φn(un)) ·∇Tk(un)η
′(θ j

n )ρm(un)dx = 0

From (5.9) we have φn(un))η
′(θ j

n )ρm(un)→ φ(u))η ′(θ j)ρm(u) almost everywhere in Ω as

n→ ∞,furthermore, we can check that

‖φn(un))η
′(θ j

n )ρm(un)‖ψ ≤ cmc1η
′(2k)|Ω|

Where cm = max
|t|≤m+1

φ(t) and c1 is the constant defined in (3.3). Applying [25, Theorem 14.6]

we get

lim
n→∞

∫
Ω

φn(un)) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx =
∫

Ω

φ(u)) ·∇Tk(v j)η
′(θ j)ρm(u)dx

and by using the modular convergence of v j, we obtain

lim
j→∞

lim
n→∞

∫
Ω

φn(un)) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx =
∫

Ω

φ(u)) ·∇Tk(u)ρm(u)dx

then, by Lemma 3.1, one has
∫

Ω

φ(u)) ·∇Tk(u)ρm(u)dx = 0.

Hence ∫
Ω

φn(un)) ·∇µ(Tk(un)−Tk(v j))ρm(un)dx = ε2(n, j),

similarly we have ∫
Ω

Fn ·∇z j
n,m dx = ε1(n, j).

Since Hn(x,un,∇un)z
j
n,m ≥ 0 on the subset {x ∈ Ω : |un(x)| > k} and ρm(un) = 1 on the subset

{x ∈Ω : |un(x)| ≥ k} we have, from (5.11),

(5.12)
∫

Ω

a(x,un,∇un) ·∇z j
n,m dx+

∫
{|un|≤k}

Hn(x,un,∇un)η(θ j
n )dx≤ ε2(n, j).
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For what concerns the first term of the left-hand side of (5.12) we have∫
Ω

a(x,un,∇un) ·∇z j
n,m dx =

∫
{|un|≤k}

a(x,un,∇un) · (∇Tk(un)−∇Tk(v j))η
′(θ j

n )ρm(un)dx

−
∫
{|un|>k}

a(x,un,∇un) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx

+
∫

Ω

a(x,un,∇un) ·∇unη(θ j
n )ρ

′
m(un)dx

=
∫

Ω

a(x,un,∇un) · (∇Tk(un)−∇Tk(v j))η
′(θ j

n )dx

−
∫
{|un|>k}

a(x,un,∇un) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx

+
∫

Ω

a(x,un,∇un) ·∇unη(θ j
n )ρ

′
m(un)dx,

and then

(5.13)∫
Ω

a(x,un,∇un) ·∇z j
n,m dx =

∫
Ω

(a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)

×(∇Tk(un)−∇Tk(v j)χ
s
j)η
′(θ j

n )dx

+
∫

Ω

a(x,Tk(un),∇Tk(v j)χ
s
j)(∇Tk(un)−∇Tk(v j)χ

s
j))η

′(θ j
n )dx

−
∫

Ω\Ωs
j

a(x,Tk(un),∇Tk(un) ·∇Tk(v j)η
′(θ j

n )dx

−
∫
{|un|>k}

a(x,un,∇un) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx dx

+
∫

Ω

a(x,un,∇un) ·∇un)η(θ j
n )ρ

′
m(un)dx, ,

where χs
j is the characteristic function of the set Ωs

j = {x ∈Ω : |∇Tk(v j)| ≤ s}.

For the third term, since (a(x,Tk(un),∇Tk(un))n is bounded in (Lψ(Ω))N , we have, for a

subsequence, a(x,Tk(un),∇Tk(un))⇀ lk weakly in (Lψ(Ω))N for σ(ΠLϕ(Ω),ΠEψ(Ω)) with

lk ∈ (Lψ(Ω))N and since ∇Tk(v j)χΩ\Ωs
j
∈ (Eϕ(Ω))N we have, by letting n→ ∞

−
∫

Ω\Ωs
j

a(x,Tk(un),∇Tk(un)) ·∇Tk(v j)η
′(θ j

n )dx→−
∫

Ω\Ωs
j

lk ·∇Tk(u))η ′(θ j)dx,

Using now, the modular convergence of (v j), we get

−
∫

Ω\Ωs
j

lk ·∇Tk(v j)η
′(θ j)dx→−

∫
Ω\Ωs

lk ·∇Tk(u)dx as j→ ∞,

where Ωs = {x ∈Ω : |∇Tk(u)| ≤ s}. We have then proved that

(5.14) −
∫

Ω\Ωs
j

a(x,Tk(un),∇Tk(un)) ·∇Tk(v j)η
′(θ j

n )dx→−
∫

Ω\Ωs

lk ·∇Tk(u)dx+ ε3(n, j).
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Concerning the fourth term, since ρm(un) = 0 on the subset {|un|> m+1}, we have

−
∫
{|un|>k}

a(x,un,∇un) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx

=−
∫
{|un|>k}

a(x,Tm+1(un),∇Tm+1(un)) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx

and as above

(5.15)
−
∫
{|un|>k}

a(x,Tm+1(un),∇Tm+1(un)) ·∇Tk(v j)η
′(θ j

n )ρm(un)dx

=−
∫
{|u|>k}

lm+1 ·∇Tk(u)ρm(u)dx+ ε4(n, j) = ε5(n, j)

where we have used the fact that ∇Tk(u) = 0 on the subset {x ∈Ω : |u(x)|> k}.

For the second term of (5.13), remark that by using Lemma 3.9 and the fact that ∇Tk(un) ⇀

∇Tk(u) weakly in (Lϕ(Ω))N , by (5.9), we have

a(x,Tk(un),∇Tk(v j)χ
s
j)η
′(θ j

n )→ a(x,Tk(u),∇Tk(v j)χ
s
j)η
′(θ j)

strongly in (Eψ(Ω))N as n→ ∞, then∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) · (∇Tk(un)−∇Tk(v j)χ

s
j))η

′(θ j
n )dx

→
∫

Ω

a(x,Tk(u),∇Tk(v j)χ
s
j) · (∇Tk(u)−∇Tk(v j)χ

s
j))η

′(θ j)dx as n→ ∞

on the other hand, since ∇Tk(v j)χ
s
j → ∇Tk(u)χs strongly in (Eϕ(Ω))N as j→ ∞, it is easy

to see that

∫
Ω

a(x,Tk(u),∇Tk(v j)χ
s
j) · (∇Tk(u)−∇Tk(v j)χ

s
j))η

′(θ j)dx→ 0 as j→ ∞,

where χs is the characteristic function of the set Ωs then

(5.16)
∫

Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) · (∇Tk(un)−∇Tk(v j)χ

s
j))η

′(θ j
n )dx = ε6(n, j).

The last term of (5.13) reads as∫
Ω

a(x,un,∇un) ·∇un η(θ j
n )ρ

′(un)dx =
∫
{m≤|un|≤m+1}

a(x,un,∇un) ·∇un η(θ j
n )ρ

′(un)dx,
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then

|
∫

Ω

a(x,un,∇un) ·∇un η(θ j
n )ρ

′(un)dx| ≤ η(2k)
∫
{m≤|un|≤m+1}

a(x,un,∇un) ·∇un dx

Taking T1(un−Tm(un)) as test function in (5.3) yields∫
{m≤|un|≤m+1}

a(x,un,∇un) ·∇un dx+
∫
{|un|>m}

Hn(x,un,∇un)T1(un−Tm(un))dx

=
∫
{|un|>m} fnTk(un)dx+

∫
{m≤|un|≤m+1}

φ(Tn(un)) ·∇Tk(un)dx+
∫
{m≤|un|≤m+1}

Fn ·∇Tk(un)dx.

Thanks to Lemma 3.1 we have∫
{m≤|un|≤m+1}

φ(Tn(un)) ·∇Tk(un)dx = 0

∫
{m≤|un|≤m+1}

Fn ·∇Tk(un)dx = 0

which implies, by using the fact that Hn(x,un,∇un)T1(un − Tm(un)) ≥ 0 on the subset

{x ∈Ω : |un| ≥ m}

(5.17)
∫
{m≤|un|≤m+1}

a(x,un,∇un) ·∇un dx≤
∫
{|un|>m}

| fn|dx.

consequently

|
∫

Ω

a(x,un,∇un) ·∇un η(θ j
n )ρ

′
m(un)dx| ≤ η(2k)

∫
{|un|≥m}

| fn|dx

Combining this inequality with (5.14), (5.15) and (5.16) we obtain

(5.18)

∫
Ω

a(x,un,∇un) ·∇z j
n,m dx ≥−

∫
Ω\Ωs

lk ·∇Tk(u)dx−η(2k)
∫
{|un|≥m}

| fn|dx

+
∫

Ω

(a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)

×[∇Tk(un)−∇Tk(v j)χ
s
j ]η
′(θ j

n )dx+ ε7(n, j)

Concerning the second term of the left-hand side of (5.12), we have

|
∫
{|un|≤k}

Hn(x,un,∇un) ·∇z j
n,m dx|= |

∫
{|un|≤k}

(Hn(x,Tk(un),∇Tk(un))η
′(θ j

n )dx|

≤
∫

Ω

b(k)c′|η(θ j
n |dx+b(k)

∫
Ω

ϕ(x, |∇Tk(un)||η(θ j
n )|dx

≤ ε8(n, j)+ b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)|η ′(θ j
n )|dx
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We can write the last term of the last side of this inequality as

(5.19)

b(k)
α

∫
Ω

(a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)

×(∇Tk(un)−∇Tk(v j)χ
s
j)|η(θ

j
n )|dx

+
b(k)

α

∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j)(∇Tk(un)−∇Tk(v j)χ

s
j))|η(θ j

n )|dx

−b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un) ·∇Tk(v j)χ
s
j |η(θ j

n )|dx,

we argue as above to show that

∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) · (∇Tk(un)−∇Tk(v j)χ

s
j))|η(θ j

n )|dx = ε8(n, j)

and

b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un) ·∇Tk(v j)χ
s
j |η(θ j

n )|dx = ε9(n, j)

then

|
∫
{|un|≤k}

gn(x,un,∇un) ·∇z j
n,m dx|

≤ b(k)
α

∫
Ω

(a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)

×(∇Tk(un)−∇Tk(v j)χ
s
j)|η(θ j

n )|dx+ ε10(n, j)

Combining this with (5.12) and (5.19), we obtain

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)] · [∇Tk(un)−∇Tk(v j)χ

s
j)]

×(η ′(θ j
n )− b(k)

α
|η(θ

j
n )|)dx≤ ε11(n, j)+

∫
Ω\Ωs

lk ·∇Tk(u)dx+η(2k)
∫
{|un|≥m}

| fn|dx,

and by using (5.10) we deduce that

(5.20)∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)] · [∇Tk(un)−∇Tk(v j)χ

s
j)]

×(η ′(θ j
n )− b(k)

α
|η(θ

j
n )|)dx≤ 2ε11(n, j)+2

∫
Ω\Ωs

lk ·∇Tk(u)dx+2η(2k)
∫
{|un|≥m}

| fn|dx,
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On the other hand∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)] · [∇Tk(un)−∇Tk(u)χs)]dx

=
∫

Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)] · [∇Tk(un)−∇Tk(v j)χ

s
j)]dx

+
∫

Ω

a(x,Tk(un),∇Tk(un)) · [∇Tk(v j)χ
s
j)−∇Tk(u)χs)]dx

−
∫

Ω

a(x,Tk(un),∇Tk(u)χs) · [∇Tk(un)−∇Tk(u)χs)]dx

+
∫

Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) · [∇Tk(un)−∇Tk(v j)χ

s
j)]dx.

We shall pass to the limit in n and in j in the last three terms of the right-hand side of the above

equality. Similar tools as in (5.13) and (5.19) gives

(5.21)

∫
Ω

a(x,Tk(un),∇Tk(un)) · [∇Tk(v j)χ
s
j)−∇Tk(u)χs)]dx = ε12(n, j)

∫
Ω

a(x,Tk(un),∇Tk(u)χs) · [∇Tk(un)−∇Tk(u)χs)]dx = ε13(n, j)

and

∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) · [∇Tk(un)−∇Tk(v j)χ

s
j)]dx = ε14(n, j),

Which implies that

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)] · [∇Tk(un)−∇Tk(u)χs)]dx

=
∫

Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)] · [∇Tk(un)−∇Tk(v j)χ

s
j)]dx

+ε15(n, j),
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For r ≤ s, one has

0≤
∫

Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)] · [∇Tk(un)−∇Tk(u)]dx

≤
∫

Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)] · [∇Tk(un)−∇Tk(u)]dx

=
∫

Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)] · [∇Tk(un)−∇Tk(u)χs)]dx

≤
∫

Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)] · [∇Tk(un)−∇Tk(u)χs)]dx

=
∫

Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)] · [∇Tk(un)−∇Tk(v j)χ

s
j)]dx

+ε15(n, j)≤ ε16(n, j)+2
∫

Ω\Ωs

lk ·∇Tk(u)dx+2η(2k)
∫
{|un|≥m}

| fn|dx,

This implies that, by passing at first to the limit sup over n and then over j,

0≤ limsup
n→∞

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)] · [∇Tk(un)−∇Tk(u)]dx

≤ 2
∫

Ω\Ωs

lk ·∇Tk(u)dx+2η(2k)
∫
{|un|≥m}

| fn|dx

Letting s and m→ 1 and using the fact that lk ·∇Tk(u) ∈ L1(Ω) we get, since |Ω\Ωs| → 0 and

|{|un| ≥ m}| → 0∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)] · [∇Tk(un)−∇Tk(u)]dx→ 0 as n→ ∞.

As in [14] , we deduce that there exists a subsequence, still denoted by un, such that

(5.22) ∇Tk(un)→ ∇Tk(u) a.e in Ω.

which implies that

(5.23)

a(x,Tk(un),∇Tk(un))⇀ a(x,Tk(u),∇Tk(u)) weakly in (Lψ(Ω))N for

σ(ΠLϕ(Ω),ΠEψ(Ω)), ∀k > 0.
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Step 4 : Modular convergence of the truncations. Going back to the equation (5.20), we can

write

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx≤
∫

Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(v j)χ
s
jdx

+
∫

Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) · [∇Tk(un)−∇Tk(v j)χ

s
j ]dx

≤ 2ε11(n, j)+2
∫

Ω\Ωs

lk ·∇Tk(u)dx+2η(2k)
∫
{|un|≥m}

| fn|dx,

then, by using (5.21), we have∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx≤ ε17(n, j)+
∫

Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(v j)χ
s
jdx

+2
∫

Ω\Ωs

lk ·∇Tk(u)dx+2η(2k)
∫
{|un|≥m}

| fn|dx,

Passing to the limit sup over n in both sides of this inequality yields

limsup
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx≤ lim
n→∞

ε17(n, j)+
∫

Ω

a(x,Tk(u),∇Tk(u)) ·∇Tk(v j)χ
s
jdx

+2
∫

Ω\Ωs

lk ·∇Tk(u)dx+2µ(2k)
∫
{|u|≥m}

| fn|dx,

when j→ ∞, we obtain

limsup
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx≤
∫

Ω

a(x,Tk(u),∇Tk(u)) ·∇Tk(u)χsdx

+2
∫

Ω\Ωs

lk ·∇Tk(u)dx+2µ(2k)
∫
{|u|≥m}

| f |dx,

Letting s and m→ ∞ gives

limsup
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx≤
∫

Ω

a(x,Tk(u),∇Tk(u)) ·∇Tk(u)dx,

then by using Fatou’s Lemma we have∫
Ω

a(x,Tk(u),∇Tk(u)) ·∇Tk(u)dx≤ liminf
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx,
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consequently

lim
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ·∇Tk(un)dx =
∫

Ω

a(x,Tk(u),∇Tk(u)) ·∇Tk(u)dx,

and, by using Lemma 3.6, we conclude that

(5.24) a(x,Tk(un),∇Tk(un)) ·∇Tk(un)→ a(x,Tk(u),∇Tk(u)) ·∇Tk(u) in L1(Ω).,

The convexity of the Musielak-Orlicz function ϕ and (9) allow us to get

ϕ(
|∇Tk(un)−∇Tk(u)|

2
) ≤ 1

2α
a(x,Tk(un),∇Tk(un)) ·∇Tk(un)

+
1

2α
a(x,Tk(u),∇Tk(u)) ·∇Tk(u),

and by (5.24) we obtain

lim
|E|→0

sup
n

∫
Ω

ϕ(
|∇Tk(un)−∇Tk(u)|

2
)dx = 0

which implies, by using Vitali’s theorem, that

Tk(un)→ Tk(u) in W 1
0 Lϕ(Ω) for the modular convergence ∀k > 0

Step 5 : Equi-integrability of the non-linearities. We shall prove that Hn(x,un,∇un) →

H(x,u,∇u) strongly in L1(Ω) by using Vitali’s theorem. Thanks to (5.22) we have

Hn(x,un,∇un)→ H(x,u,∇u) a.e inΩ , so it suffices to prove that Hn(x,un,∇un) is uniformly

equi-integrable in Ω.

Let E ⊂Ω be a measurable subset of Ω. We have for any m > 1,

∫
E
|Hn(x,un,∇un)|dx =

∫
E∩{|un|≤m}

|Hn(x,un,∇un)|dx+
∫

E∩{|un|>m}
|Hn(x,un,∇un)|dx

Taking

T1(un−Tm−1(un)) =


0 if |un| ≤ m−1

sgn(un) if |un|> m

un− (m−1)sgn(un) if m−1≤ |un| ≤ m.
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as test function in (5.2), gives

∫
{m−1≤|un|≤m}

a(x,un,∇un) ·∇ndx+
∫
{|un|>m−1}

Hn(x,un,∇un)T1(un−Tm−1(un))dx

=
∫
{|un|>m−1}

fnT1(un−Tm−1(un))dx+
∫
{m−1≤|un|≤m}

φ(Tn(un)) ·∇undx+
∫
{m−1≤|un|≤m}

Fn ·∇undx.

consequently ∫
{|un|>m−1}

|Hn(x,un,∇un)|dx≤
∫
{|un|>m−1}

| fn|dx

Let ε > 0, there exists m = m(ε)> 1 such that

∫
E∩{|un|>m}

|Hn(x,un,∇un)|dx≤ ε

2
, ∀n

On the other hand∫
E∩{|un|≤m}

|Hn(x,un,∇un)|dx ≤
∫

E
|Hn(x,Tm(un),∇Tm(un)|dx

≤ b(m)
∫

E
(d(x)+ϕ(x, |∇Tm(un)|)dx

≤ b(m)

α

∫
E

a(x,Tm(un),∇Tm(un)) ·∇Tm(un)dx

+b(m)
∫

E
d(x)dx,

By virtue of the strong convergence (5.24) and the fact that d ∈ L1(Ω), there exists ν > 0 such

that

|E|< ν implies
∫

E∩{|un|≤m}
|Hn(x,un,∇un)|dx≤ ε

2
, ∀n

So that

|E|< ν implies
∫

E
|Hn(x,un,∇un)|dx≤ ε, ∀n

which shows that Hn(x,un,∇un) is uniformly equi-integrable in Ω. By Vitali’s theorem, we

conclude that H(x,un,∇un) ∈ L1(Ω)

(5.25) Hn(x,un,∇un)→ H(x,u,∇u) in L1(Ω).,
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Step 6 : Passage to the limit. Turning to the inequality (5.17), we have for the first term∫
{m≤|un|≤m+1}

a(x,un,∇un) ·∇undx =
∫

Ω

a(x,un,∇un) · (∇Tm+1(un)−∇Tm(un))dx

=
∫

Ω

a(x,Tm+1(un),∇Tm+1(un)) ·∇Tm+1(un))dx

−
∫

Ω

a(x,Tm(un),∇Tm(un)) ·∇Tm(un)dx.

then by (5.24) we obtain

lim
n→∞

∫
{m≤|un|≤m+1}

a(x,un,∇un) ·∇undx =
∫

Ω

a(x,Tm+1(un),∇Tm+1(un)) ·∇Tm+1(un)dx

−
∫

Ω

a(x),∇Tm(un)) ·∇Tm(un)dx

=
∫

Ω

a(x,u,∇u) · (∇Tm+1(u)−∇Tm(u))dx

=
∫
{m≤|u|≤m+1}

a(x,u,∇u) ·∇udx.

Consequently, by letting n to infinity in (5.17) we get∫
{m≤|u|≤m+1}

a(x,u,∇u) ·∇udx≤
∫
{|u|≥m}

| f |dx.

we take m→ ∞, we obtain

(5.26) lim
m→∞

∫
{m≤|u|≤m+1}

a(x,u,∇u) ·∇udx = 0.

Now, from (5.24) and Lemma 3.6 we deduce that

(5.27) a(x,un,∇un) ·∇un→ a(x,u,∇u) ·∇u in L1(Ω)..

Let h ∈C1
c (IR) and θ ∈ D(Ω). Taking h(un)θ as test function in (5.2), we get

(5.28)∫
Ω

a(x,un,∇un) ·∇unh′(un)θ dx+
∫

Ω

a(x,un,∇un) ·∇h(un)θ dx+
∫

Ω

Hn(x,un,∇un)h(un)θ dx

=
∫

Ω

fnh(un)θ dx+
∫

Ω

φn(un) ·∇(h(un)θ)dx+
∫

Ω

F ·∇(h(un)θ)dx

Since h and h′ have compact support in IR there exists ε such that supph ⊂ [−ε,ε] and

supph′ ⊂ [−ε,ε] then for n > ε we can write

φn(t)h(t)) = φ(Tn(t))h(t) = φ(Tε(t))h(t)

φn(t)h′(t)) = φ(Tn(t))h′(t) = φ(Tε(t))h′(t)
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Moreover, the functions φh and φh′ belong to (C0(IR)∩L∞(IR))N Since un ∈W 1
0 Lϕ(Ω) there

exists two positive constants µ1,µ2 such that∫
Ω

ϕ(x,
|∇un|

µ1
)dx≤ µ2

Let β be a positive constant such that ‖h(un)∇θ‖∞ ≤ β and ‖h′(un)θ‖∞ ≤ β For δ large

enough, we have∫
Ω

ϕ(x,
|∇(h(un)θ)|

δ
)dx ≤

∫
Ω

ϕ(x,
|h(un)∇θ |+ |h′(un)θ ||∇un|

δ
)dx

≤
∫

Ω

ϕ(x,
β + β µ1|∇un|

µ1

δ
)dx

≤
∫

Ω

ϕ(x,
β

δ
)dx+

β µ1

δ

∫
Ω

ϕ(x,
∇un|
µ1

)dx

≤
∫

Ω

ϕ(x,1)dx+
β µ1µ2

δ
≤C

which implies that h(un)θ) is bounded in W 1
0 Lϕ(Ω) and then we deduce that

(5.29) h(un)θ ⇀ h(u)θ weakly in W 1
0 Lϕ(Ω) for σ(ΠLϕ(Ω),ΠEψ(Ω)).

On the other hand, for any measurable subset E of Ω we have

‖φ(Tε(un)χE‖ψ = sup
‖v‖ϕ≤1

|
∫

E
φ(Tε(un))vdx|

≤ cε sup
‖v‖ϕ≤1

‖χE‖ψ‖v‖ϕdx

≤ cε

1
M−1 1

|E|
dx

where cε = max
|t|≤ε

φ(t) and M is the N-function defined by M = sup
x∈Ω

ψ(x, t) then

lim
|E|→∞

sup
n
‖φ(Tε(un)χE‖ψ = 0



28 MOHAMMED AL-HAWMI, MUSTAFA AL-HASISI

consequently from (5.9) and by using [ [22], Lemma 11.2] we obtain

(5.30) φ(Tε(un))→ φ(Tε(u)) strongly in (Eψ(Ω))N

It follows that by (5.29) and (5.30)∫
Ω

φn(un) ·∇(h(un)θ)dx→
∫

Ω

φ(u) ·∇(h(u)θ)dx as n→ ∞

and ∫
Ω

Fn ·∇(h(un)θ)dx→
∫

Ω

F ·∇(h(u)θ)dx as n→ ∞

For the first term of (5.28), we have

|a(x,un,∇un) ·∇unh′(un)θ | ≤ βa(x,un,∇un) ·∇un

So, by using Vitali’s theorem and (5.27) we get

∫
Ω

a(x,un,∇un) ·∇un h′(un)θ dx→
∫

Ω

a(x,u,∇u) ·∇u h′(u)θ dx

Concerning the second term of (5.28), we have

h(un)∇θ → h(u)∇θ strongly in (Eϕ(Ω))N

and

a(x,un,∇un)⇀ a(x,u,∇u) weakly in (Lψ(Ω))N for σ(ΠLψ(Ω),ΠEϕ(Ω)).

then ∫
Ω

a(x,un,∇un) ·∇θ h(un)dx→
∫

Ω

a(x,u,∇u) ·∇θ h(u)dx

Since h(un)θ → h(u)θ weakly in L∞(Ω))N for σ∗(L∞(Ω),L1(Ω)) and by using (5.24), we

have

∫
Ω

Hn(x,un,∇un)h(un)θ dx→
∫

Ω

H(x,u,∇u)h(u)θ dx

and ∫
Ω

fn h(un)θ dx→
∫

Ω

f h(u)θ dx
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Finally, we can easily pass to the limit in each term of (5.28) and obtain∫
Ω

a(x,u,∇u) · [h′(u)θ∇u+h(u)∇θ ]dx+
∫

Ω

H(x,u,∇u)h(u)θ dx =
∫

Ω

f h(u)θ dx

+
∫

Ω

φ(u) · [h′(u)θ∇u+h(u)∇θ ]dx+
∫

Ω

F · [h′(u)θ∇u+h(u)∇θ ]dx,

which completes the proof of the Theorem 5.1.
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