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1. INTRODUCTION

Adel.M.AL.Odhari [1] introduced the concept of Infra topological spaces. In 1970, Levine

[4] initiated the notion of generalized closed set. The concept of generalization of closed map-

ping in topological spaces was introduced by Noiri [6] in 1973. In 1996, D. Andrijevic [2]

introduced and studied the class of b-open sets. In 1994, associated topologies of generalized

α-closed sets and α-generalized closed sets was introduced by Maki [5]. A.Al-Omari and

M.S.M. Naorami [8] made an analytical study and gave the idea of generalized b-closed sets in

topological spaces. Later the view of of generalized #α-closed sets were set forth by K. Nono
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[7] in the year 2004. Infra generalized b-closed sets was introduced by K. Vaiyomathi and F.

Nirmala Irudayam [10]in 2017. A new class of genralized continuous mapping was introduced

by K. Balachandran, P. Sundram and H. Maki [3] in 1991. Infra generalized b-continuous func-

tions was derived by Vaiyomathi [11] in 2017. In this paper, a new form of Infra g#α-closed

sets, Infra g#α-continuous functions and Infra g#α-irresolute mappings are introduced and ex-

plored some of their properties.

2. PRELIMINARIES

Throughout this paper, (X,τiX )(or X) represent a Infra topological space on which no separa-

tion axioms are assumed unless otherwise mentioned. For a subset A of a space X, icp(A) and

iip(A) denote the Infra closure point of A and the Infra interior point of A and also icpα (A),

icpb(A) denote iαcp(A), ibcp(A) respectively.

The following recalls requisite definitions in Infra topological spaces that will be necessitated

in the sequel of our work.

Definition 2.1. [1]Let X be any arbitrary set. An Infra topological space on X is a collection

τiX subsets of X such that the following axioms are satisfying:

(1) φ , X ∈ τiX .

(2) The intersection of the elements of any sub collecction of τiX in X. Terminology, the

ordered pair (X,τiX ) is called Infra-topological space. We simply say X is an Infra

space.

Definition 2.2. [1]Let (X,τiX ) be an infra-topological space and A ⊂ X. A is called an infra

open set (ios) if A ⊂ τiX .

Definition 2.3. [1]Let (X,τiX ) be an infra topological space. A subset B ⊂ X is called infra-

closed set (ics) in X if X-B is infra-open set in X.

Definition 2.4. [1]Let (X,τiX ) be an infra topological space and A⊂ X. The Infra Closure Point

(ICP) of A is a set denoted by icp(A) and given by : icp(A)= ∩ Bi:A⊂Bi, X −Bi∈ τiX}.(i.e)

icp(A) is the intersection of all infra closed set containing the set A.
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Definition 2.5. [1]Let (X,τiX ) be an infra topological space and A ⊂ X. The Infra Interior Point

(IIP) of A is a set denoted by iip(A) and given by: iip(A) =∪{Oi : Oi⊂ A, Oi ∈ τiX} (i.e) iip(A)

is the union of all infra open set contained in the set A.

Definition 2.6. [9]Let (X,τiX ) be an infra topological space. A is called infra semi-open if A ⊂

icp(iip(A)) and infra semi-closed set if iip(icp(A))⊆ A.

Definition 2.7. [9]Let (X,τiX ) be an infra topological space. A is called infra pre-open if A ⊂

iip(icp(A)) and infra pre-closed set if icp(iip(A))⊆ A.

Definition 2.8. [9]Let (X,τiX ) be an infra topological space. A is called infra α-open if A ⊂

iip(icp(iip)(A)) and infra α-closed set if icp(iip(icp)(A))⊆ A.

Definition 2.9. [9]Let (X,τiX ) be an infra topological space. A is called infra β -open if A ⊂

icp(iip(icp)(A)) and infra β -closed set if iip(icp(iip)(A))⊆ A.

Definition 2.10. [10]Let (X,τiX ) be an infra topological space. A is called infra b-open if A ⊂

iip(icp(A)) ∪ icp(iip(A)) and infra b-closed set if iip(icp(A))∪icp

(iip(A))⊆ A.

Definition 2.11. A subset A of a space (X,τ) is called

(1) a infra generalized- closed set (briefly ig-closed) [10] if icp(A) ⊆ U whenever A ⊆ U

and U is infra open.

(2) a infra α generalized- closed set (briefly iαg-closed) if icpα(A) ⊆ U whenever A ⊆ U

and U is infra semi- open.

(3) a infra generalized semi- closed set (briefly igs-closed) [10] if iscp(A) ⊆ U whenever A

⊆ U and U is infra open.

(4) an infra α generalized- closed set (briefly iαg-closed) [10] if iαcp(A) ⊆ U whenever A

⊆ U and U is infra open.

(5) an infra generalized α- closed set (briefly igα-closed) [10] if iαcp(A) ⊆ U whenever A

⊆ U and U is infra α- open.

(6) a infra generalized pre- closed set (briefly igp-closed) [10] if ipcp(A) ⊆ U whenever A

⊆ U and U is infra open.
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(7) a infra generalized β - closed set (briefly igβ - closed) [10] if iiβcp(A) ⊆ U whenever A

⊆ U and U is infra open.

(8) a infra generalized b- closed set (briefly igb- closed) [10] if icpb(A) ⊆ U whenever A ⊆

U and U is infra open.

(9) a infra generalized sp- closed set (briefly igsp- closed) [10] if ispcp(A) ⊆ U whenever A

⊆ U and U is infra open.

(10) a infra generalized ∗b- closed set (briefly ig∗b- closed) [10] if icpb(A) ⊆ U whenever A

⊆ U and U is infra g- open.

Definition 2.12. A subset A of a space (X,τiX ) is called

(1) Infra generalized- continuous[11] if f−1(V ) is Infra generalized- closed in X, for every

Infra closed set V of Y.

(2) Infra αgeneralized- continuous[11] if f−1(V ) is Infra αgenerlaized- closed in X, for

every Infra closed set V of Y.

(3) Infra generalized b- continuous[11] if f−1(V ) is Infra generalized b- closed in X, for

every Infra closed set V of Y.

(4) Infra generalized p- continuous[11] if f−1(V ) is Infra generalized p- closed in X, for

every Infra closed set V of Y.

(5) Infra generalized s- continuous[11] if f−1(V ) is Infra generalized s- closed in X, for

every Infra closed set V of Y.

(6) Infra generalized β - continuous[11] if f−1(V ) is Infra generalized β - closed in X, for

every Infra closed set V of Y.

(7) Infra generalized sp- continuous[11] if f−1(V ) is Infra generalized sp- closed in X, for

every Infra closed set V of Y.

(8) Infra generalized ∗b- continuous[11] if f−1(V ) is Infra generalized ∗b- closed in X, for

every Infra closed set V of Y.

Definition 2.13. A subset A of a space (X,τiX ) is called

(1) Infra generalized- irresolute[11] if f−1(V ) is Infra generalized- closed in X, for every

Infra generalized- closed set V of Y.
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(2) Infra αgeneralized- irresolute[11] if f−1(V ) is Infra αgenerlaized- closed in X, for

every Infra αgenerlaized- closed set V of Y.

(3) Infra generalized p- irresolute[11] if f−1(V ) is Infra generalized p- closed in X, for

every Infra generalized p- closed set V of Y.

(4) Infra generalized b- irresolute[11] if f−1(V ) is Infra generalized b- closed in X, for

every Infra generalized b- closed set V of Y.

(5) Infra generalized s- irresolute[11] if f−1(V ) is Infra generalized s- closed in X, for every

Infra generalized s- closed set V of Y.

(6) Infra generalized β - irresolute[11] if f−1(V ) is Infra generalized β - closed in X, for

every Infra generalized β - closed set V of Y.

(7) Infra generalized sp- irresolute[11] if f−1(V ) is Infra generalized sp- closed in X, for

every Infra generalized sp- closed set V of Y.

(8) Infra generalized ∗b- irresolute[11] if f−1(V ) is Infra generalized ∗b- closed in X, for

every Infra generalized ∗b- closed set V of Y.

3. CHARACTERISTICS OF INFRA GENERALIZED # α -CLOSED SETS IN INFRA TOPO-

LOGICAL SPACES

In this section, we introduce the notion of Infra g# α-closed sets and study some of its basic

properties.

Definition 3.1. Let (X,τiX ) be a Infra topological space. A subset A of X is called an Infra

generalized # α- closed set (briefly ig#α- closed) if icpα(A) ⊆ U whenever A ⊆ U and U is

Infra g- open.

Theorem 3.2. Every Infra-closed set is Infra g-closed set.

Proof: Let A be a Infra-closed set in X. Let U be Infra open set, such that A ⊆U. Since A is

Infra closed, icp(A) = A ⊆U. Therefore icp(A) ⊆U. Hence A is Infra g-closed set in X.

Remark 3.3. The converse of the above theorem need not be true as seen from the following

example.
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Example 3.4. Let X= {a,b,c,d} with the topology τ = {X ,φ ,{a},{d}}. Let A = {b}. Here A is

Infra g-closed set but not Infra-closed set of (X,τiX ).

Theorem 3.5. Every Infra-closed set is Infra g#α- closed set.

Proof: Let A be a Infra-closed set in X. Let U be Infra g- open set, such that A⊆U. Since A is

Infra closed, icpα (A) ⊆ icp(A)⊆U. Therefore icpα (A)⊆U. Hence A is Infra g#α- closed set in

X.

Remark 3.6. The converse of the above theorem need not be true as seen from the following

example.

Example 3.7. Let X= {a,b,c,d} with the topology τ = {X ,φ ,{a},{a,b},{a,d}}. Let A = {b}.

Here A is Infra g#α- closed set but not a Infra-closed set of (X,τiX ).

Theorem 3.8. Every Infra α-closed set is Infra g#α- closed set.

Proof: Let A be a Infra α-closed set in X. Let U be Infra g- open set, such that A⊆U. Since A

is Infra α-closed set. We have, icpα(A) = A ⊆U. Then icpα(A) ⊆U. Hence A is Infra g#α-

closed set in X.

Remark 3.9. The converse of the above theorem need not be true as seen from the following

example.

Example 3.10. Let X= {a,b,c,d} with the topology τ = {X ,φ ,{a},{a,b,d}}. Let A = {a,b,c}.

Here A is Infra g#α- closed set but not a Infra α-closed set of (X,τiX ).

Theorem 3.11. Every Infra g#α-closed set is Infra gs-closed set.

Proof: Let A be a Infra g#α-closed set in X. Let U be Infra open set, such that A ⊆U. Since

every Infra open set is Infra g-open and A is Infra g#α-closed, we have, iscp(A)⊆ icpα(A)⊆U.

Then iscp(A)⊆U. Hence A is Infra gs-closed set in X.

Remark 3.12. The converse of the above theorem need not be true as seen from the following

example.

Example 3.13. Let X = {a,b,c,d} with the topology τ = {X, φ , {a},{a,b}, {a,d}}. Let

A={a,b,d}. Here A is Infra gs-closed set but not a Infra g#α-closed set of (X,τiX ).
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Theorem 3.14. Every Infra g#α-closed set is Infra gp-closed set.

Proof: Let A be a Infra g#α-closed set in X. Let U be Infra open set, such that A ⊆U. Since

every Infra open set is Infra g-open and A is Infra g#α-closed, we have, picp(A)⊆ icpα(A)⊆U.

Then picp(A)⊆U. Hence A is Infra gp-closed set in X.

Remark 3.15. The converse of the above theorem need not be true as seen from the following

example.

Example 3.16. Let X = {a,b,c,d} with the topology τ = {X, φ , {a},{d}}. Let A={a,c,d}. Here

A is Infra gp-closed set but not a Infra g#α-closed set of (X,τiX ).

Theorem 3.17. Every Infra g#α-closed set is Infra αg-closed set.

Proof: Let A be a Infra g#α-closed set in X. Let U be Infra open set, such that A ⊆U. Since

every Infra open set is Infra g-open and A is Infra g#α-closed, we have, icpα(A) = A ⊆ U.

Therefore, icpα(A)⊆U. Hence A is Infra αg-closed set in X.

Remark 3.18. The converse of the above theorem need not be true as seen from the following

example.

Example 3.19. Let X = {a,b,c,d} with the topology τ = {X, φ , {b},{a,b},{b,d}}. Let

A={a,b,d}. Here A is Infra αg- closed set but not a Infra g#α-closed set of (X,τiX ).

Theorem 3.20. Every Infra g#α-closed set is Infra gβ -closed set.

Proof: Let A be a Infra g#α-closed set in X. Let U be Infra open set, such that A ⊆U. Since

every Infra open set is Infra g-open and A is Infra g#α-closed, we have, β icp(A)⊆ icpα(A)⊆U.

Then β icp(A) ⊆U. Hence A is Infra gβ -closed set in X.

Remark 3.21. The converse of the above theorem need not be true as seen from the following

example.

Example 3.22. Let X = {a,b,c} with the topology τ = {X, φ , {a},{b}}. Let A={a,b}. Here A

is Infra gβ -closed set but not a Infra g#α-closed set of (X,τiX ).

Theorem 3.23. Every Infra g#α-closed set is Infra gb-closed set.

Proof: Let A be a Infra g#α-closed set in X. Let U be Infra open set, such that A ⊆U. Since
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every Infra open set is Infra g-open and A is Infra g#α-closed, we have, icpb(A) ⊆ icpα ⊆U.

Then icpb(A)⊆U. Hence A is Infra gb-closed set in X.

Remark 3.24. The converse of the above theorem need not be true as seen from the following

example.

Example 3.25. Let X = {a,b,c} with the topology τ = {X, φ , {b},{c}, {a,b}}. Let A={b,c}.

Here A is Infra gb-closed set but not a Infra g#α-closed set of (X,τiX ).

Theorem 3.26. Every Infra g#α-closed set is Infra g∗b-closed set.

Proof: Let A be a Infra g#α-closed set in X. Let U be Infra g-open set, such that A⊆U. Since

A is Infra g#α-closed, we have, icpb(A) ⊆ icpα ⊆ U. Then icpb(A) ⊆ U. Hence A is Infra

g∗b-closed set in X.

Remark 3.27. The converse of the above theorem need not be true as seen from the following

example.

Example 3.28. Let X = {a,b,c} with the topology τ = {X, φ , {b},{c}, {a,c}}. Let A={b}.

Here A is Infra g∗b-closed set but not a Infra g#α-closed set of (X,τiX ).

Theorem 3.29. Every Infra g#α-closed set is Infra gsp-closed set.

Proof: Let A be a Infra g#α-closed set in X. Let U be Infra open set, such that A ⊆U. Since

every Infra open set is Infra g-open and A is Infra g#α-closed, we have, β icp(A)⊆ icpα(A)⊆U.

Then β icp(A) ⊆U. Hence A is Infra gsp-closed set in X.

Remark 3.30. The converse of the above theorem need not be true as seen from the following

example.

Example 3.31. Let X = {a,b,c} with the topology τ = {X, φ , {a},{b}, {b,c}}. Let A={a,b}.

Here A is Infra gsp-closed set but not a Infra g#α-closed set of (X,τiX ).

Theorem 3.32. Let A ⊆ X. If A is Infra g#α-closed in (X,τiX ), then icpα(A) - A contains no

non-empty Infra g-closed set.

Proof: Let F be any Infra g-closed set such that F ⊆ icpα(A)−A. Then A⊆ X −F and X −F
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is Infra g-open in (X, τ). Since A is Infra g#α-closed in X, icpα(A) ⊆ X −F, therefore F ⊆

X− icpα(A). Thus F ⊆ (icpα(A)−A)∩ (X− icpα(A)) = φ .

Theorem 3.33. Let A be any Infra g#α-closed set in (X,τiX ). If A⊆ B⊆ icpα(A), then B is also

a Infra g#α-closed set.

Proof: Let B ⊆U where U is Infra g#α-open (X, τ). Then A ⊆U. Also since A is Infra g#α-

closed, icpα(A)⊆U. Since B⊆ icpα(A), icpα(B)⊆ icpα(A)⊆U. This implies, icpα(B)⊆U.

Thus B is a Infra g#α-closed set.

Theorem 3.34. If A and B are Infra g#α-closed, then A∩B is Infra g#α-closed set.

Proof: Given that A and B are Infra g#α-closed sets in X. Let A∩B ⊆ U, U is Infra g-open set

in X. Since A is Infra g#α-closed, icpα(A)⊆U, whenever A⊆U, U is Infra g-open in X. Since

B is Infra g#α-closed, icpα(B)⊆U, whenever B⊆U, U is Infra g#α-open in X. By the fact[9],

icpα(A∩B) = icpα(A)∩ icpα(B). It follows that icpα(A∩B) ⊆U, whenever A∩B ⊆U, U is

Infra g-open in X. Hence A∩B is Infra g#α-closed.

Example 3.35. Let X = {a, b, c, d} with the topology τ = {X, φ , {b}, {a, b},{b,d}}. Let

A={a,d}, B={c,d} are Infra g#α- closed set. Then A ∩ B = {d} is also an Infra g#α-closed set.

Theorem 3.36. If A⊆ Y ⊆ X and A is Infra g#α-closed in X then A is Infrag#α-closed relative

to Y.

Proof: Given that A ⊆ Y ⊆ X and A is a Infra g#α-closed set in X. We have to prove that A

is Infra g#α-closed set relative to Y. Let us assume that A ⊆ Y ∩U, where U is Infra g-open

in X. Since, A is Infra g#α-closed set, A ⊆U, which implies icpα(A) ⊆U. From this, we get

Y ∩ icpα(A) ⊆ Y ∩U. Hence, A is Infra g#α-closed set relative to Y.

4. PROPERTIES OF INFRA g#α -CONTINUOUS FUNCTIONS

In this section we set forth the concept of Infra g#α-continuous function. The relationship

between Infra g#α- continuous function and other defined Infra continuous functions are ex-

plored.
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Definition 4.1. Let f: (X,τiX )→ (Y,τiX ) be a Infra topological space X into a Infra topological

space Y is called g#α-continuous, if the inverse image of every Infra closed set in Y is Infra

g#α- closed set in X.

Theorem 4.2. If a map f:(X,τiX )→ (Y,τiX ) from a Infra topological space X into a Infra topo-

logical space Y is Infra continuous, then it is Infra g#α-continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra continuous. Let F be any Infra closed set in Y. Then the

inverse image f−1(F) is Infra closed in X. Since, every Infra closed set is Infra g#α- closed set,

thus f−1(F) is Infra g#α- closed in X. Hence f is Infra g#α- continuous.

Remark 4.3. The converse of the above theorem need not be true as seen from the following

example.

Example 4.4. Let X = Y = {a, b, c, d} with the Infra topologies τ = {X, φ , {a}, {a,b}, {a,d}}

and σ = {Y, φ , {a}, {a,b,d}}, with the identity mapping. Then for the closed set F = {c} in Y,

f−1({c}) = {c} implies f is not Infra continuous, since f−1({c}) is not Infra closed in X.

Theorem 4.5. If a map f:(X,τiX )→ (Y,τiX ) from a Infra topological space X into a Infra topo-

logical space Y is Infra continuous, then it is Infra g-continuous.

Proof: Let f: (X,τiX ) → (Y,τiX ) be Infra continuous. Let F be any Infra closed set in Y. Then

the inverse image f−1(F) is Infra closed in X. Since, every Infra closed set is Infra g-closed set,

thus f−1(F) is Infra g-closed in X. Hence f is Infra g-continuous.

Remark 4.6. The converse of the above theorem need not be true as seen from the following

example.

Example 4.7. Let X = Y = {a, b, c, d} with the Infra topologies τ = {X, φ , {a}, {a,b}, {a,d}}

and σ = {Y, φ , {a}, {d}}, with the identity mapping. Then for the closed set F = {a,b,c} in

Y, f−1({a,b,c}) = {a,b,c} implies f is not Infra continuous, since f−1({a,b,c}) is not Infra

closed in X.

Theorem 4.8. If a map f:(X,τiX )→ (Y,τiX ) from a Infra topological space X into a Infra topo-

logical space Y is Infra α-continuous, then it is Infra g#α-continuous.
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Proof: Let f: (X,τiX ) → (Y,τiX ) be Infra α-continuous. Let F be any Infra α-closed set in Y.

Then the inverse image f−1(F) is Infra α-closed in X. Since, every Infra α-closed set is Infra

g#α- closed, thus f−1(F) is Infra g#α- closed in X. Hence f is Infra g#α- continuous.

Remark 4.9. The converse of the above theorem need not be true as seen from the following

example.

Example 4.10. Let X = Y = {a, b, c, d} with the Infra topologies τ = {X, φ , {a}, {a,b}, {a,d}}

and σ = {Y, φ , {a}, {d}}, with the mapping defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d.

For the closed set F = {a,b,c} in Y, f−1({a,b,c}) = {a,b,c} implies f is not Infra α-continuous,

since f−1({a,b,c}) is not Infra α-closed in X.

Theorem 4.11. If a map f:(X,τiX ) → (Y,τiX ) from a Infra topological space X into a Infra

topological space Y is Infra g#α-continuous, then it is Infra gs-continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra g#α-continuous. Let F be any Infra g#α-closed set in

Y. Then the inverse image f−1(F) is Infra g#α-closed in X. Since, every Infra g#α-closed set is

Infra gs-closed, thus f−1(F) is Infra gs-closed in X. Hence f is Infra gs-continuous.

Remark 4.12. The converse of the above theorem need not be true as seen from the following

example.

Example 4.13. Let X = Y = {a, b, c, d} with the Infra topologies τ = {X, φ , {a},{d}} and

σ = {Y, φ , {a}, {a,b}, {a,d}}, with the identity mapping. For the closed set F = {c,d} in

Y, f−1({c,d}) = {c,d} implies f is not Infra g#α-continuous, since f−1({c,d}) is not Infra

g#α-closed in X.

Theorem 4.14. If a map f:(X,τiX ) → (Y,τiX ) from a Infra topological space X into a Infra

topological space Y is Infra #gαb-continuous, then it is Infra gp-continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra g#α-continuous. Let F be any Infra g#α-closed set in

Y. Then the inverse image f−1(F) is Infra g#α-closed in X. Since, every Infra g#α-closed set is

Infra gp-closed, thus f−1(F) is Infra gp-closed in X. Hence f is Infra gp-continuous.

Remark 4.15. The converse of the above theorem need not be true as seen from the following

example.
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Example 4.16. Let X = Y = {a, b, c} with the Infra topologies τ = {X, φ , {a}, {b}, {b,c}}

and σ = {Y, φ , {a}, {c}}, with the mapping defined by f(a) = a, f(b) = b, f(c) = c. For the

Infra closed set F = {a,b} in Y, f−1({a,b}) = {a,b} implies f is not Infra g#α-continuous, since

f−1({a,b}) is not Infra g#α-closed in X.

Theorem 4.17. If a map f:(X,τiX ) → (Y,τiX ) from a Infra topological space X into a Infra

topological space Y is Infra g#α-continuous, then it is Infra αg-continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra g#α-continuous. Let F be any Infra g#α-closed set in

Y. Then the inverse image f−1(F) is Infra g#α-closed in X. Since, every Infra g#α-closed set is

Infra αg-closed, thus f−1(F) is Infra αg-closed in X. Hence f is Infra αg-continuous.

Remark 4.18. The converse of the above theorem need not be true as seen from the following

example.

Example 4.19. Let X = Y = {a, b, c} with the Infra topologies τ = {X, φ , {b}, {c}} and σ =

{Y, φ , {a}, {b}}, with the mapping defined by f(a) = a, f(b) = b, f(c) = c. Then for the closed

set F = {b,c} in Y, f−1({b,c}) = {b,c} implies f is not Infra g#α-continuous, since f−1({b,c})

is not Infra g#α-closed in X.

Theorem 4.20. If a map f:(X,τiX ) → (Y,τiX ) from a Infra topological space X into a Infra

topological space Y is Infra g#α-continuous, then it is Infra gβ -continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra g#α-continuous. Let F be any Infra g#α-closed set in

Y. Then the inverse image f−1(F) is Infra g#α-closed in X. Since, every Infra g#α-closed set is

Infra gβ -closed, thus f−1(F) is Infra gβ -closed in X. Hence f is Infra gβ -continuous.

Remark 4.21. The converse of the above theorem need not be true as seen from the following

example.

Example 4.22. Let X = Y = {a, b, c,d} with the Infra topologies τ = {X, φ , {b}, {a,b}, {b,d}}

and σ = {Y, φ , {a}, {a,b}, {a,d}}, with the mapping defined by f(a) = a, f(b) = b, f(c) = c,

f(d) = d. Then for the closed set F = {b,c} in Y, f−1({b,c}) = {b,c} implies f is not Infra

g#α-continuous, since f−1({b,c}) is not Infra g#α-closed in X.
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Theorem 4.23. If a map f:(X,τiX ) → (Y,τiX ) from a Infra topological space X into a Infra

topological space Y is Infra g#α-continuous, then it is Infra gb-continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra g#α-continuous. Let F be any Infra g#α-closed set in

Y. Then the inverse image f−1(F) is Infra g#α-closed in X. Since, every Infra g#α-closed set is

Infra gb-closed, thus f−1(F) is Infra gb-closed in X. Hence f is Infra gb-continuous.

Remark 4.24. The converse of the above theorem need not be true as seen from the following

example.

Example 4.25. Let X = Y = {a, b, c, d} with the Infra topologies τ = {X, φ , {b}, {a,b}, {b,d}}

and σ = {Y, φ , {a}, {a,b},{a,d}}, with the mapping defined by f(a) = a, f(b) = b, f(c) = c,

f(d) = d. Then for the closed set F = {b,c} in Y, f−1({b,c}) = {b,c} implies f is not Infra

g#α-continuous, since f−1({b,c}) is not Infra g#α-closed in X.

Theorem 4.26. If a map f:(X,τiX ) → (Y,τiX ) from a Infra topological space X into a Infra

topological space Y is Infra g#α-continuous, then it is Infra g∗b-continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra g#α-continuous. Let F be any Infra g#α-closed set in

Y. Then the inverse image f−1(F) is Infra g#α-closed in X. Since, every Infra g#α-closed set is

Infra g∗b-closed, thus f−1(F) is Infra g∗b-closed in X. Hence f is Infra g∗b-continuous.

Remark 4.27. The converse of the above theorem need not be true as seen from the following

example.

Example 4.28. Let X = Y = {a, b, c, d} with the Infra topologies τ = {X, φ , {b}, {a}, {d}}

and σ = {Y, φ , {a}, {a,b},{a,d}}, with the mapping defined by f(a) = a, f(b) = b, f(c) = c,

f(d) = d. Then for the closed set F = {c,d} in Y, f−1({c,d}) = {c,d} implies f is not Infra

g#α-continuous, since f−1({c,d}) is not Infra g#α-closed in X.

Theorem 4.29. If a map f:(X,τiX ) → (Y,τiX ) from a Infra topological space X into a Infra

topological space Y is Infra g#α-continuous, then it is Infra gsp-continuous.

Proof: Let f: (X,τiX )→ (Y,τiX ) be Infra g#α-continuous. Let F be any Infra g#α-closed set in Y.

Then the inverse image f−1(F) is Infra g#α-closed in X. Since, every Infra #gαb-closed set is

Infra gsp-closed, thus f−1(F) is Infra gsp-closed in X. Hence f is Infra gsp-continuous.
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Remark 4.30. The converse of the above theorem need not be true as seen from the following

example.

Example 4.31. Let X = Y = {a, b, c} with the Infra topologies τ = {X, φ , {a}, {c}} and σ =

{Y, φ , {a}, {b}}, with the mapping defined by f(a) = a, f(b) = b, f(c) = c. Then for the closed

set F = {a,c} in Y, f−1({a,c}) = {a,c} implies f is not Infra g#α-continuous, since f−1({a,c})

is not Infra g#α-closed in X.

Theorem 4.32. If a map f: (X,τiX )→ (Y,τiX ) from a Infra topological space X into a Infra

topological space Y, then the following statements are equivalent.

(1) f is Infra g#α-continuous.

(2) The inverse image of each Infra open set in Y is Infra g#α-open in X.

Proof: Assume that f: (X,τiX ) → (Y,τiX ) be Infra g#α-continuous. Let G be Infra open in Y.

Then Gc is Infra closed in Y. Since f is Infra g#α-continuous, f−1(Gc) is Infra g#α-closed in X.

But f−1(Gc) = X - f−1(G). Thus X - f−1(G) is Infra g#α-closed in X and so f−1(G) is Infra

g#α-open in X. Therefore (i) implies (ii).

Conversely assume that the inverse image of each Infra open set in Y is Infra g#α-open in X.

Let F be any Infra closed set in Y. The Fc is Infra open in Y. By assumption, f−1(Fc) is Infra

g#α-open in X. But f−1(Fc) = X - f−1(F). Thus X - f−1(F) is Infra g#α-open in X and so

f−1(F) is Infra g#α-closed in X. Therefore f is Infra g#α- continuous. Hence (ii) implies (i).

Thus (i) and (ii) are equivalent.

Theorem 4.33. If f: (X,τiX )→ (Y,τiX ) and g: (Y,τiX )→ (Z,τiX ) be any two functions, then go f :

(X,τiX )→ (Z,τiX ) is Infra g#α-continuous and f is Infra g#α-continuous.

Proof: Let V be any Infra closed set in Z. Since g is Infra continuous, g−1(V ) is Infra closed in Y

and since f is Infra g#α-continuous, f−1(g−1(V )) is Infra g#α-closed in X. Hence (go f )−1(V )

is Infra g#α-closed in X. Thus go f is Infra g#α-continuous.

5. PROPERTIES OF INFRA g#α -IRRESOULUTE MAPS

In this section we set forth the concept of g#α-irresolute function. The relationship between

Infra g#α- irresolute function and other defined Infra irresolute functions are explored.
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Definition 5.1. Let f: (X,τiX )→ (Y,τiX ) be a Infra topological space X into a Infra topological

space Y is called g#α-irresolute, if the inverse image of every Infra g#α- closed set in Y is Infra

g#α- closed set in X.

Theorem 5.2. A map f: (X,τiX )→ (Y,τiX ) is Infra g#α-irresolute if and only if the inverse image

of every Infra g#α-open set in Y is Infra g#α-open in X.

Proof: Assume that f is Infra g#α-irresolute. Let A be any Infra g#α-open set in Y. Then Ac is

Infra g#α-closed set in Y. Since f is Infra g#α-irresolute, f−1(Ac) is Infra g#α-closed in X. But

f−1(Ac) = X - f−1(A) and so f−1(A) is Infra g#α-open in X. Hence the inverse image of every

Infra g#α-open set in Y is Infra g#α-open set in X.

Conversely, assume that the inverse image of every Infra g#α-open set in Y is Infra g#α-open

in X. Let A be any Infra g#α-closed set in Y. Then Ac is Infra g#α-open in Y. By assumption,

f−1(Ac) is Infra g#α-open in X. But f−1(Ac) = X - f−1(A) and so f−1(A) is Infra g#α-closed

in X. Therefore f is Infra g#α-irresolute.

Theorem 5.3. If a map f: (X,τiX ) → (Y,τiX ) is Infra g#α-irresolute, then it is Infra g#α-

continuous.

Proof: Assume that f is Infra g#α-irresolute. Let F be any Infra closed set in Y. Since every

Infra closed set is Infra g#α- closed, F is Infra g#α-closed in Y. Since f is Infra g#α-irresolute,

f−1(F) is Infra g#α-closed in X. Therefore f is Infra g#α-continuous.

Remark 5.4. The converse of the above theorem need not be true as seen from the following

example.

Example 5.5. Let X = Y = {a, b, c, d} with the Infra topologies τ = {X, φ , {a}, {a,b,d}} and

σ = {Y, φ , {a}, {a,b}, {a,d}}, with the identity mapping. Here f is Infra g#α-continuous. But f

is not Infra g#α-irresolute, since for the closed set F = {a, b} in Y implies, f−1({a,b}) = {a,b}

is not Infra g#α-closed in X.

Theorem 5.6. Let X, Y and Z be any Infra topological spaces. For any Infra g#α-irresolute map

f: (X,τiX ) → (Y,τiX ) and any Infra g#α-continuous map g: (Y,τiX ) → (Z,τiX ) the composition

go f : (X,τiX )→ (Z,τiX ) is Infra g#α-continuous.



7664 J. CHRISTY JENIFER, V. KOKILAVANI

Proof: Let F be any Infra closed set in Z. Since g is Infra g#α-continuous, g−1(F) is Infra

g#α-closed in Y. Since f is Infra g#α-irresolute, f−1(g−1(F)) is Infra g#α-closed in X. But

f−1(g−1(F)) = (go f )−1(F). Therefore go f : (X,τiX )→ (Z,τiX ) is Infra g#α-continuous.
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