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Abstract: Many natural phenomena in physics and engineering can be modeled by linear and nonlinear partial 

differential equations, which are constructed using derivatives of fractional order. The main purpose of this work is 

to facilitate the implementation of space finite-volume and finite-difference schemes to solve fractional convection-

diffusion equation of order 𝛽 ∈ (0,1] without source term along with appropriate initial conditions. The fractional 

derivative is described in Riemann-Liouville sense. The highlight of the proposed methods is to introduce an 

alternative way to discretize the space-fractional derivative utilizing the fractional Grünwald formula. Numerical 

results are provided to examine the accuracy of the proposed scheme and to compare it in different conditions. The 

obtained results show that the proposed techniques are simple, accurate, and applicable to a wide range of space-

fractional models that arise in the natural sciences. 

Keywords: finite volume method; finite difference method; convection-diffusion equation; Riemann-Liouville 

fractional derivative; order of convergence. 
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1. INTRODUCTION 

Fractional computations are a generalization of natural order calculations and have been a 

vital and major branch of mathematics in recent decades. Anyhow, fractional partial differential 

equations (FPDEs) are generalized classical differential equations that have many applications in 

electrical engineering, physics, biology, hydrology, viscoelasticity, financial mathematics, and so 

on, including the fractional diffusion, which represents the anomalous emission of a high-velocity 

particle [1-4]. Recently, many mathematicians and physicists have analyzed and applied partial 

differential equations of fractional order using classical calculus in various fields of science to 

find solutions to various types of real-world problems, including fluid mechanics, chemistry, 

medicine, and engineering. This is due to the tremendous ability of fractional differentiation to 

deal with the complexities found in natural phenomena involving genetic memory and the non-

local characteristic [5-10]. 

Furthermore, several real-world observations in fluid flows, quantum mechanics, signal 

process, fractals, nonlinear fiber optics, neural networks, process identification, elastic materials, 

bifurcation, and polymers are well applied by the partial differential equation of fractional order 

[11-14]. In the literature, there are many local and non-local fractional differential operators, 

including the Riemann-Liouville, Atangana-Baleanu-Caputo, Riesz, Caputo, Katugampola, 

Grünwald, Caputo-Katugampola, and Caputo-Fabrizio [15-21]. Although non-local differential 

operators are more interesting because the long-term effect of physical applications depends on 

nonlocality and memory features, there is a shortage of mathematical tools like chain rule, quotient 

rule, Leibniz rule, and semi-group property. Completely different FPDEs are solved in the 

literature, such as the fractional telegraph model [22], fractional convection-diffusion model [23], 

fractional advection-dispersion model [24], fractional heat- wave-like model [25], fractional 

massive Thirring model [26], Fitzhugh-Nagumo neurons model [27], and wave interaction 

equations [28]. 

Investigation of closed-form solutions of both linear and nonlinear FPDEs is rare. Not much 

work has been done for nonlinear models, and only a few numerical techniques have been 

proposed to solve such FPDEs. The most common numerical methods used to obtain approximate 

analytical solutions for these FPDEs are the Adomian decomposition method, variational iteration 

method, homotopy perturbation method, residual power series method, differential transform 

method, and [29-32]. Numerous numerical strategies are projected for finding the partial 
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differential equations of fractional order, like finite difference technique [33], finite volume 

technique [34], finite element technique [35], reproducing kernel technique [36], and fractional 

sub-equation technique [37]. Furthermore, after the approximation process by any local method 

(finite differences, finite volumes, finite elements etc) the fractional differential equation leads to 

another challenge, due the nonlocal nature of the involved operators. Indeed, the coefficient 

matrices of the associated linear systems are dense and hence a further branch of research has 

started in order to cope with the difficulties related to computational issues, see [38-48] and 

references therein. In this work, we use the finite volume and finite difference discretization for 

space-fractional convection-diffusion equation and compare the results obtained by above-

mentioned methods. Motivated by the preceding works above, this analysis examines the 

application of finite-difference method (FDM) and finite-volume method (FVM) to obtain 

numerical solutions of space fractional-order convection-diffusion equation in terms of Riemann-

Liouville fractional derivative. More specifically, we focus on the space-fractional convection-

diffusion equation of the underlying form: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝜖

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
= 𝑝

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, (𝑥, 𝑡)

∈ [𝑎, 𝑏] × (0, 𝑇),  

(1) 

 

along with the underlying initial condition 

𝑢(𝑥, 0) = 𝑓(𝑥), (2) 
 

where 𝑡 ≥ 0, 𝑥 ∈ [𝑎, 𝑏], 𝜖 and 𝑝 are positive parameters, β is a parameter describing the order 

of space fractional derivative in light of the Riemann-Liouville sense of order 0 < 𝛽 ≤ 1, 𝑓(𝑥) 

is smooth given analytical function of 𝑥 , and 𝑢(𝑥, 𝑡)  is unknown analytic function to be 

determined afterwards. Hereinafter, we assume that the fractional models (1)-(2) fulfill the 

necessary and sufficient conditions of existence and unique solutions. 

The basic motivation of the current work is to investigate and design a novel iterative 

algorithm for generating the numerical solutions of the space-fractional convection-diffusion 

equation by employing the Riemann-Liouville fractional operator. The solution methodology 

relies on constructing the FDM and FVM to gain solutions in a uniform form of a rapidly 

convergent series. Towards this end, it is necessary to construct a numerical foundation and 

equivalently numerical infrastructure. Simultaneously, stability analysis and error estimation are 

discussed. Finally, some numerical experiments are provided to illustrate the great flexibility and 
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reliability of the developed algorithm. The remaining parts of this analysis are formulated as 

follows: In the second section, some basic and elementary definitions of fractional calculus are 

presented. Next, in Section 3, the solutions for the space-fractional convection-diffusion equation 

are presented as well using FDM and FVM. Some numerical experiments are provided in Section 

4 to demonstrate the flexibility, accuracy, and plainness of the present methods. Section 5 is the 

end of this analysis with a brief conclusion. 

 

2. PRELIMINARIES AND BASIC CONCEPTS 

Fractional calculus arises in many branches of chemistry, physics, engineering, and applied 

sciences, including the oceanography, gravity, atmosphere, aerodynamics, fractals, 

electrodynamics, and rheology [49-59]. As effective tools to describe the hereditary properties of 

basic, substances, and processes, they are widely utilized to synthesize and formulate fractional 

evolution systems with priority given for providing a more comprehensive explanation of 

dynamics, chaos, and the pattern of state change over space. In this orientation, there are many 

fractional derivatives in literature, such as the Caputo derivative, Riemann-Liouville derivative, 

Riesz derivative, Grünwald-Letnikov derivative, Caputo-Fabrizio derivative, Feller derivative, 

Atangana-Baleanu-Caputo derivative, and conformable fractional derivative [51-54]. This section 

presents some important preliminaries and definitions, that we need in the rest of the analysis. 

 

Definition 2.1. [51] The Riemann-Liouville integral of fractional order 𝛽 > 0 , 𝐽𝑎
𝛼𝑢(𝑥)  is 

defined as:             

𝐽𝑎
𝛽
𝑢(𝑥) =

1

𝛤(𝛽)
∫ (𝑥 − 𝑡)𝛽−1𝑢(𝑡)𝑑𝑡,
𝑥

𝑎
 provided that 𝑢 ∈ 𝐿1[𝑎, 𝑏].  

For 𝛽 = 0, we have  𝐽𝑎
0𝑢(𝑥) = 𝑢(𝑥) is the identity operator. 

 

Definition 2.2. [51] The Riemann-Liouville fractional derivative of order  𝛽 > 0 is defined as: 

𝒟𝑎
𝛽
𝑢(𝑥) = 𝒟𝑛𝐽𝑎

(𝑛−𝛽)
𝑢(𝑥) =   

1

𝛤(𝑛 − 𝛽)
(
𝑑𝑛

𝑑𝑥𝑛
) [∫

𝑢(𝑡)

(𝑥 − 𝑡)𝛽+1−𝑛
𝑑𝑡

𝑥

𝑎

]. (3) 

 

where 𝑛 is the smallest integer that exceeds 𝛽. 

For 𝛽 = 0, we have 𝒟𝑎
0𝑢(𝑥) = 𝑢(𝑥) is the identity operator.  

For 𝛽 ∈ ℕ, 𝒟𝑎
𝛽
𝑢(𝑥) = 

𝑑𝛽𝑢(𝑥)

𝑑𝑥𝛽
. 
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Definition 2.3. [51] Let 𝛽 > 0, 𝑢 ∈ 𝐶⌈𝛽⌉[𝑎, 𝑏]. Then, 

𝒟̃ 𝑢(𝑥)𝑎
𝛽

= lim
ℎ→0 

1

ℎ𝛽
∑ (−1)𝑘 (

𝛽

𝑘
) 𝑢(𝑥 − 𝑘ℎ),

[
𝑥−𝑎
ℎ
]

𝑘=0

 𝑎 < 𝑥 ≤ 𝑏, (4) 

 

with ℎ =
𝑥−𝑎

𝑁
 is called the Grünwald-Letnikov fractional derivative of order 𝛽 of the function 

𝑢, where 𝑁 is number of uniformly spaced nodes. 

The following theorems show the relation between the Riemann-Liouville fractional 

derivatives and Grünwald-Letnikov fractional derivative. 

 

Theorem 2.1. [51] Let 𝛽 > 0, 𝑛 = ⌈𝛽⌉  and  𝑢 ∈ 𝐶𝑛[𝑎, 𝑏]. Then, 

𝒟̃ 𝑢(𝑥) = 𝒟𝑎
𝛽
𝑢(𝑥)𝑎

𝛽
,  𝑎 < 𝑥 ≤ 𝑏. 

 

Theorem 2.2. [51] Let 𝛽 > 0, and 𝑢 ∈ 𝐶[𝑎, 𝑏]. Then, we have 

𝐽 𝑢(𝑥) = 𝑙𝑖𝑚
ℎ⟶0

ℎ𝛽 ∑ (−1)𝑘 (
−𝛽

   𝑘
) 𝑢(𝑥 − 𝑘ℎ), ℎ =

𝑥 − 𝑎

𝑁
 , 𝑎 < 𝑥 ≤ 𝑏

[
𝑥−𝑎
ℎ
]

𝑘=0

𝑎
𝛽

,  (5) 

 

where (−1)𝑘(−𝛽
𝑘
) =

𝛽(𝛽−1)(𝛽−2)…(𝛽+𝑘−1)

𝑘!
 = 

𝛤(𝛽+𝑘)

𝛤(𝛽)𝛤(𝑘+1)
, 𝑁 is number of uniformly spaced nodes, 

and the function Γ(𝑥)  is defined by Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
. If we define weights 𝑤0

𝛽
= 1,

𝑤1
𝛽
= 𝛽, and 𝑤𝑘

𝛽
= (1 −

(1−𝛽)

𝑘
)𝑤𝑘−1 

𝛽
, 𝑘 = 2,3, …. Then, one can rewrite Eq. (5) as follows, 

𝐽 𝑢(𝑥)𝑎
𝛽

= 𝑙𝑖𝑚
 ℎ→0

 ℎ𝛽  ∑ 𝑤𝑘
𝛽
𝑢(𝑥 − 𝑘ℎ), ℎ =

𝑥 − 𝑎

𝑁
 .

[
𝑥−𝛽
ℎ
]

𝑘=0

 
(6) 

 

 

3. NUMERICAL FV AND FD DISCRETIZATION METHODS 

FDM is the most direct method for discretizing the FPDEs. By thinking about a point in space 

where we take the continuous representation of models and replace them with a set of discrete 

equations, which are called finite difference equations. FDM is usually defined as a normal 

network or regular grid which leads to highly effective solution methods for the problems under 

study. FDM is specified for each dimension, making it easy to scale and increase the elements-
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order for a higher-order resolution. By installing the simulation in a limited domain using a 

uniform grid, efficient implementations are obtained as well even if the associated coefficient 

matrices are dense and hence fast computational methods are needed [38-41]. Unified grids are 

useful for very large-scale simulations on supercomputers typically employed in seismological, 

astrophysical, and meteorological simulations. With the help of FVM, the posed model is divided 

into very small but limited size elements with simple geometric shapes. FVM relies on the fact 

that many physical laws are conservation laws that enter into one cell on one side and need to 

leave the same cell on the other side. By following this idea, a formula is obtained which consists 

of flux conservation and fluid flow systems specified in the averaged sense on cells. In this section, 

the procedure used for the suggested methods is described to obtain solutions of the space-

fractional convection-diffusion equation. It is worth noting here that for each 𝑢0 =

[𝑢0
0, 𝑢1

0, … , 𝑢𝑁
0 ] = [𝑔(𝑥0), 𝑔(𝑥1),… , 𝑔(𝑥𝑁)], there exist a unique vector equation depending by the 

initial condition 𝑢(𝑥, 0) = 𝑔(𝑥),  where 𝑔(𝑥) is analytic smooth function. 

3.1. Finite volume method 

Consider the space-fractional convection-diffusion equation of the underlying form: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝜖

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
= 𝑝

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, (7) 

 

where 𝑡 ≥ 0, 𝑥 ∈ [𝑎, 𝑏],  𝜖  and 𝑝  are positive parameters, 
𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽
 represents the space-

fractional derivative in terms of Riemann-Liouville sense of order 0 < 𝛽 ≤ 1. To begin with, 

using the definition of Riemann-Liouville fractional derivative when 𝛽 ∈ (0,1], we have the 

following: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝜖

𝜕

𝜕𝑥
𝐽𝑎
1−𝛽

𝑢(𝑥, 𝑡) = 𝑝
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, (8) 

 

where 𝐽𝑎
1−𝛽

 is the Riemann-Liouville integral with respect to 𝑥. By letting 𝛼 = 1 − 𝛽, we have 

that 0 ≤ 𝛼 < 1. Consequently, the aforementioned equation can be written as follows: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=
𝜕

𝜕𝑥
[−𝜖𝐽𝑎

𝛼𝑢(𝑥, 𝑡) + 𝑝
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
]. (9) 

 

Now, discretize the finite domain Ω = [𝑎, 𝑏] with 𝑁 + 1 uniformly spaced grid 𝑥𝑖 = 𝑎 + 𝑖ℎ,

𝑖 = 0,1, . . , 𝑁, where ℎ =
𝑏−𝑎

𝑁
   be the space step. Thus, integrating Eq. (9) over the 𝑖𝑡ℎ control 

volume [𝑥𝑖−1/2, 𝑥𝑖+1/2] so that 
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∫
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥 =

𝑥𝑖+1/2

𝑥𝑖−1/2

 ∫
𝜕

𝜕𝑥
[−𝜖𝐽𝑎

𝛼𝑢(𝑥, 𝑡) + 𝑝
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
] 𝑑𝑥

𝑥𝑖+1/2

𝑥𝑖−1/2

. (10) 

 

Divide each side by ℎ, the standard finite volume discretization can be obtained as follows: 

𝑑𝑢̅𝑖(𝑡)

𝑑𝑡
=
𝜖

ℎ
[𝐽𝑎
𝛼𝑢(𝑥𝑖−1/2, 𝑡) – 𝐽𝑎

𝛼𝑢(𝑥𝑖+1/2, 𝑡)]

+
𝑝

ℎ
 [
𝜕𝑢(𝑥𝑖+1/2, 𝑡)

𝜕𝑥
−
𝜕𝑢(𝑥𝑖−1/2, 𝑡)

𝜕𝑥
] . 

(11) 

 

where 𝑢̅𝑖(𝑡) =
1

ℎ
∫ 𝑢(𝑥, 𝑡)𝑑𝑥 
𝑥𝑖+1/2
𝑥𝑖−1/2

 is the control volume averages of 𝑢(𝑥, 𝑡). Anyhow, we can 

use the fractionally-shift Grünwald formula to approximate 𝐽𝑎
𝛼𝑢(𝑥, 𝑡) and the central difference 

formula to approximate the partial derivative 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
. Subsequently, we require the fractional shift 

𝑝 =
1

2
, 

𝐽𝑎
𝛼𝑢(𝑥, 𝑡)|𝑥=𝑥𝑖−1/2 = 𝐽𝑎

𝛼𝑢 (𝑥
𝑖−
1
2
, 𝑡) ≈  ℎ𝛼∑𝑤𝑗

𝛼𝑢(𝑥𝑖−𝑗 , 𝑡),

𝑖

𝑗=0

 (12) 

 

 

𝐽𝑎
𝛼𝑢(𝑥, 𝑡)|𝑥=𝑥𝑖+1/2 = 𝐽𝑎

𝛼𝑢 (𝑥
𝑖+
1
2
, 𝑡) ≈  ℎ𝛼∑𝑤𝑗

𝛼𝑢(𝑥𝑖−𝑗+1, 𝑡),

𝑖+1

𝑗=0

 (13) 

 

where 𝑤0
𝛼 = 1, 𝑤1

𝛼 = 𝛼, and 𝑤𝑗
𝛼 = (1 −

(1−𝛼)

𝑗
)𝑤𝑗−1 

𝛼 , 𝑗 = 2,3, …. 

For  
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
, one can use 

𝜕𝑢(𝑥𝑖 , 𝑡)

𝜕𝑥
=
𝑢(𝑥𝑖+1, 𝑡) − 𝑢(𝑥𝑖−1, 𝑡)

2ℎ
+ 𝒪(ℎ2), (14) 

 

to get that 

𝜕𝑢(𝑥𝑖−1/2, 𝑡)

𝜕𝑥
≈
𝑢(𝑥𝑖+1/2, 𝑡) − 𝑢(𝑥𝑖−3/2, 𝑡)

2ℎ
, (15) 

 

𝜕𝑢(𝑥𝑖+1/2, 𝑡)

𝜕𝑥
≈
𝑢(𝑥𝑖+3/2, 𝑡) − 𝑢(𝑥𝑖−1/2, 𝑡)

2ℎ
. (16) 

 

With the help of the standard averaging scheme 𝑢(𝑥𝑖±1/2, 𝑡) ≈  
[𝑢(𝑥𝑖,𝑡)+𝑢(𝑥𝑖±1,𝑡)]

2
 for the above 

Eqs. (15)-(16), we construct the approximations of first derivative in term of function values at 

the nodes 𝑥𝑗 such that, 
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𝜕𝑢 (𝑥
𝑖−
1
2
, 𝑡)

𝜕𝑥
≈  

1

4ℎ
[𝑢(𝑥𝑖, 𝑡) + 𝑢(𝑥𝑖+1, 𝑡) − 𝑢(𝑥𝑖−2, 𝑡) − 𝑢(𝑥𝑖−1, 𝑡)], 

(17) 

 

 

𝜕𝑢 (𝑥
𝑖+
1
2
, 𝑡)

𝜕𝑥
≈  

1

4ℎ
[𝑢(𝑥𝑖+1, 𝑡) + 𝑢(𝑥𝑖+2, 𝑡) − 𝑢(𝑥𝑖−1, 𝑡) − 𝑢(𝑥𝑖 , 𝑡)]. 

(18) 

 

Hence, Eq. (11) can be approximated by 

𝑑𝑢̅𝑖(𝑡)

𝑑𝑡
=  𝜖ℎ𝛼−1 [ ∑𝑤𝑗

𝛼𝑢(𝑥𝑖−𝑗, 𝑡)

𝑖

𝑗=0

−∑𝑤𝑗
𝛼𝑢(𝑥𝑖−𝑗+1, 𝑡)

𝑖+1

𝑗=0

   ]

+
𝑝

4ℎ2
[ 𝑢(𝑥𝑖−2, 𝑡) − 2𝑢(𝑥𝑖, 𝑡) + 𝑢(𝑥𝑖+2, 𝑡)]. 

(19) 

 

 

Noting that if 𝑢(𝑥, 𝑡) is smooth function, then the value of control volume averages 𝑢̅𝑖(𝑡) 

agrees with the value of 𝑢(𝑥, 𝑡) at the midpoint of the interval [𝑥𝑖−1/2, 𝑥𝑖+1/2] to 𝒪(ℎ2). So, Eq. 

(19) can be rewritten as: 

𝑑𝑢(𝑥𝑖, 𝑡)

𝑑𝑡
= 𝜖ℎ𝛼−1 [ ∑𝑤𝑗

𝛼𝑢(𝑥𝑖−𝑗, 𝑡)

𝑖

𝑗=0

−∑𝑤𝑗
𝛼𝑢(𝑥𝑖−𝑗+1, 𝑡)

𝑖+1

𝑗=0

   ]

+
𝑝

4ℎ2
[ 𝑢(𝑥𝑖−2, 𝑡) − 2𝑢(𝑥𝑖, 𝑡) + 𝑢(𝑥𝑖+2, 𝑡)]. 

(20) 

 

 

Letting  𝑡𝑛 = 𝑛𝜏 , 𝑛 = 0,1,2, …, whereas τ is the time step. Then, by using the standard 

backward difference to approximate the time derivative in Eq. (20), it yields that, 

 
𝑑𝑢(𝑥𝑖, 𝑡)

𝑑𝑡
|
𝑡=𝑡𝑛+1

=
𝑢(𝑥𝑖 , 𝑡𝑛+1) − 𝑢(𝑥𝑖, 𝑡𝑛)

𝜏
+ 𝒪(𝜏). 

 

Now, letting  𝑢𝑖
𝑛 ≈ 𝑢(𝑥𝑖, 𝑡𝑛), which denote the numerical solution. So, we have 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝜏
= 𝜖ℎ𝛼−1 [∑𝑤𝑗

𝛼𝑢𝑖−𝑗
𝑛+1 −∑𝑤𝑗

𝛼𝑢𝑖−𝑗+1
𝑛+1

𝑖+1

𝑗=0

𝑖

𝑗=0

]

+
𝑝

4ℎ2
[𝑢𝑖−2
𝑛+1 − 2𝑢𝑖

𝑛+1 + 𝑢𝑖+2
𝑛+1]. 

 

 

By collecting like terms, we can rewrite Eq. (20) as follows, 
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𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝜏
=
1

ℎ
∑𝑘𝑖𝑗𝑢𝑗

𝑛+1,    𝑖 = 0,1,2, … ,𝑁,

𝑁

𝑗=0

 (21) 

 

 

where 𝐾𝑖𝑗 given by  

𝑘𝑖𝑗  = 

{
 
 
 
 

 
 
 
 
𝜖ℎ𝛼[𝑤𝑖−𝑗

𝛼 − 𝑤𝑖−𝑗+1
𝛼 ],         𝑗 < 𝑖 − 2,

𝜖ℎ𝛼[𝑤2
𝛼 − 𝑤3

𝛼] +
𝑝

4ℎ
,        𝑗 = 𝑖 − 2,

𝜖ℎ𝛼[𝑤1
𝛼 − 𝑤2

𝛼] ,                 𝑗 = 𝑖 − 1,

𝜖ℎ𝛼[𝑤0
𝛼 −𝑤1

𝛼] −
𝑝

2ℎ
,       𝑗 = 𝑖,         

𝜖ℎ𝛼[−𝑤0
𝛼],                          𝑗 = 𝑖 + 1,

    
𝑝

4ℎ
,                                     𝑗 = 𝑖 + 2,

      0,                                      𝑗 > 𝑖 + 2.

 

Utilizing the numerical solution vector 𝑈𝑛 = [𝑢0
𝑛, 𝑢1

𝑛… , 𝑢𝑁
𝑛 ], we have the following vector 

equation: 

(𝐼 +
𝜏

ℎ
𝐴)𝑈𝑛+1 = 𝑈𝑛, 

where Matrix A has elements 𝑎𝑖𝑗 = −𝐾𝑖𝑗. 

 

Theorem 3.1. For 𝑖 = 0,1, … ,𝑁 , the numerical scheme 
𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

𝜏
=

1

ℎ
∑ 𝑘𝑖𝑗𝑢𝑗

𝑛+1𝑁
𝑗=0  is 

conditionally stable. 

Proof: Substituting 𝑢𝑖
𝑛 = 𝑢̂𝑛 𝑒𝑥𝑝(𝑖𝐼𝜉) , 𝐼 = √−1, into 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝜏
 =  

1

ℎ
∑𝑘𝑖𝑗𝑢𝑗

𝑛+1, 𝑖 = 0,1,2, … ,𝑁,

𝑁

𝑗=0

 

gives  𝑢̂𝑛+1 𝑒𝑥𝑝(𝑖𝐼𝜉) − 𝑢𝑛 𝑒𝑥𝑝(𝑖𝐼𝜉) = 𝑟∑ 𝑘𝑖𝑗𝑢̂
𝑛+1 exp(𝑗𝐼𝜉)𝑁

𝑗=0 , 𝑟 =
𝜏

ℎ
. 𝑢̂𝑛+1  = 𝜌(𝜉)𝑢̂𝑛, 

where 𝜌(𝜉)  =  
1

[1−𝑟∑ 𝑘𝑖𝑗 exp((𝑗−𝑖)𝐼𝜉)
𝑁
𝑗=0 ]

 which satisfies the von Neumann condition whenever 

|1 − 𝑟 ∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 − 𝑖)𝐼𝜉)
𝑁
𝑗=0 | ≥ 1. By using the reverse triangle inequality, we have 

|1 − 𝑟 ∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 − 𝑖)𝐼𝜉)
𝑁
𝑗=0 | ≥ |1 − |𝑟 ∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 − 𝑖)𝐼𝜉)

𝑁
𝑗=0 ||.  

Thus, von Neumann condition holds for |1 − |𝑟 ∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 − 𝑖)𝐼𝜉)
𝑁
𝑗=0 || ≥ 1, i.e., either 1 −

|𝑟 ∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 − 𝑖)𝐼𝜉)
𝑁
𝑗=0 | ≥ 1, which is impossible to be hold, or 1 − |𝑟 ∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 −

𝑁
𝑗=0
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𝑖)𝐼𝜉)| ≤ −1, which is equivalent to|∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 − 𝑖)𝐼𝜉)
𝑁
𝑗=0 | ≥

2

𝑟
. Therefore, 𝜌(𝜉) satisfies the 

von Neumann condition whenever |∑ 𝑘𝑖𝑗𝑒𝑥𝑝 ((𝑗 − 𝑖)𝐼𝜉)
𝑁
𝑗=0 | ≥

2

𝑟
, for 𝑖 = 0,1,2, … , 𝑁. 

3.2. Finite difference method 

Herein, we use a finite difference method for solving the space-fractional convection-

diffusion equation with constant coefficients: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡 
+ 𝜖

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
= 𝑝

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, 

 

along with the following initial condition 

 

𝑢(𝑥, 0) = 𝑓(𝑥), 
 

where 𝑥 ∈ [𝑎, 𝑏], 𝑡 ≥ 0, 0 < 𝛽 ≤ 1, 𝜖 and 𝑝 are positive parameters, and 
𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽
 is the space 

fractional, the space fractional derivative in the Riemann-Liouville sense. Using the definition of 

Riemann-Liouville fractional derivative of order 0 < 𝛽 ≤ 1, we have 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡 
+ 𝜖

𝜕

𝜕𝑥
𝐽𝑎
1−𝛽

𝑢(𝑥, 𝑡) = 𝑝
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, (22) 

 

where 𝐽𝑎
1−𝛽

 is the Riemann-Liouville integral with respect to 𝑥. Take 𝛼 = 1 − 𝛽, we have 0 ≤

𝛼 < 1.              

Now discretize the finite domain Ω = [𝑎, 𝑏] with 𝑁 + 1 uniformly spaced nodes  𝑥𝑖 = 𝑎 +

𝑖ℎ, 𝑖 = 0,1, . . , 𝑁, where ℎ =
𝑏−𝑎

𝑁
   be the space step. We approximate the 𝛼 order fractional 

Riemann-Liouville integral with standard Grünwald formula and approximate the first and second 

derivative with central difference formula: 

𝐽𝑎
𝛼𝑢(𝑥, 𝑡) = ℎ𝛼∑𝑤𝑗

𝛼𝑢(𝑥 − 𝑗ℎ, 𝑡)

𝑁

𝑗=0

+ 𝜊(1), (23) 

 

 

𝜕𝑢(𝑥𝑖, 𝑡)

𝜕𝑥
=
𝑢(𝑥𝑖+1, 𝑡) − 𝑢(𝑥𝑖−1, 𝑡)

2ℎ
+ 𝒪(ℎ2), (24) 

 

 

𝜕2𝑢(𝑥𝑖, 𝑡)

𝜕𝑥2
=
𝑢(𝑥𝑖−1, 𝑡) − 2𝑢(𝑥𝑖, 𝑡) + 𝑢(𝑥𝑖+1, 𝑡)

ℎ2
+ 𝒪(ℎ2). (25) 
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Applying the finite difference discretization method for evaluating Eq. (22) at 𝑥 = 𝑥𝑖, and 

using the above Eqs (23)-(25) to get 

𝑑𝑢(𝑥𝑖, 𝑡) 

𝑑𝑡
= −

𝜖

2ℎ
[ℎ𝛼∑𝑤𝑗

𝛼𝑢(𝑥𝑖−𝑗+1, 𝑡)

𝑖+1

𝑗=0

− ℎ𝛼∑𝑤𝑗
𝛼𝑢(𝑥𝑖−𝑗−1, 𝑡)

𝑖−1

𝑗=0

]

+ 𝑝 [
𝑢(𝑥𝑖−1, 𝑡) − 2𝑢(𝑥𝑖 , 𝑡) + 𝑢(𝑥𝑖+1, 𝑡)

ℎ2
]. 

(26) 

 

Letting  𝑡𝑛 = 𝑛𝜏, 𝑛 = 0,1,2, …,  where τ is the time step, and using the standard backward 

difference to approximate the temporal derivative in Eq. (26) as follows, 

𝑑𝑢(𝑥𝑖, 𝑡)

𝑑𝑡
|
𝑡=𝑡𝑛+1

= 
𝑢(𝑥𝑖 , 𝑡𝑛+1) − 𝑢(𝑥𝑖, 𝑡𝑛)

𝜏
+ 𝒪(𝜏), (27) 

 

 

Now, letting 𝑢𝑖
𝑛 ≈ 𝑢(𝑥𝑖 , 𝑡𝑛) is the numerical solution, then we have 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛 

𝜏
= −

𝜖

2ℎ
[ℎ𝛼∑𝑤𝑗

𝛼𝑢𝑖−𝑗+1
𝑛+1

𝑖+1

𝑗=0

− ℎ𝛼∑𝑤𝑗
𝛼𝑢𝑖−𝑗−1

𝑛+1

𝑖−1

𝑗=0

]

+ 𝑝 [
𝑢𝑖−1
𝑛+1 − 2𝑢𝑖

𝑛+1 + 𝑢𝑖+1
𝑛+1

ℎ2
]. 

(28) 

 

Thus, by collecting like terms, we can rewrite the above equation as follows, 

 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝜏
= −∑𝑏𝑖𝑗𝑢𝑗

𝑛+1,

𝑁

𝑗=0

 (29) 

 

where 

𝑏𝑖𝑗 =

{
 
 
 
 

 
 
 
 
𝜖ℎ𝛼−1[𝑤𝑖−𝑗+1

𝛼 −𝑤𝑖−𝑗−1
𝛼 ]

2
,          𝑗 < 𝑖 − 1,

𝜖ℎ𝛼−1[𝑤2
𝛼 − 𝑤0

𝛼]

2
−
𝑝

ℎ2
,           𝑗 = 𝑖 − 1,

𝜖ℎ𝛼−1𝑤1
𝛼

2
+
2𝑝

ℎ2
,                    𝑗 = 𝑖,        

𝜖ℎ𝛼−1𝑤0
𝛼

2
−
𝑝

ℎ2
,                    𝑗 = 𝑖 + 1,

       0,                                  𝑗 > 𝑖 + 1.

  

Utilizing the numerical solution vector 𝑈𝑛 = [𝑢0
𝑛, 𝑢1

𝑛, … , 𝑢𝑁
𝑛 ], we have the following vector 

equation: 
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(𝐼 + 𝜏𝐴)𝑈𝑛+1 = 𝑈𝑛, (30) 
 

 

where the matrix 𝐴 has elements 𝑎𝑖𝑗 = 𝑏𝑖𝑗. we can re write the above equation as 𝑈𝑛+1 = 𝑀𝑈𝑛, 

where 𝑀 = (𝐼 + 𝜏𝐴)−1 is the iteration matrix. 

 

Theorem 3.2. Let 𝜖 > 0, 𝜌 > 0 and 0 ≤ 𝛼 < 1 𝑠𝑎𝑡𝑖𝑠𝑓𝑦   𝜌 >
𝜖ℎ𝛼+1

2
, where ℎ is the spatial step. 

Then, the coefficients 𝑎𝑖𝑗 satisfy 

|𝑎𝑖𝑖| > ∑|𝑎𝑖𝑗|

𝑁

𝑗=0
𝑗≠𝑖

, 𝑖 = 1,2, … ,𝑁. 

Proof: Consider the following sum for a given 𝑖: 

∑|𝑎𝑖𝑗|

𝑁

𝑗=0
𝑗≠𝑖

=∑|𝑎𝑖𝑗|

𝑖−2

𝑗=0

+ |𝑎𝑖,𝑖−1| + |𝑎𝑖,𝑖+1| + ∑ |𝑎𝑖𝑗|

𝑁

𝑗=𝑖+2

 

=∑|
𝜖ℎ𝛼−1[𝑤𝑖−𝑗−1

𝛼 − 𝑤𝑖−𝑗+1
𝛼 ]

2
|

𝑖−2

𝑗=0

+ |
𝜖ℎ𝛼−1[𝑤2

𝛼 − 𝑤0
𝛼]

2
−
𝜌

ℎ2
 | + |

𝜖ℎ𝛼−1𝑤0
𝛼

2
−
𝜌

ℎ2
 |. 

Now, by the hypotheses 𝜌 >
𝜖ℎ𝛼+1

2
, we  include that each term is negative. So, we have: 

∑|𝑎𝑖𝑗|

𝑁

𝑗=0
𝑗≠𝑖

=∑
𝜖ℎ𝛼−1[𝑤𝑖−𝑗−1

𝛼 − 𝑤𝑖−𝑗+1
𝛼 ]

2

𝑖−2

𝑗=0

+ (
𝜌

ℎ2
−
𝜖ℎ𝛼−1[𝑤2

𝛼 − 𝑤0
𝛼]

2
) + (

𝜌

ℎ2
−
𝜖ℎ𝛼−1𝑤0

𝛼

2
). 

Replacing the finite sum with infinite sum 

∑|𝑎𝑖𝑗|

𝑁

𝑗=0
𝑗≠𝑖

< ∑
𝜖ℎ𝛼−1[𝑤𝑖−𝑗−1

𝛼 − 𝑤𝑖−𝑗+1
𝛼 ]

2

𝑖−2

𝑗=−∞

+ (
𝜌

ℎ2
−
𝜖ℎ𝛼−1[𝑤2

𝛼 − 𝑤0
𝛼]

2
) + (

𝜌

ℎ2
−
𝜖ℎ𝛼−1𝑤0

𝛼

2
). 

The telescoping sum have the form  (𝑤1
𝛼 − 𝑤3

𝛼) + (𝑤2
𝛼 − 𝑤4

𝛼) + (𝑤3
𝛼 −𝑤5

𝛼) + (𝑤4
𝛼 − 𝑤6

𝛼). 

Hence, we have 

∑|𝑎𝑖𝑗|

𝑁

𝑗=0
𝑗≠𝑖

<
𝜖ℎ𝛼−1[𝑤1

𝛼 + 𝑤2
𝛼]

2
+ (

𝜌

ℎ2
−
𝜖ℎ𝛼−1[𝑤2

𝛼 − 𝑤0
𝛼]

2
) + (

𝜌

ℎ2
−
𝜖ℎ𝛼−1𝑤0

𝛼

2
) 

            =
𝜖ℎ𝛼−1𝑤1

𝛼

2
+
2𝜌

ℎ2
  = |𝑎𝑖𝑖|. 
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Corollary 3.1. The iteration matrix 𝑀 in the scheme (30) is convergent, and hence the scheme 

itself is conditionally stable. 

Proof: With the aid of Theorem 3.2, we have that 𝐴 is strictly diagonally dominant with positive 

diagonal elements. Hence, 𝐼 + 𝜏𝐴 is so and then the iteration matrix 𝑀 = (𝐼 + 𝜏𝐴)−1 exists, in 

which its spectral radius satisfies 

𝜌(𝑀) = 𝜌(𝐼 + 𝜏𝐴)−1 = (1 + 𝜏𝜌(𝐴))
−1
< 1. 

 

4. NUMERICAL EXPERIMENTS 

Several physical applications that are formed utilizing FPDEs cannot be found their exact 

solutions. This section aims to use the proposed approaches, the FDM and FVM, to construct the 

solutions for space-fractional convection-diffusion equation. In this section, we demonstrate the 

validity of our analysis by giving two numerical examples. Eventually, numerical experiments are 

considered for comparing the FV and FD methods, the computations are performed by 

Mathematica Software 11.0. 

 

Example 4.1: Consider the space-fractional convection-diffusion equation 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡 
+ (0.01)

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
= (0.002)

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, (31) 

 

subject to the following initial condition  

𝑢(𝑥, 0) = − sin(𝜋𝑥), (32) 
 

 

where 𝑥 ∈ [1,1.5], 𝑡 ≥ 0 and 0 < 𝛽 ≤ 1. 

In particular, the exact solution at 𝛽 = 1   is given by 𝑢(𝑥, 𝑡) = −sin(𝜋(𝑥 −

(0.01)𝑡)) exp (−(0.002)(𝜋2𝑡)) . and when the 𝛽 ∈ (0,1)  the exact solution is given 

by∑
(−1)𝑛𝜋2𝑛𝑥2𝛽

Ґ(𝑛𝛼+1)
∞
𝑛=0 [− sin (𝜋(𝑥𝛽 − (0.01)𝑡)) exp (−(0.002)(𝜋2𝑡)] 

In accordance with the proposed approaches, put ℎ = 0.015625  and 𝜏 = 0.01.  In the 

following, some representative results of fractional convection-diffusion equation (31) and (32) 

are shown in Table 1. Whereas Table 1 displayed the absolute errors for the fractional models (31) 

and (32) at time 𝑡 = 0.5 using the FDM and FVM. From the numerical simulation, it can be seen 

how compatible the numerical solutions are with the exact solution at each selected node. 
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Table 1. Absolute error of Example 4.1 at 𝛽 = 1 with time 𝑡 = 0.5 using FVM and FDM. 

𝒙 
Exact 

solution 

FVM 

Absolute Error 

FDM 

Absolute Error 

1.00000   −0.015553 1.39255 × 10−7 1.66307 × 10−7 

1.01563 0.033046 5.96755 × 10−7 4.78730 × 10−7 

1.03125 0.081564 1.93938 × 10−6 1.57099 × 10−6 

1.04688 0.129887 3.07424 × 10−6 2.21967 × 10−6 

1.0625 0.177896 5.70262 × 10−6 3.27646 × 10−6 

1.07813 0.225477 6.32957 × 10−6 7.02039 × 10−6 

1.09375 0.272515 1.06647 × 10−5 1.78096 × 10−5 

1.10938 0.318896 1.14916 × 10−5 2.07548 × 10−5 

1.12500 0.364509 7.40457 × 10−5 3.61227 × 10−5 

 

Example 4.2: Consider the space- fractional convection-diffusion equation 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡 
+ (0.1)

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
= (0.02)

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, (30) 

 

 

subject to the following initial condition: 

𝑢(𝑥, 0) = 𝑒𝜁𝑥, (31) 
 

 

where 𝜁 = 1.17712434446770, 𝑥 ∈ [−2,0.5], 𝑡 ≥ 0 and 0 < 𝛽 ≤ 1. 

In particular, the exact solution at 𝛽 = 1  is given by 𝑢(𝑥, 𝑡) = 𝑒𝜁𝑥−0.09𝑡 and when the 𝛽 ∈

(0,1) the exact solution is given by (𝑥, 𝑡, 𝛽) = ∑
(−1)𝑛𝜋2𝑛𝑥2𝛽

Ґ(𝑛𝛼+1)
∞
𝑛=0 𝑒𝜁𝑥

𝛽−0.09𝑡 . In accordance with 

the proposed approaches, put ℎ = 0.0625 and 𝜏 = 0.01. In the following, some representative 

results of fractional convection-diffusion equation (33) and (34) are shown in Table 2. Table 2 

displayed the absolute errors for the fractional models (33) and (34) at time 𝑡 = 0.5 using the 

FDM and FVM. From the numerical simulation, it can be seen how compatible the numerical 

solutions are with the exact solution at each selected node. 

 

 



7886 

RANIA SAADEH 

Table 2. Absolute error of Example 4.2 at 𝛽 = 1 with time 𝑡 = 0.5 using FVM and FDM. 

𝒙 Exact solution 
FVM 

Absolute Error 

FDM 

Absolute error 

−2.0000 0.090786 2.448740 × 10−7 2.548004 × 10−7 

−1.9375 0.097717 1.853871 × 10−6 5.950876 × 10−7 

−1.8750 0.105177 2.715357 × 10−6 1.913549 × 10−6 

−1.8125 0.113207 4.084997 × 10−6 2.269837 × 10−6 

−1.7500 0.121850 5.079988 × 10−6 2.580286 × 10−6 

−1.6875 0.131152 7.852180 × 10−6 2.925587 × 10−6 

−1.6250 0.141165 1.297671 × 10−5 1.180799 × 10−5 

−1.5625 0.151942 1.620270 × 10−5 3.043481 × 10−5 

−1.5000 0.163542 3.214643 × 10−5 3.804975 × 10−5 

−1.4375 0.176027 3.273511 × 10−5 4.173032 × 10−5 

−1.3750 0.189466 4.233925 × 10−5 4.385183 × 10−5 

 

5. CONCLUSION 

In this paper, finite difference and finite volume methods have been lucratively used for solving 

the convection-diffusion equation of fractional order with constant coefficient. We use finite 

volume method for solving the given equation, for this we take the integral over the 𝑖𝑡ℎcontrol 

volume, then Reimann-Liouville fractional integral is discretized using standard shift Grünwald 

formula. We got a conservative solution, whereas the solution obtained by the finite difference 

method is not conservative, because we require to use the central difference formula is first applied, 

then the Reimann –Liouville fractional integral is discretized using standard Grünwald formula. 

Numerical results are found using Mathematica software 11.0 and found that both the methods 

have approximately close. The obtained numerical results indicate that the finite volume method 

is more approximate to the exact solution than finite difference method in two different 

experiments. Thus, it can be concluded that the Finite volume method is better for solving the 

convection-diffusion equation of fractional order with constant coefficient 
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